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Soil bacteria and fungi play key roles in the functioning of terrestrial

ecosystems, yet our understanding of their responses to climate

change lags significantly behind that of other organisms. This gap in

our understanding is particularly true for drylands, which occupy

∼41% of Earth´s surface, because no global, systematic assessments

of the joint diversity of soil bacteria and fungi have been conducted in

these environments to date. Here we present results from a study

conducted across 80 dryland sites from all continents, except Antarc-

tica, to assess how changes in aridity affect the composition, abun-

dance, and diversity of soil bacteria and fungi. The diversity and

abundance of soil bacteria and fungi was reduced as aridity increased.

These results were largely driven by the negative impacts of aridity

on soil organic carbon content, which positively affected the abun-

dance and diversity of both bacteria and fungi. Aridity promoted

shifts in the composition of soil bacteria, with increases in the relative

abundance of Chloroflexi and α-Proteobacteria and decreases in Acid-

obacteria and Verrucomicrobia. Contrary to what has been reported

by previous continental and global-scale studies, soil pH was not a

major driver of bacterial diversity, and fungal communities were dom-

inated by Ascomycota. Our results fill a critical gap in our understand-

ing of soil microbial communities in terrestrial ecosystems. They

suggest that changes in aridity, such as those predicted by climate-

change models, may reduce microbial abundance and diversity, a re-

sponse that will likely impact the provision of key ecosystem services

by global drylands.

bacteria | fungi | climate change | arid | semiarid

Climate change is a major driver of biodiversity loss from local
to global scales, in both terrestrial and aquatic ecosystems

(1, 2). Given the dependence of crucial ecosystem processes and
services on biodiversity (3–5), climate-change-driven biodiversity
losses will dramatically alter the functioning of natural ecosys-
tems (4, 6). Key ecosystem processes—such as nutrient cycling,
carbon (C) sequestration, and organic matter decomposition—
depend on soil bacteria and fungi (7–9). However, we have
limited knowledge of the role of climatic factors as drivers of
their abundance and diversity at regional and global scales (10–
12). This gap in our understanding is particularly true for

drylands, areas with an aridity index (precipitation/potential
evapotranspiration ratio) below 0.65 (13), which are among the
most sensitive ecosystems to climate change (14). Drylands are
expected to expand in global area by 11–23% by 2100 (15), ex-
periencing increased aridity and reduced soil moisture (16).
Land degradation and desertification already affect ∼250 million
people in the developing world (17). Altered climate and the growth
of human populations will almost inevitably exacerbate these
problems in drylands (14, 17). Because the provisioning of ecosys-
tem services essential for human development (e.g., soil fertility,
food, and biomass production) heavily relies on the abundance,
composition, and diversity of soil fungi and bacteria (18, 19), it is
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crucial to understand how changes in aridity affect soil microbial
communities. Drylands, however, are poorly represented in global
soil bacteria and fungi databases (10–12, 20), and no field study has
simultaneously examined how the abundance, composition, and
diversity of these organisms vary along aridity gradients in
drylands worldwide.
Here, we present a global field study conducted across 80 dryland

sites from all continents, except Antarctica (Fig. S1), to assess how
changes in aridity, as defined by the aridity index, affect the total
abundance and diversity of soil bacteria and fungi and the relative
abundance of major bacterial and fungal taxa. The studied ecosys-
tems encompass a wide variety of the climatic, edaphic, and vege-
tation conditions found in drylands worldwide (Materials and
Methods). We predict that increases in aridity should reduce the
abundance and diversity of soil bacteria and fungi due to the neg-
ative relationships typically found between aridity and the avail-
ability of resources such as water and C (21), which largely drive soil
microbial abundance and activity in drylands (22–24). To test this
hypothesis, we characterized bacterial and fungal communities in
the soil surface (top 7.5 cm) along natural aridity gradients by using
Illumina Miseq profiling of ribosomal genes and internal tran-
scribed spacer (ITS) markers, quantified bacterial and fungal
abundances with quantitative PCR (qPCR), and gathered in-
formation on multiple biotic and abiotic factors known to influence
soil microbes (Fig. S2).

