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Increased Stability and Breakdown 
of Brain Effective Connectivity 
During Slow-Wave Sleep: 
Mechanistic Insights from Whole-
Brain Computational Modelling
Beatrice M. Jobst1, Rikkert Hindriks1, Helmut Laufs  2,3, Enzo Tagliazucchi4, Gerald Hahn1, 

Adrián Ponce-Alvarez1, Angus B. A. Stevner5, Morten L. Kringelbach  5,6 & Gustavo Deco1,7,8,9

Recent research has found that the human sleep cycle is characterised by changes in spatiotemporal 
patterns of brain activity. Yet, we are still missing a mechanistic explanation of the local neuronal 
dynamics underlying these changes. We used whole-brain computational modelling to study the 
differences in global brain functional connectivity and synchrony of fMRI activity in healthy humans 
during wakefulness and slow-wave sleep. We applied a whole-brain model based on the normal form 
of a supercritical Hopf bifurcation and studied the dynamical changes when adapting the bifurcation 
parameter for all brain nodes to best match wakefulness and slow-wave sleep. Furthermore, we 
analysed differences in effective connectivity between the two states. In addition to significant changes 
in functional connectivity, synchrony and metastability, this analysis revealed a significant shift of the 
global dynamic working point of brain dynamics, from the edge of the transition between damped 
to sustained oscillations during wakefulness, to a stable focus during slow-wave sleep. Moreover, we 
identified a significant global decrease in effective interactions during slow-wave sleep. These results 
suggest a mechanism for the empirical functional changes observed during slow-wave sleep, namely a 
global shift of the brain’s dynamic working point leading to increased stability and decreased effective 
connectivity.

One of the great challenges in neuroscience is to understand the underlying mechanisms taking place in di�erent 
conscious brain states. Sleep is a reversible state characterised by unresponsiveness and altered consciousness, dis-
tinguished from wakefulness by a decrease in the ability to interact with the external world1. A long line of sleep 
research, using primarily EEG, underlies our current classi�cation of sleep into rapid eye movement (REM) and 
non-REM sleep. Current consensus further sub-divides non-REM sleep in three stages: N1, N2, and N3, where 
N3 is o�en referred to as slow-wave sleep2.

From a behavioural point of view the contrast between sleep and wakefulness is clear. However, while the 
EEG shows clear changes between the two, it is less clear how the brain’s spatiotemporal dynamics supports these 
di�erent behavioural states. From this perspective recent decades’ research has improved our understanding of 
wakefulness in particular, characterising the organisation of the brain’s spontaneous activity in terms of corre-
lated activity patterns across di�erent brain regions (as measured with functional resonance imaging [fMRI]), 
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commonly known as ‘resting-state networks’3–8. Using ICA and seed-based methods has found that resting-state 
networks appear to be preserved during sleep, even during slow-wave sleep9–13. Speci�cally, the default mode 
network (DMN) has been shown to be retained during slow-wave sleep11 albeit with altered connectivity strength 
and relations to other networks12, 14. More generally, slow-wave sleep is associated with a general decrease of 
cortico-cortical functional connectivity12, 14–17, and a diminished level of information integration10, 11, 17, 18. �e 
repertoire of functional brain connectivity is constrained by the underlying anatomical connectivity19, and func-
tional connectivity is more correlated to the anatomical backbone during states of deep sleep and anaesthesia 
compared to wakefulness20, 21.

Furthermore, combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) studies 
have shown decreased cortical e�ective connectivity during deep sleep, with e�ective connectivity understood 
here as the capacity for a causal interaction in response to an external perturbation22–25. �is result suggests a 
lowering of the capability of the brain to integrate information across di�erent cortical areas and a diminished 
capacity to amplify local perturbations.

�ese major alterations during deep sleep suggest a change in collective brain dynamics compared to wake-
fulness, raising the challenge of providing a mechanistic understanding of the empirical observations based on 
qualitative changes in the local underlying dynamics of the brain.

To address this problem, we �rst study di�erences between wakefulness and deep slow-wave sleep by analysing 
functional connectivity and phase synchrony in an fMRI data set consisting of 18 participants falling asleep in the 
scanner. We apply a whole-brain computational model based on the normal form of a supercritical Hopf bifur-
cation incorporating underlying brain dynamics and unfolding over realistic brain anatomical connectivity26.  
�is novel model is able to describe the transition from a stable focus presenting noisy oscillations to a stable 
limit cycle de�ned by fully sustained oscillations, and can characterise global brain dynamics in terms of their 
stability and global coupling. We investigate how these parameters change between wakefulness and slow-wave 
sleep by estimating them from the empirical data and identifying the optimal dynamic working point of each 
brain state. Finally, to identify the actual level of interaction between di�erent brain nodes, we investigate the dif-
ferences between the two brain states in terms of their e�ective connectivity based on the previously mentioned 
whole-brain model. �is approach allows us to �nd a possible underlying mechanism explaining the empirically 
observed phenomena.

Results
We investigated the di�erences between two di�erent vigilance states: an awake resting-state condition and a 
slow-wave sleep condition in a group of 18 healthy human participants. We applied a data analysis approach and, 
to gain further insight, a whole-brain modelling approach in order to examine the di�erences between the two 
states in functional connectivity, synchrony, metastability and dynamic working region. Furthermore we analysed 
the e�ective connectivity in both conditions using whole-brain modelling.

Lowering of functional connectivity, phase synchrony and metastability in deep sleep. We 
analysed the di�erences between the awake and the sleep state in functional connectivity, phase synchrony and 
metastability. We calculated the functional connectivity matrices for the two vigilance states by averaging the 
matrices of the Pearson correlations between the BOLD signals of all pairs of regions of interest (ROIs) over sub-
jects within one vigilance group. �is resulted in two FC matrices, one for each condition. �en, for comparing 
the two vigilance states, we computed the mean and standard deviation of both of the FC matrices and �nally sub-
tracted the mean FC value of the sleep state from the awake state. We found that the di�erence between the mean 
FC values in the two conditions was signi�cantly higher than the di�erences found in the surrogate data created 
by randomly shu�ing vigilance state assignments (awake: 0.471 ± 0.125, sleep: 0.293 ± 0.152; p-value: 0.0099) 
(Fig. 1b). �e surrogate data we applied was constructed under the null-hypothesis of no di�erence between con-
ditions, hence appropriate for comparing the two states amongst each other. Additionally, in order to verify that 
the group FC matrices are indeed representative of the average subject, we calculated the node strength for each 
individual FC matrix. We found that 83% of all the subjects exhibit higher FC node strength during wakefulness 
than during sleep (see Supplementary Fig. S1a), indicating that the group FC matrices indeed represent the aver-
age participant with high accuracy.

Next, in order to quantify the global level of synchronisation between the signals of each of the nodes, we com-
puted the Kuramoto order parameter, a temporal measure taking values from 0 to 1, where 0 represents complete 
phase asynchrony and 1 complete synchronisation. Consequently we calculated the temporal mean and stand-
ard deviation of the Kuramoto order parameter and averaged over all subjects within one vigilance state group. 
We termed these two measures synchrony and metastability, respectively (see Methods). We found signi�cantly 
higher synchrony in awake than in sleep (awake: 0.560, sleep: 0.431; p-value: 0.0099) (Fig. 1c) and signi�cantly 
higher metastability in awake than in sleep (awake: 0.206, sleep: 0.181; p-value: 0.0099) (Fig. 1d).

