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One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying
genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give
rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved
understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling
pathway promiscuity, and computable from integrating a sample’s gene expression profile with a protein
interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal
tissue. Here we develop a computational framework for studying the effects of network perturbations on
signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors:
(i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation
between differential gene expression and node connectivity. Indeed, we show that if protein interaction
networks were random graphs, described by Poisson degree distributions, that cancer would generally not
exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer,
signaling entropy and interaction network topology.

O
ne of the key features of cancer is an increased cellular plasticity,mediated by an increased promiscuity in
signaling patterns, and driven by underlying genetic and epigenetic aberrations which cause a fun-
damental rewiring of the intracellular signaling network1–8. Every aberration found in a cancer cell

can be thought of as a perturbation if the aberration affects the gene functionally. Such perturbations can be
classed as activating, if they result in an increased functional activity of the gene (e.g. amplification and over-
expression of ERBB2 in breast cancer), or inactivating, if it compromises gene function (e.g. silencing through
promoter DNA methylation). Whilst the effect of certain specific perturbations on gene function can be pre-
dicted, it is much less clear how individual perturbations affect the cellular phenotype as a whole, since this
depends on the collective nature of the other aberrations that are present in the same cell. Predicting the net effect
of multiple perturbations in a signaling network is hard due to complex effects such as pathway redundancy and
epistasis3,6. Moreover, in the context of cancer, although the effect of specific aberrations on cell function is
known, it is yet unclear how individual cancer perturbations may contribute to the observed increased signaling
promiscuity and phenotypic plasticity.

One way to approach this challenge computationally, is to anchor the analysis on global measures which
capture salient features of the cellular phenotype, and which are computable from, say, a sample’s molecular
profile (e.g. a sample’s gene expression profile). Here we are particularly interested in measuring signaling
promiscuity since evidence is mounting that this underlies a sample’s phenotypic plasticity8. In previous work
we have started to explore a measure which approximates intra-sample signaling promiscuity, and which is
known as network signaling entropy9–11. Signalling entropy is computed from integrating a sample’s genome-
wide gene expression profile with a protein interaction network and, as shown by us, provides a surprisingly good
estimate of a sample’s height in Waddingtons’s differentiation landscape, with human embryonic stem cells
(hESCs) exhibiting the highest levels of entropy10. Indeed, signalling entropy was able to discriminate cellular
samples according to their differentiation potential within distinct lineages, including hematopoietic, mesench-
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ymal and neural lineages, and with terminally differentiated cells
within these lineages exhibiting the lowest levels of entropy10.
Importantly, signaling entropy was also found to be higher in cancer
compared to normal tissue, consistent with the view that cancer cells
represent a more undifferentiated stem-cell like state, characterised
by an increase in phenotypic plasticity8,10.
Given that increased signaling entropy is such a robust and char-

acteristic feature of differentiation potency and cancer, and that it is
also amenable to computation9,10, it is of great theoretical and bio-
logical interest to study the changes in entropy caused by cellular
network perturbations. In the context of cancer, two well-known
network perturbations are the overexpression and underexpression
of oncogenes and tumour suppressor genes, respectively, and
although these perturbations are known to result in the uncontrolled
activation of cell-growth and cell-proliferation pathways, it remains
unclear how these perturbations affect signalling promiscuity. In
order to deepen our understanding, we here decided to study the
effect of such perturbations on signaling entropy, using both simu-
lated and real data, and using a variety of different network types in
order to assess the impact of network topology. Specifically, we con-
sider Erdos-Renyi random (Poisson) graphs12, scale free networks13,
as well as real protein-protein interaction (PPI) networks14–16. In
doing so, we discover that in Poisson networks, perturbations (be
they activating or inactivating) lead to reductions in the global
entropy, but that this is not true for scale-free and more realistic
PPI networks. In networks exhibiting a scale-free, or near scale-free
topology, we show that gene expression perturbations affecting hubs
exhibit a striking bi-modality, leading to increases or decreases in the
global entropy rate depending on the directionality of the expression
change. We further expose a subtle yet significantly positive correla-
tion between differential gene expression in cancer and node-degree,
which we show drives the increased signaling promiscuity of cancer,
but only if the underlying protein interaction network has a scale-free
(or near scale-free) topology. Thus, this work makes a deep connec-
tion between a defining feature of the cancer phenotype, i.e. high
signaling entropy, its differential gene expression pattern and the
(near) scale-free topology of real PPI networks.
Although there are many studies on network perturbations, it is