Classification of consciousness state with Gaussian classifier. We evaluated how speci�c the func-
tional connectivity is to the vigilance state. We used a jackknife cross-validation procedure consisting of: �rst, 
calculating the covariances on a subset of the data from N − 1 participants, separately for each vigilance state, 
and then using these covariances to classify the data of the remaining subject (see Methods). We found that the 
Gaussian classi�er signi�cantly predicted the vigilance state with high accuracy (83.33% and 94.44% for awake 
and sleep test sets, respectively) (Fig. 1e). �us, the whole-brain covariance of single participants reliably relates 
to the vigilance state, justifying the use of group measures.

Furthermore, we tested how similar the time-series of a single subject were to a random sample from the 
grouped time-series of the other n-1 subjects by using a similar procedure (see Methods). We expected the 
log-likelihood ratio to be approximately 1 if the time-series of the i-th subject were indistinguishable from a 
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random sample taken from the time-series of the remaining subjects. We found that this was the case for most 
of the subjects: the log-likelihood ratio ranged between 0.67–1.52 and it was equal to 1.07 ± 0.13 and 1.00 ± 0.06 
averaged over subjects, for awake data and sleep data, respectively (see Supplementary Fig. S1b). �is result con-
�rms that the fMRI time-series of single subjects strongly resemble the ones of the group and can be viewed as a 
random sample taken from it.

Shift of the dynamic working point during sleep. To gain theoretical insights, we �tted a large-scale 
model of coupled nonlinear oscillators to the data of each of the vigilance states (see Methods). We compared 
the two vigilance states with regards to their dynamic working point, meaning the parameter region where the 
model �ts the data best. We simulated the fMRI BOLD activity in each of the 90 brain regions by using the Hopf 
whole-brain model with the brain nodes coupled through the empirical structural connectivity (SC) matrix (see 
Methods+ Fig. 2). We performed a parameter space exploration by varying the two free parameters of the model: 
the global coupling parameter G and the bifurcation parameter a, where a was changed homogeneously over all 
nodes. We calculated the model’s FC matrix, phase synchrony and metastability for each parameter combination 
in the same fashion as for the empirical data. �en, we computed the best �t between the empirical and the sim-
ulated FC matrices for the two vigilance states (see Methods) and found a signi�cant di�erence between the opti-
mal bifurcation parameters in awake and sleep from a global coupling strength of 1.6 onwards (p-value 0.0396). 
In detail the optimal �t between empirical and simulated data lied in awake in the bifurcation parameter range 
between −0.04 and −0.06 and in sleep between −0.08 and −0.12. In general, we observed a better �t in the whole 
negative bifurcation parameter region in sleep as compared to awake from G = 0.4 onwards for awake and from 
G = 0.3 onwards for sleep (Fig. 3a,b). Regarding the global coupling parameter, we found that during wakefulness 

Figure 1. Data Analysis. In (a) the functional connectivity matrices averaged over participants are shown for 
the two di�erent vigilance states. In (b) the di�erence of the mean of the upper triangle FC matrices (group 
average) between the awake and the sleep state are shown. �e histogram (black) represents the distribution 
of the test-statistic under the null-hypothesis of no di�erence between vigilance states, whereas the green line 
shows the di�erence of the means of the empirical FC matrices. In the upper le� corner the mean FCs and 
their standard deviations are shown. �ey are signi�cantly di�erent with a p-value of 0.0099. (c) demonstrates 
the di�erence between the mean synchrony in the awake state and the sleep state. �e synchrony is calculated 
as the mean Kuramoto order parameter (see Methods). Again, the histogram represents the distribution of 
the test-statistic and the green line the di�erence between the synchrony in awake and sleep obtained from 
the empirical data. In the upper right corner the means and the standard deviations are shown, the mean 
synchrony is signi�cantly higher in awake than in sleep with a p-value of 0.0099. In (d) the di�erence between 
the metastability in awake and in sleep is shown. �e metastability is calculated as the standard deviation of the 
Kuramoto order parameter (see Methods). �e histogram and the green line are to be read as in (b) and (c). In 
the upper right corner the metastability in awake and in sleep is represented, also in this modality a signi�cant 
di�erence (p-value 0.0099) can be observed. In (e) the classi�cation performance using a Gaussian classi�er is 
shown for awake (violet) and sleep (yellow) test sets, respectively (see Methods). �e vigilance state is predicted 
with high accuracy (83.33% and 94.44% for awake and sleep test sets, respectively) exceeding the 95th percentile 
of chance level.
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the optimal �t as a function of the bifurcation parameter lied in a higher range of G-values in the vicinity of the 
bifurcation (−0.1 ≤ a ≤ 0) than during sleep. �is means that the connectivity strength between di�erent brain 
areas was higher during wakefulness as compared to sleep (Fig. 3c).

Furthermore we analysed the optimal concordance in the parameter space between the simulated and empir-
ical phase synchrony and equally for the metastability, and also here we found a shi� of the optimal �t in sleep 
as compared to awake to more negative bifurcation parameter values and to lower global coupling strengths 
(Fig. 3d,e).

In summary, the dynamic working point shi�ed signi�cantly to more negative bifurcation parameter values 
during sleep as compared to the awake state, where the system remained closer to the bifurcation. Additionally 
the system presented higher connectivity during wakefulness than during sleep, which bene�ts the propagation 
of interaction between di�erent brain regions.

Lowering of the effective connectivity during sleep. In order to determine the actual level of interac-
tion and connectivity between di�erent brain areas, we investigated the di�erences between the two brain states 
by studying the changes in the e�ective connections between di�erent brain nodes. Here we de�ne e�ective con-
nectivity (EC) as a combination of anatomical connectivity and connection weights (i.e., synaptic conductivity), 
meaning the e�ective interaction between di�erent brain areas. �e EC was estimated by iteratively updating 
the weights of the non-zero anatomical connections with the weighted di�erence between the empirical and the 
simulated FC matrix (see Methods). In each iteration step the Euclidean distance between the empirical and the 
simulated FC matrix was calculated and if this distance was smaller than the previous one, the EC matrix was 
updated with the optimised structural weights (see Methods). �is optimisation procedure was performed for 200 
iterations, a�er which the �tting has already reached a stable value (Fig. 4c i.,ii.).