worth clarifying that the network perturbations and outcome of
interest (i.e. the entropy rate) considered in this work are very dif-
ferent from the perturbations and outcomes of interest considered in
previous studies17–21. Specifically, we consider network perturbations
which only alter the local edge weights without altering the under-
lying network topology9,10,22. Moreover, our network perturbations
can be both activating as well as inactivating, representing the two
different types of cancer alterations affecting oncogenes and tumour
suppressors, respectively. In contrast, much of the previous literature
has dealt with the effects of removing specific nodes in unweighted
networks17,18, a type of inactivating perturbation which alters the
underlying network topology, focusing on tolerance and robustness
as outcome measures17–19,21. Thus, from a network theoretical per-
spective, the important novel insights reported in this work are made
possible by considering a novel type of network perturbation in the
context of weighted networks defined by a stochastic matrix. We
should also stress that our outcome of interest, signaling entropy,
is a systems-level measure that is constructed from the genome-wide
expression profile of a given sample, and therefore has little to do
with the protein signaling disorder measures considered by other
studies and which do not use gene expression data23.

Results
Increased signaling entropy in cancer is driven by overexpression
of hub genes. In earlier work we demonstrated that signaling entropy,
a measure of the signaling promiscuity in a cellular sample, is
increased in cancer compared to normal tissue, irrespective of tissue
type9–11. This increased signaling entropy is consistent with the

observed increased phenotypic plasticity of cancer cells (see e.g. Ref.
8). Thus, increased signaling entropy has emerged as a cancer systems
hallmark9,11. Signaling entropy is estimated as the entropy rate24 of a
sample-specific stochastic matrix which models the signaling
interactions in the sample (Methods). This stochastic matrix is
computed by integrating the gene expression profile of the sample
with a comprehensive PPI network, invoking the mass-action
principle to define the edge-weights in the network (Methods). The
mass-action principle is based on the assumption that two proteins,
which have been reported to interact, are more likely to interact in a
given sample if both are highly expressed in that sample.
Here we wanted to shed light on why, theoretically, we observe

increased signaling entropy in cancer. We decided to use liver cancer
as amodel since liver represents a relatively homogeneous tissue, and
is thus less affected by contaminating non-epithelial cells. We down-
loaded gene-normalised RNA-Seq data for a matched subset of 50
normal liver and 50 liver cancer samples from The Cancer Genome
Atlas (TCGA). Confirming our earlier work using Affymetrix gene
expression data9–11, liver cancer exhibited a significantly higher sig-
naling entropy rate compared to normal liver tissue (Fig. 1A).
Randomisation of the RNA-Seq profiles over the nodes in the net-
work resulted in a significantly reduced difference in entropy rate
between normal and cancer tissue (Fig. 1A), indicating (as pointed
out by us previously11) that the entropy increase in cancer is driven by
a subtle interplay between specific gene expression changes and
where these happen on the network. Specifically, we posited that
the topological properties of the genes undergoing the largest
changes in gene expression would be key features dictating the
change in signalling entropy.
Since each gene i contributes an amount piLSi to the entropy rate

of a given sample (Methods), we computed for each gene the differ-
ence in themeans of its local entropy rate, piLSi, between normal and
cancer tissue. In order to help interpretation, we also computed for
each gene the difference in the means of the invariant measure pi

between normal and cancer, as well as the difference in the average
local entropy LSi (Methods). All these changes were assessed in rela-
tion to the connectivity of the genes in the network.We observed that
the entropy rate increase in cancer is driven mainly by hubs, i.e. the
nodes of highest degree in the network (Fig. 1B). Changes to the local
entropy rates were driven by concomitant changes in the average
invariant measure (Fig. 1C). Thus, hubs exhibited preferential
increases in their average invariant measure, whilst also demonstrat-
ing positive increases in the average local entropy (Fig. 1D). Since the
invariant measure value at a node i represents the steady-state prob-
ability of finding a random walker at this node, the observed pref-
erential increase in the invariant measure at hubs means that there is
an increased signaling flux through these hub nodes in cancer.
To gain insight as to why there is an increased signaling flux