Comparing the resulting �nal EC matrices between the two brain states, we observed a global lowering of the 
strength of the e�ective connections in sleep with respect to the awake state (Fig. 4a i.,ii.). In order to assess these 
di�erences we computed the node strength of the EC matrix for each of the 90 brain nodes (Fig. 4d). We found 
that the mean node strength of the e�ective connections was signi�cantly higher in awake than in sleep (awake: 
0.3520 ± 0.0898, sleep: 0.2804 ± 0.0854, p-value: 0.0099) (Fig. 4e i.). In addition to that we investigated the local 
di�erences between e�ective connection node strengths and we found that the total number of nodes displaying 
higher node strength during wakefulness with respect to sleep was signi�cantly higher in the data as compared 
to the surrogate data. (84 nodes, p-value 0.0495) (Fig. 4e ii.).�e few regions displaying higher node strength 
during sleep were the calcarine sulcus (le� and right), the cuneus (le� and right), the lingual gyrus (right) and the 

Figure 2. Whole-brain model linking anatomical connections and FC. �e anatomical connectivity data were 
obtained using DTI averaged over a group of healthy participants. Using the AAL 90 parcellation we obtained 
a structural connectivity (SC) matrix linking 90 cortical and subcortical nodes with each other anatomically. 
Based on this matrix, a Hopf whole-brain computational model is built which simulates the resting activity of 
the 90 coupled brain areas. �e simulated functional connectivity matrix (FCmodel) is then �tted to the empirical 
functional connectivity matrix (FCemp) for di�erent model parameter combinations using the Euclidean 
distance between the values of FCmodel and FCemp (see Methods). With this framework the model parameter 
space can be explored in order to �nd the optimal parameter combination for each brain state.
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paracentral lobule (le�). �e 10 regions with the highest di�erence in node strength between wakefulness and 
sleep were in order from the highest di�erence onward:

Superior temporal gyrus (right); Precentral gyrus (right); Superior temporal gyrus (le�); Postcentral gyrus 
(right); Putamen (le�); Postcentral gyrus (le�); Insula (le�); Inferior frontal gyrus, Pars opercularis (right), 
Middle occipital gyrus (le�) and Inferior occipital cortex (le�).

Overall, the e�ective connections were signi�cantly lower during sleep than during wakefulness. Being this 
the case for the mean over nodes and also for 93% of the local brain nodes, we suggest, that this observable di�er-
ence is of global rather than local nature.

Validation of the effective connectivity modelling procedure. Next, we validated the procedure 
for computing the e�ective connectivity by applying a simple model validation simulation. We computed the EC 
matrix starting from the optimal simulated FC matrix, obtained through the original EC calculation (Fig. 4 simu-
lated b i.,ii.), instead of using the empirical one (Fig. 4 empirical b i.,ii.) (see Methods). We correlated the resulting 
validation EC matrix with the original one and found a Pearson correlation coe�cient of 0.992, meaning that the 
procedure for computing the EC matrix was reliable.

Theoretical model response to external stimulus. We have shown that the awake state is associated 
with a model in which the whole system is positioned closer to a Hopf bifurcation, meaning a closer to 0. �is is 
a functionally relevant feature, since it is known that, close to the bifurcation, the Hopf model has optimal reso-
nance and nonlinear ampli�cation behaviours27. Indeed, if the system is subjected to a sinusoidal stimulus 

Figure 3. Whole-brain model parameter space exploration and �tting. (a) (i.,ii.) Euclidean distance between 
FCmodel and FCemp for di�erent values of the global coupling strength G and the bifurcation parameter a in 
awake (i.) and sleep (ii.). Note that a is changed homogeneously over nodes. �e optimal �t corresponds to a 
minimal Euclidean distance. In (b) the di�erence between the optimal Euclidean distance �t in awake and in 
sleep is shown as a function of G. �e optimal �t is de�ned as the bifurcation parameter which corresponds 
to the minimum Euclidean distance for each value of G. �e broken black lines represent the surrogate data 
constructed under the null-hypothesis of no di�erence between vigilance states, whereas the green line 
shows the di�erence between the optimal �t in awake and sleep. In the upper le� corner the optimal �t for 
awake (violet) and sleep (yellow) is shown as a function of G. �ere is a signi�cant di�erence between the two 
states from G = 1.6 onward with a corresponding p-value of 0.0396. In (c) the di�erence between the optimal 
Euclidean distance �t in awake and in sleep is displayed as a function of a. �e broken black lines and the 
green line are to be read as in (b). In the upper right corner the optimal �t for awake (violet) and sleep (yellow) 
is shown as a function of a. �ere is a signi�cant di�erence between the two states for −0.1 ≤ a ≤ 0 with a 
corresponding p-value of 0.0099. (d) represents the simulated global synchrony as a function of G and the 
bifurcation parameter a. �e black line shows the optimal �t for the awake state, namely the closest value to 
the empirical global synchrony for each G, as a function of the global coupling strength. �e gray line shows 
the same for the sleep state. In (e) the simulated metastability is displayed, also here as a function of G and the 
bifurcation parameter. �e black and the gray line are to be read as in (d). Note the observable global shi� to 
more negative bifurcation parameter values in (d) and (e).
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=
ωF t Fe( ) i tF  at frequency ωF, the node’s response presents a resonance when it is stimulated at its intrinsic fre-

quency ωF = ω0 (Fig. 5a,b). Moreover, in the vicinity of the bifurcation and if the node is stimulated at its intrinsic 

frequency, the amplitude of the response, |Z|, follows the power law ∝Z F
1
3  (Fig. 5c,d). Such power law relation 

indicates that weak inputs are highly ampli�ed, while strong inputs elicit responses with lower gain. �is makes 
the network to have a large dynamic range of responsiveness. In conclusion, in the vicinity of the bifurcation the 
node presents sharp frequency selectivity with high sensitivity allowing for a better communication between 
nodes and a better reaction to external stimuli.

Figure 4. E�ective connectivity in awake and sleep. In (a) the �nal e�ective connectivity (EC) matrices are 
shown in awake (i.) and in sleep (ii.). �e above row in (b) displays the empirical FC matrices in awake (i.) 
and in sleep (ii.), whereas in the row underneath the simulated FC matrices ((i.) awake, (ii.) sleep) a�er the EC 
optimisation procedure are shown. (c) demonstrates the �tting as a function of the iteration steps: in (i.) the 
Euclidean distances between FCmodel and FCemp for awake (violet) and sleep (yellow) are shown, and in (ii.) the 
Pearson correlation coe�cients between the two matrices are represented (colour code as in (i.)). In order to 
assess the di�erences between the EC matrices in both modalities and to investigate whether the di�erences 
are of global or local nature, in (d) the node strength of the EC matrices are displayed (colour code as in (c)). 
With this, node-wise EC values are obtained. (e)(i.) shows the di�erence between the mean node strength in the 
awake and the sleep state. �e histogram (black) represents the distribution of the test-statistic under the null-
hypothesis of no di�erence between vigilance states, whereas the green line shows the di�erence of the mean 
node strengths of the actual EC matrices. In the upper le� corner the mean node strengths and their standard 
deviations are shown. �ey are signi�cantly di�erent with a p-value of 0.0099. In (ii.) the number of nodes with 
node strength higher during wakefulness than during sleep are displayed. As before, the histogram represents 
the test-statistic and the green line the actual number of nodes. �e number of nodes with higher node strength 
in awake than in sleep are signi�cantly higher than obtained with the state-shu�ing surrogate data (p-value: 
0.0459). Note that the number of ROIs exhibiting higher EC in awake than in sleep is 84 out of 90 possible 
nodes, suggesting that the di�erence is of global nature.



www.nature.com/scientificreports/

7Scientific RepoRts | 7: 4634  | DOI:10.1038/s41598-017-04522-x

Discussion
We used data- and model-driven analyses to compare the brain states of two di�erent behavioural conditions, 
namely wakefulness and slow-wave sleep. Using the whole-brain model we found a signi�cant shi� of the brain’s 
global working point from the edge of the transition between noisy and sustained oscillatory behaviour during 
wakefulness to a noisy regime characterised by a stable focus during slow-wave sleep as a possible mechanistic 
explanation of the observed empirical functional changes between those two brain states. We also found that 
the e�ective connectivity is reduced in slow-wave sleep compared to wakefulness. Overall, this suggests that the 
propagation of external perturbations is decreased in slow-wave sleep compared to wakefulness, with incoming 
inputs being transmitted with sharper selectivity and higher sensitivity during wakefulness.

Interestingly, in our data-driven analysis, we found that the metastability (i.e. the standard deviation of the 
phase synchrony) decreases during sleep (Fig. 1d). �is is particularly interesting given the recent focus on 
the non-stationarity of resting-state activity, where studies have demonstrated that functional correlations are 
dynamic and evolve over time28–32. Importantly, Ponce-Alvarez and colleagues have shown that the global phase 
synchrony of the BOLD signals evolves at a very slow time scale of <0.01 Hz and that with this variability the 
system visits di�erent synchronised brain states33. If, as observed in the case of slow-wave sleep, this variability 
decreases compared to wakefulness, the dynamical repertoire of the brain during this vigilance state could be 
limited, indicating that the brain must operate in a di�erent dynamic working region. �e �nding that slow-wave 
sleep is more constrained by the underlying structural connectivity further supports this interpretation21.

�is �ts with our further demonstration that, on average, the functional connectivity is lower during sleep as 
compared to wakeful rest (Fig. 1a,b). �is �nding is consistent with previous studies showing that the resting-state 
networks are generally preserved during sleep, but with altered connectivity strength12, 14. �ese previous studies 
show that in slow-wave sleep the cortico-cortical functional connections lose their strength12, 14–16, in particular, 

Figure 5. Single node response to external stimulus for two di�erent dynamic working regimes. In (a) the 
response – the absolute value of the simulated complex signal |Z| – of a single node is shown as a function of the 
input frequency for di�erent input strengths F. ω0 is the intrinsic frequency, which was here set to 1. (b) displays 
the model response as a function of the input strength for di�erent input frequencies. �e red line shows 
hypothetical power law behaviour. Both (a) and (b) are simulated with the bifurcation parameter a very close to 
the bifurcation at a = 0. (c) and (d) show the same as (a) and (b), with the di�erence that the bifurcation para 
meter used for the simulations was set to a negative value in the noisy regime of the model. Note that for a close 
to the bifurcation the model response follows the power law ∝Z F

1
3  for an input frequency equal to ω0, whereas 

for a in the negative regime this is not the case: weak inputs are no more ampli�ed. In this analysis no noise was 
added to the system.
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almost all cortico-cortical connections in the AAL template are reduced during deep sleep18, 34. �is clearly 
demonstrates that the functional connectivity decreases on a global level.

Furthermore, we have shown that the mean phase synchronisation is lower during sleep than during wakeful-
ness (Fig. 1c). �is result supports the fact that the communication in the brain is constrained during slow-wave 
sleep, as has been found in intracerebral (EEG) recordings, where slow oscillations appear o�en out-of-phase in 
di�erent brain regions and appear as events of a local nature35. While these results are valid for electrophysiolog-
ical data, it has been demonstrated that slow cortical potentials recorded with intracerebral EEG show a similar 
correlation structure as spontaneous BOLD �uctuations during slow-wave sleep36, 37.

In order to �nd a mechanistic explanation of the empirical results and to learn more about the underlying 
dynamics, we applied a whole-brain model based on the normal form of a supercritical Hopf bifurcation. We 
showed that the region where the model �ts the data best lies during wakefulness close to the bifurcation, on 
the edge between noise-induced and self-sustained oscillations, whereas during sleep it shi�s to a more negative 
regime characterised by noisy oscillations. Furthermore, we demonstrated that during wakefulness the optimal 
global coupling parameter value as a function of the bifurcation parameter is higher in the vicinity of the bifurca-
tion than during sleep (Fig. 3). �ese results indicate that the brain is operating in a di�erent dynamical regime 
during deep sleep when compared to wakeful rest. �e brain’s global working point presents higher connectivity 
and less stability during wakefulness, suggesting that the propagation of activity is increased in this brain state. 
�is allows for better communication between di�erent brain areas and an improved reaction to stimuli during 
wakefulness. Increased stability implies a failure to amplify weak stimuli, as required, for instance, for the �ring of 
few cells in V1 to globally propagate to the fronto-parietal cortex during conscious access of visual information, 
according to the Global Neuronal Workspace theory proposed by Dehaene and Changeux38–40. �is ignition of 
the global workspace is facilitated during wakefulness, instead, since dynamics are posed near the bifurcation 
point (Fig. 5). Our analysis was global in nature and thus could not localise the dynamical changes to sensory 
areas or the fronto-parietal cortex. Further analyses are needed to identify if the dynamical changes are due to 
global processes or in fact to local changes in�uencing the system on a global level. A possible way of expanding 
the current method in order to look into local region wise changes could be to adapt the bifurcation parameter 
for each node instead of taking one value homogeneously for all the regions as is done here. In fact this approach 
has been performed by Deco et al.26, where they optimised the spectral characteristics of each local brain region 
and thus gained a heterogeneous optimal working point for each brain region. Nevertheless, the here presented 
method shows a clear shi� in the bifurcation parameter and in the global coupling strength, which is an indica-
tion for this phenomenon to be more of global nature than of a local one. �is is supported by the fact, that for a 
�xed bifurcation parameter a the model for sleep becomes the model for wakefulness when G = G + ∆G, as can 
be observed in Fig. 3a. �e whole system is shi�ed between the two brain states. By increasing the global coupling 
strength, the mean node strength of the SC matrix is increased, which directly in�uences the simulated FC matri-
ces in a global way, resulting in a better �t with the empirical FC matrix during wakefulness. On the contrary, 
decreasing the global coupling strength results in a better �t with the empirical FC matrix during sleep. We tested 
the scenario of equal FC node strengths in wakefulness and sleep and found that indeed the di�erences in the 
dynamical range which �ts the data best vanish (see Supplementary Fig. S2). Still, we cannot exclude that local 
region wise changes are responsible for the globally observed e�ects.

Another important point is the fact that the Hopf model possesses optimal resonance and ampli�cation 
behaviour when close to the bifurcation as shown in Fig. 5. We showed that in the vicinity of the bifurcation, 
as it is the case during wakefulness, the system demonstrates a large dynamic range of responsiveness, showing 
frequency speci�city and power-law behaviour. �e proximity of the optimal dynamical working point to the 
bifurcation during wakefulness is functionally relevant in the sense that in this regime sensory inputs are trans-
mitted with sharper selectivity and higher sensitivity due to a better communication between nodes. Furthermore 
the network has the largest dynamic range of responsiveness. �ese properties are important and characteristic 
for an awake state. Additionally the response to stimuli is non-linear. For lower bifurcation parameters, as dur-
ing deep sleep, we do not observe these properties, and instead the response is dominated by the linear terms27. 
�is implies further that close to the bifurcation the system needs to have a higher level of complexity to show 
the previously mentioned characteristics. �is con�rms the �ndings in the studies performed by Massimini and 
colleagues23, 25, 41, 42, where the level of consciousness is assessed by measuring the Perturbative Complexity Index 
(PCI), characterizing the deterministic cortical responses to external perturbations. It has been observed that 
the PCI is lower during an unconscious state such as slow-wave sleep. �is agrees with the fact that during sleep 
the system is located in the negative bifurcation parameter regime, where it is less complex in the sense that the 
dynamic range of responsiveness is smaller.