through hubs in cancer, we focused on the hub gene exhibiting the
largest increase in the local entropy rate. This was the gene BUB1
(Fig. 2A). A scatterplot of the expression values of BUB1 and that of
its neighbors (813 neighbors) in a representative normal sample
versus the corresponding expression values in a representative cancer
sample, demonstrates that most of the expression differences involve
increases in gene expression, implicating both the hub itself as well as
some of its neighbors (Fig. 2B). Thus, for themajority of neighbors of
BUB1, the increased expression of BUB1 will, according to the mass
action principle, drive increased signaling through this hub. Indeed,
for each one of BUB1’s neighbors we ranked its neighbors according
to the largest increase in gene expression, revealing that the original
hub (i.e. BUB1) ranked among the top 2% centile for 99% of the hub
neighbors (SI Appendix, fig. S1). Interestingly, this effect was not
unique to BUB1 since high-degree hubs generally exhibited a signifi-
cant skew towards increased gene expression in cancer (Fig. 2C–D).
Confirming the biological significance of these results, we reached

very similar conclusions by repeating the above analysis in the inde-
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pendent Affymetrix gene expression data set of normal liver and liver
cancer tissue25 (SI Appendix, fig. S2–S3). Thus, the increased entropy
rate in liver cancer is drivenmainly by the increased expression of the
highest degree hubs in the PPI network.

Effect of cancer perturbations on signaling entropy. That the
highest degree genes show preferential expression increases in
cancer (Fig. 2C–D, SI Appendix fig. S3) suggests an intricate link
between network topology and differential expression. Confirming
this further, in both liver expression sets we also observed that the
genes exhibiting the largest, or most significant, decreases in
expression preferentially mapped to low-degree nodes (Fig. 2C–D,
SI Appendix fig. S3–S4).
This intricate correlation between differential expression and node

degree motivated us to pursue a deeper understanding of the com-
plex interplay between network topology, gene expression perturba-
tions and entropy rate. Intuitively, and from the perspective of a gene
i that interacts with an oncogenic hub, overexpression of the latter
would lead to an increased outgoing signaling flux of node i towards
the hub, potentially leading to an increase in the overall entropy rate
(Fig. 3A). Interestingly, underexpression of a low-degree node, which
may connect to a hub either directly or indirectly through an inter-
mediate node iwould also lead to an increased signaling flux through
the hub (Fig. 3A). Thus, the two characteristic topological features of
differential gene expression changes in cancer could synergize caus-
ing increased signaling flux through key hubs. To test whether this is

indeed the case, we performed a perturbation analysis for the top 100
genes ranked according to fold-change between normal liver and
liver cancer. The initial signaling distribution was defined by invok-
ing the mass action principle on the average expression profile over
all 50 normal liver samples. Next, each of the top 100 ranked genes
was individually perturbed by changing its expression level accord-
ing to the observed difference between normal and cancer tissue.
Confirming our hypothesis, underexpressed genes (which generally
did not target hubs) led to marginal increases in the entropy rate,
whilst overexpressed hubs caused significant entropy increases
(Fig. 3B). Interestingly however, overexpression led to marginal
entropy decreases whenever it did not target the highest degree hubs,
suggesting that such perturbations draw away signaling flux from the
major hubs (Fig. 3B).

The effect of perturbations on signaling entropy is dependent on
network topology. To further investigate the effect of individual
perturbations on signaling entropy, as well as the role of the
underlying network topology, we devised a simulation framework
on toy networks, perturbing each node in turn, and recording the
effect on the entropy rate (Fig. 4A, Methods). To simplify the
analysis we considered an initial uniform edge weight configuration,
defining an unbiased random walk on the graph. We note that this
initial configuration represents a state of relatively high signaling
entropy, but not of maximal entropy (see Methods). As activating
perturbations we consider local increases in gene expression,

Figure 1 | Increased entropy in liver cancer is driven by increased entropy at hubs: (A) Boxplots comparing the entropy rate (SR) of 50 normal liver

samples (N) to 50matched liver cancer specimens (C), derived fromRNA-Seq data of the TCGA consortium. P-value is from a one-tailedWilcoxon rank

sum test, testing the hypothesis that entropy rate is higher in cancer. Also shown is the SR between normal and liver cancer for a case where the gene

expression profiles were randomly permuted (perm) over the interaction network. Observe how the difference in the SR between normal and cancer is

reduced and even takes an opposite directionality, demonstrating that the interplay between gene expression changes and network topology is dictating

the higher signaling entropy in cancer. (B) Boxplots showing the change in the mean local entropy rate (LSR) (ÆpiLSiæC2 ÆpiLSiæN) between normal and

cancer of each node (gene) as a function of node degree, positive values indicating higher values in cancer. (C) Scatterplot of the differential change in the

mean local entropy rate against the differential change in the mean invariant measure (INVP) (ÆpiæC 2 ÆpiæN). Each data point is one node (gene).