Besides the parameter space exploration of the model, we also simulated the e�ective connections between 
di�erent brain areas in order to get a better insight into the actual level of connectivity between di�erent brain 
nodes. We found decreased e�ective connectivity on a global level during slow-wave sleep in comparison to wake-
fulness (Fig. 4). E�ective connectivity is usually de�ned as a causal connectivity measure, meaning the directional 
in�uences of one brain area or neural element over another23, 43–45. In this work we have applied another approach: 
here the e�ective connections are estimated using the anatomical connections, the functional connections and 
the dynamics given by the model. �ey can be interpreted as the synaptic weights between the di�erent brain 
nodes, which are not captured by the structural or functional connections alone. E�ective connectivity can be 
understood as the biophysical “mechanistic causes” of the apparent changes in the functional connections, given 
that we can explain those changes with changed e�ective interactions in only existing anatomical links given by 
the anatomical connections. �e observable decrease in EC during deep sleep indicates a drop of integration in 
the brain on the global level: the communication between di�erent brain areas is limited. �is result is compatible 
with the Integrated Information �eory of Consciousness, which states that consciousness corresponds to the 
capacity of the brain to integrate information, and other studies which have shown that integration is impaired 
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during unconsciousness40, 46. Furthermore it is evident, when looking at the node strength for each brain area 
(Fig. 4d), that the e�ective connections in the two brain states are only a scaled version of one another. A possible 
interpretation of this particular result could be that during wakefulness the system demonstrates higher excit-
ability which supports the fact that excitability increases with the time awake47, 48. When looking more deeply 
into the set of regions which show the highest di�erences in node strength between wakefulness and sleep, we 
observed that most of these regions are related to the processing of sensory information (superior temporal: audi-
tory, somatosensory: postcentral), motor planning (precentral gyrus which contains the primary motor cortex) 
and include a subcortical structure (putamen), which is densely connected to both primary somatosensory and 
motor cortices. �e functional isolation of these areas from the rest of the cerebral cortex could indicate dimin-
ished levels of arousal during deep sleep. Such diminished arousal comprises lack of motor activity and increased 
thresholds for awakening - with awakenings due to stimulation during sleep being generally related to either 
somatosensory and/or auditory stimulation.

�e results from the dynamical brain model described in this article were obtained using fMRI BOLD signals, 
but similar, matching brain activity patterns are shown in EEG signals. Deep sleep is characterised by the onset 
of high amplitude delta (1–4 Hz) waves, which indicates an increment in the local synchronisation of neural 
populations49. Deep sleep, such as other states of unconsciousness, is governed by bistable oscillations that re�ect 
alternating periods of �ring and neural quiescence. �is stereotypical pattern of neural �ring entails a decrease 
in the di�erentiation of brain activity which is related (via the information-integration theory) to diminished 
conscious awareness50.

Our results obtained from modelling whole-brain BOLD dynamics and connectivity re�ect these and other 
electrophysiological observations. Increased stability of oscillations has been reported for the unconscious state 
induced by propofol, a general anaesthetic drug51, 52. Furthermore, the e�ective connectivity of neural activity 
measured using EEG is notoriously reduced during unconscious states such as deep sleep, general anaesthesia 
and in patients with disorders of consciousness. While in many of these brain states EEG recordings yield patterns 
of activity with seemingly high levels of local and global synchronisation, the propagation of externally induced 
perturbations (using transcranial magnetic stimulation [TMS]) is damped during unconscious brain states25. We 
can speculate that the loss of stability, global coupling and e�ective connectivity revealed from fMRI data using 
our computational model represents the hemodynamic counterpart to these results.

�is speculation is consistent with combined EEG-fMRI and PET studies that relate �uctuations in brain 
metabolism to delta band power during deep sleep. �e work of Dang-Vu et al.53 established that frontal metabo-
lism presents an inverse correlation with delta band oscillations during deep sleep. A similar result was obtained 
by Lei et al.54 using concurrent EEG-fMRI recordings. In this paper, Lei et al. showed that fronto-parietal BOLD 
signals present an inverse correlation with �uctuations in delta power during deep sleep. �ese studies suggest 
that frontal (and possible parietal) BOLD signals re�ect �uctuations in delta power and that their computational 
modelling might, in turn, yield insights about the stability and e�ective connectivity of slow oscillations during 
deep sleep. To which extent BOLD signal �uctuations from other brain areas re�ect slow activity or other inde-
pendent electrophysiological phenomena remains to be investigated in the future.

To summarise, in this work we have suggested a possible mechanistic explanation of the empirical functional 
changes observed during slow-wave sleep. We have shown that the dynamic working point of the human brain 
is signi�cantly di�erent during slow-wave sleep compared to wakeful rest. We have demonstrated that during 
deep sleep the system shi�s to a noisy oscillatory state, whereas during awake it stays closer to the bifurcation, 
and discussed how this might allow the brain to better process information in more complex ways during wake-
fulness. We have also shown that the brain’s global working point presents higher connectivity during wakeful-
ness than during sleep. We suggest that these dynamical changes occur mainly on a global rather than a local 
scale. �is claim is further supported by the fact that the e�ective connections between di�erent brain areas 
decrease globally during sleep, which suggests a higher level of integration and excitability during wakefulness on 
a whole-brain level. Further studies are required to verify if these changes are in fact due to e�ects on a global level 
or if the observable e�ects can be explained by a group of local nodes driving the dynamic system.

Overall, by exploring the mechanistic properties of whole-brain dynamics in two di�erent behavioural states, 
wakefulness and slow-wave sleep, we have added complementary evidence to the developing understanding 
of the brain as a complex system that supports widely di�erent purposes. Importantly the whole-brain model-
ling allowed us to explore features of the functional connectome not immediately tractable to standard analysis 
strategies.

Materials and Methods
Experimental data. Participants. In this study we included a total of 18 young, healthy consecutive partic-
ipants with data of su�cient quality Written informed consent was obtained from all subjects. �e experimental 
protocol was approved by the local ethics committee “Ethik-Kommission des Fachbereichs Medizin der Goethe-
Universität Frankfurt am Main, Germany” with the ethics application title “Visualisierung von Gehirnzuständen 
in Schlaf und Wachheit zum Verständnis der Abnormitäten bei Epilepsie und Narkolepsie” and the assigned 
number: 305/07. �e subjects were reimbursed for their participation. �e applied methods were carried out in 
accordance with the relevant guidelines and regulations.

Participants entered the scanner in the evening and underwent a resting state fMRI session with simultaneous 
EEG acquisition lasting for 52 minutes. Participants were not instructed to fall asleep, but were asked to relax, 
close their eyes and not to �ght sleep. Lights were dimmed in the scanner room and subjects were shielded from 
scanner noise using earplugs. For the day of the study all participants reported a wake up time between 5:00 AM 
and 11:00 AM the night before and a sleep onset time between 10:00 PM and 2:00 AM. �ese values remained 
similar throughout the 6 days prior to the experiment.
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All of the 18 participants included in this study (8 females, mean ± SD age of 23.1 ± 2.6 years) reached deep 
sleep (N3) as determined by sleep staging simultaneously acquired polysomnography data according to the stand-
ard rules of the American Academy of Sleep Medicine2. For these participants the mean (±SD) durations of con-
tiguous sleep epochs were 12.37 ± 6.61 minutes for wakefulness, 8.52 ± 2.83 minutes for N1, 14.69 ± 5.72 minutes 
for N2 and 16.56 ± 8.39 minutes for N3. �ese subjects were part of a larger cohort (63 participants in total, 36 
females, mean ± SD age of 23.4 ± 3.3 years). A sub-selection of participants was necessary in order to obtain com-
parable stretches of time in each sleep stage, since only the aforementioned 18 subjects reached N3 sleep. In this 
study only wakefulness and deep sleep (N3) were considered.

fMRI and EEG data collection. EEG via a cap (modi�ed BrainCapMR, Easycap, Herrsching, Germany) was 
recorded continuously during fMRI acquisition (1505 volumes of T2*-weighted echo planar images, TR/
TE = 2080 ms/30 ms, matrix 64 × 64, voxel size 3 × 2 × 2 mm3, distance factor 50%; FOV 192 mm2) at a 3 T 
Siemens Trio (Erlangen, Germany). An optimised polysomnographic setting was employed (chin and tibial 
EMG, ECG, EOG recorded bipolarly [sampling rate 5 kHz, low pass �lter 1 kHz] with 30 EEG channels recorded 
with FCz as the reference [sampling rate 5 kHz, low pass �lter 250 Hz]. Pulse oxymetry and respiration were 
recorded via sensors from the Trio [sampling rate 50 Hz]) and MR scanner compatible devices (BrainAmp MR+, 
BrainAmpExG; Brain Products, Gilching, Germany), facilitating sleep scoring during fMRI acquisition2.

MRI and pulse artefact correction were performed based on the average artefact subtraction (AAS) method55 
as implemented in Vision Analyzer2 (Brain Products, Germany) followed by objective (CBC parameters, Vision 
Analyzer) ICA-based rejection of residual artefact-laden components a�er AAS resulting in EEG with a sampling 
rate of 250 Hz. EEG artefacts due to motion were detected and eliminated using an ICA procedure implemented 
in Vision Analyzer2. Sleep stages were scored manually by an expert according to the AASM criteria2. �is type 
of data has been published and well described in several publications11, 16, 56.

fMRI pre-processing. Using Statistical Parametric Mapping (SPM8, www.�l.ion.ucl.ac.uk/spm) Echo Planar 
Imaging (EPI) data were realigned, normalised (MNI space) and spatially smoothed (Gaussian kernel, 8 mm3 
full width at half maximum). Data was re-sampled to 4 × 4 × 4 mm resolution to facilitate removal of noise and 
motion regressors. Note that re-sampling introduces averaging of Blood Oxygen Level Dependent (BOLD) sig-
nals, which are �nally averaged over cortical and sub-cortical regions of interest (determined by the automatic 
anatomic labelling [AAL] atlas). Cardiac, respiratory (both estimated using the RETROICOR method57) and 
motion-induced noise (three rigid body rotations and translations, as well as their �rst 3 temporal derivatives, 
resulting in 24 motion regressors) were regressed out using least squares and retaining the residuals. Data was 
band-pass �ltered in the range 0.01–0.1 Hz58 using a sixth order Butterworth �lter.

To further control for possible di�erences in head motion in the di�erent brain states, which could, even if 
regressed out, still in�uence the outcome of the data analyses, we computed the framewise displacement for both 
vigilance states and compared the outcome between the states. To compute the framewise displacement we fol-
lowed the procedure described in Power et al.59. �ere were no signi�cant di�erences using a Wilcoxon rank test 
(awake: 0.1521 ± 0.0095 mm, sleep: 0.1406 ± 0.0110 mm; p = 0.419 (mean ± SEM)) (see Supplementary Fig. S3).

DTI data collection and processing. We used the normal structural connectome obtained using DTI 
in 16 healthy right-handed participants (11 men and 5 women, mean age: 24.75 ± 2.54), recruited through the 
online recruitment system at Aarhus University. In this study, participants with psychiatric or neurological disor-
ders (or a history thereof) were excluded from participation. �e MRI data (structural MRI, DTI) were recorded 
in a single session on a 3 T Siemens Skyra scanner at CFIN, Aarhus University, Denmark. �e following param-
eters have been applied for the structural MRI T1 scan: voxel size of 1 mm3; reconstructed matrix size 256 × 256; 
echo time (TE) of 3.8 ms and repetition time (TR) of 2300 ms.

The DTI data were collected using TR = 9000 ms, TE = 84 ms, flip angle = 90°, reconstructed matrix 
size of 106 × 106, voxel size of 1.98 × 1.98 mm with slice thickness of 2 mm and a bandwidth of 1745 Hz/Px. 
Furthermore, the data were recorded with 62 optimal nonlinear di�usion gradient directions at b = 1500 s/
mm2. One non-di�usion weighted image (b = 0) per 10 di�usion-weighted images was acquired, approximately. 
Additionally, the DTI images were recorded with di�erent phase encoding directions. One set was collected 
applying anterior to posterior phase encoding direction and the second one was acquired in the opposite direc-
tion. We used the automated anatomical labelling (AAL) template to parcellate the entire brain into 90 regions (76 
cortical regions and 14 subcortical regions, AAL90). �e parcellation contained 45 regions in each hemisphere53. 
In order to co-register the EPI image to the T1-weighted structural image, we used the linear registration tool 
from the FSL toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford)60. We co-registered the T1-weighted image to the 
T1 template of ICBM152 in MNI space. �e resulting transformations were concatenated and inversed and fur-
ther applied to warp the AAL template61 from MNI space to the EPI native space, where we preserved the discrete 
labelling values by applying interpolation using nearest-neighbour method. Accordingly the brain parcellations 
were conducted in each individual’s native space. �e acquired DTI data was used to generate the structural 
connectivity (SC) maps for each participant. �e two recorded datasets were processed, each with di�erent phase 
encoding to optimise signal in di�cult regions. To construct these structural connectivity maps we applied a 
three-step process. First, we de�ned the regions of the whole-brain network with the AAL template as used in the 
functional MRI data. Secondly, we used probabilistic tractography to estimate the connections between nodes in 
the whole-brain network (i.e. edges). Finally the data was averaged across participants.

In order to ensure that the resulting group SC matrix was representative of the average single subject and 
that no unwanted biases were introduced by averaging across subjects, we show the single subject SC matrices 
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in Supplementary Fig. S4. Furthermore we performed a consistency analysis following Roberts et al.62 (see 
Supplementary Fig. S4).

In accordance with the procedure applied for analysing the rs-fMRI data, the AAL template was used to par-
cellate the entire brain into AAL90. In order to co-register the b0 image in di�usion MRI space to the T1-weighted 
structural image and then to the T1 template of ICBM152 in MNI space63, we used the FLIRT tool from the FSL 
toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford). We concatenated and inversed the two transformation matri-
ces from the described co-registration steps and applied them correspondingly to warp the AAL templates61 from 
MNI space to the di�usion MRI native space.