(D) Boxplots showing the change in the mean local entropy (LS) of each node (gene) (ÆLSiæC2 ÆLSiæN) between normal and cancer, as a function of node

degree.
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whereby all the weights of edges converging on a perturbed node i are
assigned a relatively large weight (Fig. 4B). Thus, as seen from the
perspective of a neighboring node j, before perturbation, node j has
maximal local entropy, given by log kj (where kj is the degree of node

j), whilst after the perturbation, the node’s local entropy is close to 0
(Fig. 4B). We emphasize again that although in the initial configuration
all local entropies are maximal, that the initial entropy rate over the
whole network is not maximal (see Methods). Thus, after the

Figure 2 | Preferential overexpression of hub genes in cancer: (A) Boxplot showing the local entropy rate (LSR) against normal/cancer status, for the hub

gene (BUB1) exhibiting the largest increase in the local entropy rate. P-value is from aWilcoxon rank sum test. (B) Scatterplot of gene expression values

between a representative normal (x-axis) and cancer (y-axis) sample for the gene showing the largest increase in the local entropy rate (gene BUB1,

marked in red) and that of its neighbours in the PPI network (over 800 neighbours, shown in black). (C) Boxplot of the average difference in gene

expression between normal and cancer (positive values indicate higher expression in cancer) against node-degree class. Observe how the highest-degree

hubs show preferential increased expression in cancer, whereas the largest reductions in expression target low-degree nodes. (D) Density plot of the

average difference in gene expression between normal and cancer for two classes of genes: hubs (defined as nodes of degree.316) and nodes of degree 1 (k

5 1). The number of each is indicated, and the P-value is from a Kolmogorov-Smirnov test, testing for a difference in their statistical distributions.

Figure 3 | Effect of cancer perturbations on signaling entropy: (A) Examples of two expression perturbations typically found in cancer. Top depicts the

example of an oncogenic hub undergoing overexpression in cancer, which has the effect of drawing in signaling flux from a neighbour i. Example at the

bottom depicts the underexpression of a low-degree ‘‘tumour suppressor’’ node (e.g. a transcripton factor), which from the perspective of node i causes,

indirectly, an increased signaling flux through the nearby hub. (B) Perturbation analysis of the top 100 genes ranked according to fold-change between

normal and liver cancer. Plots shows the entropy rate after perturbation (y-axis) against node-degree (x-axis), with colors indicating over or

underexpression. Black horizontal line defines the entropy rate of the average expression profile of normal liver (i.e. before the perturbation).
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perturbation, the global entropy rate of the network could increase or
decrease.
In order to understand the potential impact of network topology, we

first conducted the perturbation analysis above on Erdos-Renyi (ER)
random graphs, for which the degree distribution is Poisson. For such
ER graphs, we observed that activating perturbations (i.e. increases in
gene expression), always led to a reduction in the global entropy rate,
irrespective of node degree (Fig. 4C). Repeating the analysis for inactiv-
ating perturbations, i.e causing nodes to undergo underexpression, we
observed that almost all nodes led to a decrease in entropy. Thus, given
that cancer is characterised by an increase in signaling entropy, this
suggests that the emergence of an increased signalingpromiscuity regime
in cancermust be due either to specific topological features not present in
random graphs, or to non-random combinations of perturbations.
To investigate this further, we next performed the same perturba-

tion analysis above, but now on networks characterised by a scale-
free (or near scale-free) topology, a key feature of real biological
networks26. The scale-free networks were matched to the same size