Construction of surrogate data. In order to assess the statistical signi�cance of the results found in this 
study, surrogate data were constructed under the null-hypothesis of no di�erence between conditions (wakeful-
ness and slow-wave sleep) based on randomly shu�ed group assignments. Each of the 18 datasets consists of an 
awake session and a sleep session recorded in the same subject. Based on these original data sets, surrogate data 
were created by randomly shu�ing the vigilance state assignments with a probability of 0.5. �is means that the 
group sizes remained the same as in the original data, with the di�erence that for each subject there existed a 50% 
chance that its brain state assignments were switched between the two recordings. In this way the recordings were 
not mixed between participants, but the vigilance conditions were randomly shu�ed within each group instead. 
Applying this method, there exists a 50% chance that a data pair “awake-sleep” either remains “awake-sleep” or 
becomes “sleep-awake”, meaning that the groups get randomly mixed and thus ful�lling the null-hypothesis of 
no di�erence between conditions. Due to computational demands 100 surrogate datasets were produced which 
resulted in a minimum possible p-value of 0.0099.

Group averaged functional connectivity matrices. First, the signals were detrended and demeaned 
before they were band-pass �ltered within the range of 0.04–0.07 Hz following Glerean et al.64. In order to be able 
to extract the instantaneous phases of the BOLD signals (see ‘Phase synchrony and metastability’), the signals 
must be �ltered within a narrow band. We chose the frequency range of 0.04–0.07 Hz because this frequency 
band has been mapped to the gray matter and it has been shown to contain more reliable and functionally rel-
evant information compared to other frequency bands and to be less a�ected by noise3, 64–66. Subsequently the 
�ltered time series were z-scored, meaning that the mean was subtracted and they were divided by their standard 
deviation. �is was done for each subject, because the standard deviation of the BOLD signal is subject-speci�c. 
Next, we calculated the functional connectivity (FC) matrices for each of the 18 participants for each of the two 
recordings. �e FC matrix is de�ned as the matrix of Pearson correlations between the BOLD signals of all pairs 
of regions of interest (ROIs) in the AAL atlas over the whole acquisition duration. Fixed-e�ect analysis was used 
to obtain group-level FC matrices, meaning that the Fisher’ r-to-z transform [z = tanh(r)] was applied to the cor-
relation values before averaging over participants within the two vigilance states and back-transforming to corre-
lation values. �is resulted in two �nal FC matrices, one for each condition. In order to compare the averaged FC 
matrices between the two vigilance states, we calculated the mean and standard deviation of the upper triangle 
matrix of both of the FC matrices. We subtracted the resulting mean value for the sleep state from the mean value 
of the awake state. Finally, to test for signi�cance, the same procedure was performed on the surrogate data sets.

Brain state classification with Gaussian classifier. In order to establish how speci�c the functional 
connectivity is to the condition (i.e. wakefulness and slow-wave sleep), we classi�ed the brain state based on the 
covariance of fMRI signals using a jackknife cross-validation approach, assuming that observations are drawn 
from a multivariate Gaussian distribution. First, for each vigilance state, the data of n − 1 participants (train 
set) was used to estimate the covariance (Σawake and Σsleep), where n is the number of participants. Note that 
since the data was z-scored, the mean of each fMRI time-series was zero and, thus, in the Gaussian approxima-
tion, the fMRI signals were fully determined by their covariance. Second, the data of the remaining subject (test 
set) was associated to a vigilance state by choosing the zero-mean multivariate Gaussian process (N(0,Σawake) or 
N(0,Σsleep)) that maximises the log-likelihood of the test data given the trained model. �e percentage of correct 
classi�cations was computed across the n participants. �e likelihood of a test N-dimensional vector Xt, repre-
senting the t-th time step of the test data, given the zero-mean multivariate Gaussian process N(0,Σ), is given by:
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where Σdet( ) is the determinant of the covariance Σ and the superscript * is the transpose. Assuming independ-
ence of the observations, the log-likelihood L of the entire test time series X = X1,...,T, where T is the number of 
time steps, is given by:
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In summary, for each test data X, we calculated L(X|Σawake) and L(X|Σsleep) and if L(X|Σawake) > L(X|Σsleep), the 
predicted vigilance state was awake, otherwise the predicted vigilance state was sleep.

To assess statistical signi�cance of the classi�cation performance we calculated the probability of getting k 
correct classi�cations (hits) by chance, which is given by: = −

−k C p pPr( ) (1 )n
k k n k, where p is the probability of 

getting a hit by chance =( )p
1

2
 and n is the number of tests. Signi�cant decoding was reached when the decoding 

performance exceeded the 95th percentile of kPr( ).
We used a similar procedure to evaluate how similar the time-series of a single subject are to a random sam-

ple from the grouped time-series of the other n-1 subjects, in each behavioural condition. Let X(i) be an N-by-T 
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matrix containing the time-series of the i-th subject. We estimated the covariance Σtrain using the data from the 
remaining n-1 subjects, but excluding T N-dimensional vectors randomly selected that form a surrogate N-by-T 
time-series Xpseudo. We then compared the ratio between the log-likelihoods L(X(i)|Σtrain) and L(Xpseudo|Σtrain), i.e., 
ri = L(X(i)|Σtrain)/L(Xpseudo|Σtrain), using Equations 1–2. We repeated this procedure for 5,000 random selections 
of Xpseudo and calculated the average log-likelihood ratio 〈ri〉. We expected that 〈ri〉~1 if the time-series of the i-th 
subject were indistinguishable from a random sample taken from the time-series of the remaining subjects.

Phase synchrony and metastability. For each of the 90 brain regions, we extracted the phases of the 
band-pass �ltered BOLD-fMRI signals for each of the 36 recordings64. �e phases were obtained by applying the 
Hilbert transform to the �ltered time series, which results in the associated analytic narrowband signal, a(t). �e 
analytic signal a(t) of a signal x(t) is de�ned as a(t) = x(t) + i ⋅ H[x(t)], where i is the imaginary unit and H[x(t)] 
denotes the Hilbert transform of x(t).

We quantify the global level of synchronisation between the nodes across time with the Kuramoto order 
parameter, R(t), a measure of phase locking, given by:
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where n is the total number of nodes and ϕk(t) the instantaneous phase of the narrowband signal at node k. �us, 
the Kuramoto order parameter measures the modulus of the average phase of the system at each time point and 
takes values from 0 to 1, where 0 represents complete phase asynchrony and 1 the completely synchronised case 
implying phase-locked behaviour with a phase di�erence of 0.

�en, to obtain measures on the group level, we calculated the temporal average and standard deviation of 
the Kuramoto order parameter per subject and subsequently averaged these measures within groups. �us, we 
obtained for each vigilance group two measures: the group average of the mean and of the standard deviation 
over time of the Kuramoto order parameter, which we termed synchrony and metastability67, 68, respectively. 
�e synchrony represents the global, temporally averaged level of synchronisation between all the nodes of the 
system, whereas the metastability gives us information about the temporal variation of the synchronisation level.