and average connectivity than the previously considered Erdos-
Renyi graphs. Remarkably, in scale-free networks we observed that
activating perturbations exhibited a bi-modal response, with pertur-
bations at lower-degree nodes resulting in a reduction of the global
entropy rate, whilst hubs exhibited increases (Fig. 4C). In fact, we
observed two distinct regimes with an opposite functional relation-
ship between entropy change and node-degree (Fig. 4C). In the low-
degree regime, the entropy rate decreased as node degree increases,
whereas in the high-degree regime one observes entropy increases
(Fig. 4C). Interestingly, this bi-phasic behaviour was not seen for
inactivating perturbations where we observed a monotonic decrease
of entropy with node degree (Fig. 4C). In stark contrast to Poisson
networks, high-degree nodes in the scale-free network exhibited a bi-
modal response dependent on the directionality of the perturbation
(Fig. 4C): overexpressed hubs led to entropy increases, while under-
expressed hubs led to corresponding decreases.
Next, we wanted to test whether this bi-phasic and bi-modal beha-

viour is also seen in real PPI networks. We first checked that our PPI

Figure 4 | Cancer perturbations may increase the entropy rate on networks with scale-free topology but not on random Poisson graphs: (A) A cartoon

of the network perturbation analysis: each node i of the network is perturbed in turn by changing its expression value. The case of overexpression is here

indicated in red. The increased expression draws in signaling flux from neighbours (only one perturbed edge is shown). The entropy rate of the network

after perturbing node i, SRi, is computed and compared to the entropy rate SR of the original unperturbed network. For n nodes in the network we get a

distribution of entropy rate changes (SRi2 SR, i5 1,…,n). (B) Zoomed-in version of a network perturbation, whereby a node i undergoes a perturbation

(here overexpression). From the perspective of a neighbouring node j, the perturbation causes a low signaling entropy configuration around node j. Key

question is how does this perturbation affect the global entropy rate. (C) Perturbation analysis result, in which each node (gene) of the network was

perturbed through overexpression (red) or underexpression (green). Plotted is the global entropy rate (SR) after the perturbation (y-axis) against the

degree of the perturbed node (x-axis), for 3 different networks: Erdos-Renyi (ER) graph, scale-free (SF) network and the full PPI network (PPI). Black

dashed line denotes the entropy rate before the perturbation. In each plot there as many data points as there are nodes in the network, each value

corresponding to the perturbation of only one node. Number of nodes (nn), average degree (avK) and median degree (medK) are given.
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network exhibited an approximate scale-free topology (SI Appendix,
fig. S5). Its clustering coefficient was also significantly higher than
that of a degree-distribution matched scale-free network (SI
Appendix, fig. S5). Performing the perturbation analysis on the
PPI network, we observed once again two phases, which was par-
ticularly striking for activating perturbations, with one phase exhib-
iting a negative correlation between node degree and entropy, whilst
the hub regime exhibited a positive correlation (Fig. 4C). Very inter-
estingly, however, increases in entropy were only observed for the
highest-degree hubs, with lower-degree hubs exhibiting decreases
which were surprisingly also of a larger magnitude (Fig. 4C). Thus,
in networks with a scale-free or an approximate scale-free topology,
overexpression of the highest degree hubs leads to an increase in the
entropy rate. But increasing signaling flux through lower-degree
nodes, even if of relatively high degree, leads to an overall reduction
in the diffusion rate.
From the combined perturbation analysis, we can thus see that

individual perturbations on an Erdos-Renyi graph, be they activa-
tions or inactivations (but both causing a local reduction in entropy),
invariably lead to a reduction in the global entropy rate. This is in
stark contrast to networks with a scale-free or approximate scale-free
topology, where we observe that gene activations can have opposite
effects on entropy rate depending on the degree of the activating
nodes.

Entropy rate increase in cancer requires a scale-free interaction
network topology. The previous perturbation analysis strongly
supports the view that a scale-free, or near scale-free network
topology, is important for the observed increased entropy rate in
cancer. To test this formally, we recomputed the entropy rate of all
50 normal liver and 50 liver cancer samples, but now using an
underlying Erdos-Renyi (ER) interaction network matched to the
same size and average connectivity of the full PPI network. In order
to faithfully preserve the correlation between gene expression and
node degree of the PPI network, nodes of the ER network were
ranked according to degree and gene expression values assigned
according to their corresponding rank/centile in the original PPI
network. Thus, this node mapping between the two networks
preserves the observed rank correlation between differential
expression and node-degree, allowing us to objectively assess the
importance of the scale-free property. Recomputation of the entropy
rates of all 100 samples on the ER network revealed no significant
difference between normal and cancer, thus demonstrating that the
observed entropy rate increase in cancer requires the scale-free
property of the interaction network (Fig. 5A). Supporting this
further, we observed, in two other matched normal-cancer RNA-seq
expression sets from the TCGA, that the entropy was no longer higher
in cancer when the PPI network was replaced with an equivalent ER
graph (Fig. 5B–C). In independent Affymetrix gene expression data,
we observed that the cancer-associated increase in the entropy rate
was reduced upon computing entropy on an equivalent ER network,
in three out of four studies (SI Appendix, fig. S6). Thus, in 6/7 data
sets, there was a reduction in the entropy rate difference between
cancer and normal tissue (Binomial, P 5 0.008), supporting the
view that a scale-free interaction topology is indeed necessary for
the higher entropy signaling dynamics of cancer.

Discussion
Signaling entropy, a measure of the overall uncertainty or promis-
cuity in signaling patterns within a cellular sample, has been shown
to be of biological significance in a variety of different contexts9–11. In
cellular differentiation it provides a proxy to the energy potential (i.e.
height) of Waddington’s epigenetic landscape, allowing the differ-
entiation potential of a sample to be assessed purely from its gen-
ome-wide transcriptomic profile10. Similarly, signaling entropy also
provided us with a useful framework in which to identify specific

systems-level features characterising cancer, one of which being the
increased signaling promiscuity of cancer compared to its corres-
ponding normal tissue9–11. This is important because an increased
signaling promiscuity could underlie the increased phenotypic plas-
ticity of cancer, as observed e.g. by Pisco et al8.
In this work we aimed to obtain a deeper theoretical understand-

ing as to (i) why signaling entropy is increased in cancer and (ii) why
it is such a robust discriminatory feature. We have here demon-
strated that the increase in signaling entropy is driven by two factors.
First, a subtle positive correlation between differential gene express-
ion and the degree of the corresponding proteins in the PPI network.
This correlation amounts to hubs exhibiting preferential increases in
gene expression, whilst those genes exhibiting the most significant
underexpressionmap preferentially to low-degree nodes. Second, the
observed increase of entropy in cancer requires the scale-free (or near
scale-free) topology characterising PPI networks. Indeed, by consid-
ering a Poisson network with an identical rank correlation coefficient
between differential expression and node-degree, we no longer con-
sistently observed a significant increased entropy rate in cancer
(Fig. 5). Given the demonstrated biological significance of the
entropy rate10,11, this last result thus exposes a deep connection
between the cancer phenotype and the underlying scale-free property
of real PPI networks. It suggests that if the degree distribution of a
PPI network were Poisson, that the transcriptomic changes seen in
cancer would not define a highly promiscuous signaling regime. In
other words, our data support the view that cancer ‘‘hijacks’’ the
scale-free property of real signaling networks in order to facilitate
increased signaling promiscuity and intra-tumour heterogeneity.
The novel insights described above also explain why the entropy

rate provides such a robust discriminatory feature of the cancer
phenotype. The robustness stems from the subtle correlation
between differential expression and node-degree. Although gene
expression data is notoriously noisy, there is generally speaking good
agreement across independent studies when comparing the changes
in differential gene expression between twomarked phenotypes such
as normal and cancer tissue27. Secondly, although current PPI net-
works only represent mere caricatures of the real interactions in a
cell, the ‘‘hubness’’ of a protein is likely to be a very robust feature.
Indeed, that a given protein has exceptionally many interactions,
thus defining a hub in a network, is likely to be a very robust feature,
despite the fact that the specific interaction space of the hub may
contain many false negatives and false positives15. Thus, the relative
robustness of differential expression and hubness drives the robust-
ness of the observed correlation between differential expression and
node degree, which in turn explains why increased signaling entropy
is such a consistent feature of the cancer phenotype9,10. Given the
robustness of signaling entropy as a marker of differentiation
potency10, it is therefore tempting to speculate that a subtle correla-
tion between differential expression and node degree also exists in
the context of normal cellular differentiation. Furthermore, it will be
interesting to explore if the scale-free or near scale-free topology of
PPI networks is also a key element underlying the nature of pluri-
potency, multipotency and terminal differentiation.
Although many previous studies have explored differential gene