Hopf computational whole-brain model. �e computational whole-brain model is based on the 90 
coupled brain areas or nodes, containing cortical and subcortical regions, derived from the AAL parcellation 
explained above. �e local nodes are coupled through the underlying structural connectivity matrix Cij, obtained 
through DTI based tractography, which contains the �ber densities between all pairs of brain areas (Fig. 2). �e 
structural connectivity matrix has been scaled to a maximum value of 0.2, following Deco et al.26, leading to a 
reduced parameter space to search for the optimal parameter combination. �e resting brain dynamics emerging 
through the interactions of the coupled local node dynamics can be simulated with the Hopf whole-brain model. 
For this, the local dynamics in each brain area are simulated by the normal form of a supercritical Hopf bifurca-
tion, which is able to describe the transition from noise-induced oscillations to full sustained oscillations26, 69. In 
fact, the Hopf model has already been applied for describing EEG dynamics70. �e dynamics of a given node j are 
described by the following complex-valued equation:
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j , ηj(t) is additive Gaussian noise, β = 0.04 and ωj is the intrinsic node frequency, which 

lies in the 0.04–0.07 Hz band. �ese frequencies were estimated directly from the data as the peak frequency of 
the �ltered BOLD signals for each individual brain node averaged over participants within one group. �is nor-
mal form has a supercritical Hopf bifurcation at a = 0, meaning that for a < 0 there exists a stable �xed point at 
zj = 0 which here corresponds to a low activity noisy state due to the additive Gaussian noise, and for a > 0 the 
local dynamics shows a stable limit cycle oscillation with frequency =

ω

π

f
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�e whole-brain dynamics are then described by the following set of coupled equations:
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�e fMRI BOLD signal is simulated by the variables xj for each node j using the Euler algorithm with a time 

step of . ⋅ ( )0 1
TR

2
. �e parameter G is introduced as a global coupling factor scaling equally all anatomical 

connections.

Model fitting. We performed a parameter space exploration of the whole-brain model by varying the two 
free model parameters: the global coupling strength G was varied from 0 to 3 in steps of 0.1 and the bifurcation 
parameter a from −0.5 to 0.5 in steps of 0.02, where the bifurcation parameter a was changed homogeneously 
over nodes.�e simulated time series were �ltered in the range of 0.04–0.07 Hz in accordance with the empiri-
cal data and also their length coincided with the duration of the empirical data recordings. Next, we estimated 
the FC matrix for each parameter combination with the same procedure as explained above. Subsequently we 
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calculated the �tting between the empirical and the simulated FC matrices for the two vigilance states for each 
parameter combination as the Euclidean distance between the two matrices. �is resulted in one �tting value for 
each parameter combination per vigilance state. �e whole simulation procedure was performed 50 times under 
exactly the same conditions, over which the results were then averaged. �is was done in order to minimise the 
random e�ects caused by the Gaussian noise introduced into the model. In order to compare the two states, the 
minimum distance was calculated for each G from 0.2 onward and the according a was determined for each of the 
minima. �en, we computed the di�erence between the awake and the sleep state by subtracting the bifurcation 
parameter values (in concordance with the optimal �t for each G) of the sleep state minus the awake state. �e 
resulting curve was �nally compared to the curves based on the surrogate data sets. �e same procedure was per-
formed for each a: the minimum distance was determined for each a and the di�erences between the two states 
were computed.

As a next step the synchrony and metastability were computed for the whole parameter space (with G and a 
varying as above) based on the �ltered simulated time series by applying the same procedure as on the empirical 
data. To compare again the two vigilance states with each other, we determined for each global coupling value G 
the according bifurcation parameter value a, where the simulated synchrony and metastability, respectively, was 
closest to the empirical one.

Effective connectivity analysis. �e e�ective connectivity matrix is based on the existing anatomical con-
nections, which were obtained through the DTI �ber tractography as explained above. �e general idea of the 
e�ective connections between di�erent brain regions is here an update of the existing synaptic weights taking into 
account the dynamics of the whole-brain model �tted to the empirical data.

For the computation of the e�ective connectivity (EC) matrix we used the structural connectivity (SC) matrix 
as a primer. Since we took into account only the existing anatomical connections, meaning only the non-zero 
entries of the SC matrix, we added very small non-zero entries (Matlab machine epsilon: 2−52) compared to 
the smallest SC non-zero entry (~8.4⋅10−5) to the diagonal of the interhemispheric connections, since these are 
known to be missed by DTI based tractography71. Next, as a �rst step of the �tting procedure, the SC matrix was 
weighted with the fraction between the empirical and the simulated synchrony by applying the Hopf model in 
order to simulate the BOLD signals as done before. For the model simulations regarding the EC calculation the 
global coupling parameter and bifurcation parameter were �xed (G = 1, a = 0). �e weighting procedure of the 
SC matrix was performed as long as the di�erence between the empirical synchrony and the simulated one was 
not smaller than 0.1. �is weight adjustment was realised in order to bring the SC matrix closer to the �nal EC 
estimate and to avoid an exhaustive number of iteration steps in the main EC estimating procedure, which we 
explain in the next paragraph.

We estimated the EC for each vigilance state using a gradient descent algorithm. �e previously updated SC 
matrix was iteratively adjusted to minimise the Euclidian distance between the empirical FC matrix (‘FCemp’) 
and the FC matrix predicted by the model (‘FCmodel’) through simulations of the network activity. Speci�cally, 
each iteration is given by:

α= + −( )SC SC FCemp FCmodel , (7)ij ij
new old

ij ij

where α is the learning rate (α = 0.01) and (i, j) are the non-zero links of the original SC. We iterated this algo-
rithm while the current Euclidian distance between the empirical and model values was smaller than the one 
obtained in the previous iteration step. We stopped the re-estimations a�er 200 iterations. A�er this procedure, 
the e�ective connectivity was given by the last updated SC matrix. Again, as in the general parameter space explo-
ration of the model, the complete procedure for calculating the e�ective connectivity was performed 50 times 
with the exact same starting conditions. As before, the reasoning behind this is to minimise the random e�ects 
caused by the Gaussian noise present in the model.

In order to assess the di�erences between the EC matrices in both modalities and to investigate whether the 
di�erences are of global or rather local nature, we calculated the node strength of each node of the EC matrix72. 
Next, we calculated the mean and the standard deviation over the node strength and to test for signi�cance we did 
the same for the surrogate data sets. We subtracted the mean of the sleep condition from the mean of the awake 
state and did again the same for the surrogate data, which gives us a global di�erence measure. In order to deter-
mine local di�erences, we computed the number of nodes displaying higher node strength during wakefulness 
than during sleep, and again, for signi�cance testing, we performed the same computation on the surrogate data.

Effective connectivity model validation. In order to validate the procedure for computing the e�ective 
connectivity between di�erent brain areas a simple model validation simulation was performed. First, the EC 
matrix was calculated as described above by updating the weights of the anatomical connections by �tting the 
FCmodel and the FCemp in each iteration step. As a second step the same procedure was repeated, with the di�er-
ence that the original empirical FC matrix was replaced by the simulated one resulting from the EC calculation in 
the �rst step. �is is the optimal FC matrix resulting in the nth iteration step, where n = 1,…200, which displays 
the lowest distance to the empirical FC matrix. �is optimal simulated FC matrix served as the new FC ground 
truth for the computation of the EC matrix. �e anatomical connectivity matrix, on the other hand, was kept the 
same. �e EC matrix obtained with this strategy should highly correlate with the original one if the EC compu-
tation procedure is reliable.

Data availability. �e datasets analysed during the current study are not publicly available due to constraints 
imposed by the ethics approval but are available from the corresponding author on reasonable request.
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