expression changes in cancer and other diseases in relation to net-
work topology28–37, most of these have either focused on global topo-
logical properties, or on finding differential gene modules, or on
studying absolute changes in differential expression. Indeed, a num-
ber of studies agree in reporting that absolute differential expression
correlates negatively with node degree, meaning that hubs exhibit, on
the whole, much smaller changes in expression between disease phe-
notypes28,30. Interestingly, however, relatively little attention has been
paid to studying the directionality of differential gene expression in
cancer in relation to node degree. Here we have shown that there
exists a subtle yet significantly positive correlation between differ-
ential expression and protein-degree. On its own, the biological sig-
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nificance of this correlation is unclear. However, by interpreting this
correlation in the novel contextual framework of signalling entropy,
we have here shown how, in the context of real (near) scale-free
networks, it could underpin the increased phenotypic plasticity of
cancer.
In summary, increased expression of oncogenic hubs, as well as

reduced expression of network-peripheral tumour suppressor genes,
in interaction networks characterised by a (near) scale-free topology,
drives the high signaling entropy of cancer and could thus underpin
cancer’s phenotypic robustness and plasticity. Further in-depth
study of the complex interplay between local protein activity
changes, their interaction network topology and the effect on signal-
ing entropy is warranted.

Methods
The protein protein interaction (PPI) network. We used a PPI network similar to
that used in our previous publication38. Briefly, the human interaction network
derives from the Pathway Commons Resource (www.pathwaycommons.org)15,

which brings together protein interactions from several distinct sources, including the
Human Protein Reference Database (HPRD)14, the National Cancer Institute Nature
Pathway Interaction Database (NCI-PID) (pid.nci.nih.gov), the Interactome (Intact)
http://www.ebi.ac.uk/intact/ and the Molecular Interaction Database (MINT) http://
mint.bio.uniroma2.it/mint/. Protein interactions in this network include physical
stable interactions such as those defining protein complexes, as well as transient
interactions such as post-translational modifications and enzymatic reactions found
in signal transduction pathways, including 20 highly curated immune and cancer
signaling pathways fromNetPath (www.netpath.org)39. The network focuses on non-
redundant interactions, only included nodes with an Entrez gene ID annotation and
on the maximally connected component thereof, resulting in a connected network of
8,434 nodes (unique Entrez IDs) and 303,600 documented interactions.

Normal and cancer tissue gene expression data sets. We focused on liver cancer
because the associated normal tissue constitutes a relatively homogeneous mass of
cells, and thus the entropy rate is less likely to be influenced by changes in tissue-type
composition. We downloaded the level 3 gene normalized RNA-Seq data from the
TCGA (www.cancergenome.nih.gov) for a matched subset of 50 normal liver and 50
liver cancer samples. As validation, we considered an Affymetrix expression data set,
consisting of 37 normal livers (including normal liver, cirrhosis and dysplasia)1 38
liver cancers25. To test generalisability, we also downloaded level 3 RNA-Seq gene
normalised data from the TCGA for prostate cancer (52 cancers & 52 matched

Figure 5 | Entropy rate increase in cancer requires the scale-free topology of the PPI network: (A) Boxplots of the entropy rate (SR) for the 50 normal

liver and 50 liver cancer samples as evaluated on the original full PPI network (left), as well as on an equivalent Erdos-Renyi graph (middle). P-values are

from aWilcoxon-rank sum test. Corresponding ROC curves andAUCvalues (right). (B) As A) but for TCGARNA-Seq data from27 colon cancers and 27

matched normals. (C) As A) but for TCGA RNA-Seq data from 52 prostate cancers and 52 matched normals.
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normals) and colon cancer (27 cancers & 27 matched normals). The other normal/
cancer Affymetrix expression sets used have been described previously10.

Construction of the sample specific stochastic matrix and entropy rate. The
construction of the entropy rate follows the same method described in our earlier
work10,11. Briefly, we use themass action principle to define a stochastic matrix, pij, for
each individual sample. In detail, let Ei denote the normalised expression level of gene
i in a given sample. For a given neighbour jgN(i) (where N(i) labels the neighbours
of i in the PPI), the mass-action principle means that the probability of interaction
with j is approximated by the product EiEj, i.e. pij / EiEj. Normalising this to ensure

that
X

j
pij~1, we get for the stochastic matrix,

pij~
EjP

k[N ið Þ Ek
Vj[N ið Þ ð1Þ

Clearly, if j1N(i), then pij5 0. From this stochastic matrix one can then construct a
local signaling entropy (LS) as

LSi~{

X

j[N ið Þ

pij log pij ð2Þ

which reflects the level of uncertainty or redundancy in the local interaction
probabilities. We note that the above expression for the local entropy is not
normalised so that the maximum possible entropy depends on the degree (ki) of the
node. In fact,

max LSi~log ki ð3Þ

Finally, the signaling entropy rate, SR, is defined in terms of the stationary
distribution (or invariant measure) p of the stochastic matrix (pp 5 p), as24,40

SR~
X

i

piLSi ð4Þ

i.e. this global signaling entropy rate is a weighted average of the local entropies LSi.
We note that although LSi is independent of the expression level of gene i, that the
gene’s contribution to the entropy rate, i.e. piLSi, is not. This is because piwill depend
on the gene i’s expression level. In this work we refer to the term LSRi; piLSi as the
local entropy rate of gene i, whereas LSi is just the gene i’s local entropy.

The maximum entropy rate. Given a connected network, the maximum entropy
rate,maxSR, over the network does not depend on the gene expression data but only
on the adjacencymatrix of the network. In fact, the maximum entropy rate is attained
for a stochastic matrix pij given by41

pij~
Aijvj

lvi
ð5Þ

where v and l are the dominant right eigenvector and eigenvalue of the adjacency
matrixA, respectively. Thus, it is important to note that the configuration of maximal
local entropy, i.e. the configuration where for each node i, pij5Aij/ki and LSi5 log ki,
is not the configuration of maximal global entropy.

Perturbation simulation analysis. In what follows we describe the perturbation
analysis performed on Erdös-Renyi and scale-free networks, as well as on the full real
PPI network described earlier. The calculation of the global signaling entropy rate is
simplified significantly by the fact that the stochastic matrix defined by equation 1 has
the detailed balance property, i.e. the stationary distribution obeys not only pp5 p,
but the more restrictive condition pipij5 pjpji. This detailed balance condition can be
shown to imply

pi~
1

F
xixT,i ð6Þ

where F is a normalisation constant and xT,i~

X
j[N ið Þ

xj .

The initial configuration for the perturbative analysis is that of maximal local
entropy for each node in the network, which as explained previously, does not
represent the state of globalmaximum entropy. To construct this initial configuration
we set the expression level of each gene/node to be identical xi5 x. Thus, in the initial
configuration, xT,i 5 kix, and from detailed balance we obtain for the stationary
distribution that

pi~
1

F
xixT,i~

ki

V�k
ð7Þ

where V is the number of nodes in the network and where �k is the average degree. As
far as the entropy is concerned, the local entropy of each node i is simply log ki, so the
initial entropy rate is simply

SR0~
1

V�k

X

i

ki log ki ð8Þ

Now let us consider perturbing a gene in the network by altering its expression level
by an amount l. Without loss of generality we label the perturbed node by the index

‘‘1’’, so that after perturbation, the expression levels in the network are described by
x’i~xzdi1l. The new stationary distribution then becomes

p’1! xzlð Þk1x ð9Þ

p’i!x xzlz ki{1ð Þxð Þ Vi[N 1ð Þ ð10Þ

p’i!kix
2

Vi=[N 1ð Þ|1 ð11Þ

For the local entropies, we get

LS’i~LSi Vi[N=N 1ð Þ ð12Þ

LS’i~{

X

j[N ið Þ=1

p’ij log p’ij{p’i1 log p’i1 Vi[N 1ð Þ ð13Þ

where for ig N(1), p’i1~ xzlð Þ= xzlz ki{1ð Þxð Þ and p’ij~x= xzlz ki{1ð Þxð Þ
(j? 1). Thus, the change in the entropy rate, DSR5 SR92 SRo, is easily computable
following any perturbation.

In the actual analysis, when performing activating perturbations, we set x5 2 and
l~14, whilst, whenmodeling inactivating perturbations, we set x5 16 and l~{14.
These values are typical for logged Affymetrix or Illumina data, with highly expressed
genes normally exhibiting values larger than 12, and lowly expressed genes showing
values smaller than 4.
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