Results and Discussion

Bacterial communities were dominated by Actinobacteria, Pro-
teobacteria, Acidobacteria, and Planctomycetes (Fig. S3A), which
are common bacterial phyla in soils worldwide (8, 11). The most
abundant soil fungi were those from the phylum Ascomycota,
followed by Basidiomycota, Chytridiomycota, and Zygomycetous

fungi (Fig. S3B). Our findings contrast with a recent global
survey of soil fungi (12) reporting a greater dominance of Basi-
diomycota than we observed (56% vs. 22%). These discrepancies
probably relate to the low proportion of drylands surveyed in
that study (<1% of 350 sites) and underscore our limited un-
derstanding of fungal communities inhabiting dryland soils. Mi-
nor differences in the dominant bacterial and fungal phyla were
observed when assessing differences among major vegetation
types, because variation in their relative abundance was <5%
when comparing grasslands and woodlands (Fig. S3 A and B).
We evaluated the direct relationship between the diversity and

abundance of soil bacteria and fungi and aridity using ordinary
least-squares (OLS) regression models (Materials and Methods). In
addition—and to account for possible large-scale spatial non-
independence of the sites surveyed (25)—we included the domi-
nant eigenvector of the Euclidean distance matrix of sites as an
additional predictor into these models (spatial models; refs. 26 and
27). Increases in aridity were linearly associated with reductions in
fungal and bacterial diversity and abundance (Fig. 1). The diversity
of several bacterial and fungal taxa also followed this pattern (Figs.
S4 and S5), although nonlinear (e.g., Acidobacteria and Proteo-
bacteria; Fig. S4 B and E) and nonsignificant (e.g., Chloroflexi; Fig.
S4D; and Zygomycetous fungi; Fig. S5E) relationships were also
found. Aridity also affected the dominance of major bacterial
phyla. The relative abundance of Acidobacteria declined linearly as
aridity increased (Fig. 2A), whereas that of Chloroflexi followed the
opposite pattern (Fig. 2C). Other bacterial phyla and classes were
nonlinearly related to aridity, with peaks in their relative abun-
dance at either low (e.g., Verrumicrobia) or high (e.g., α-Proteo-
bacteria) aridity levels (Fig. 2 B and D–F). These results can be
explained by the different life strategies of bacterial taxa. Chloro-
flexi are known to have multiple adaptations to environmental

Fig. 1. Relationships between aridity and the diversity and abundance of soil bacteria and fungi. The solid lines represent the fitted OLS model. The pro-
portion of variance explained (R2) of regressions including the dominant eigenvector of the Euclidean distance matrix of sites (for spatial models, see SI

Materials and Methods), and the differences in the second-order Akaike Information Criterion [ΔAICc] between these models and those shown in the figure,
are as follows: R2

= 0.197, ΔAICc = −1.501 (A); R2
= 0.169, ΔAICc = 1.399 (B); R2

= 0.193, ΔAICc = −8.879 (C); and R2
= 0.298, ΔAICc = −15.86 (D). A negative

ΔAICc value indicates that the AICc of the spatial model is lower than that of the nonspatial model.
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harshness (28), whereas Acidobacteria and Verrucomicrobia typi-
cally show opportunistic responses to short-term changes in water
availability, with rapid declines and increases in ribosomal synthesis
during drought and after soil rewetting, respectively (24). The
relative abundance of major fungal phyla did not change with
aridity (R2 of linear/logarithmic/quadratic regression < 0.07, P >
0.08 in all cases). These findings are consistent with those from
studies showing that the relative abundance of fungal phyla
remained largely unchanged with soil desiccation during a summer
drought (24). Spatial models that included aridity were superior
predictors of changes in the abundance of fungi and bacteria (Fig.
1), in the diversity of Actinobacteria and Acidobacteria (Fig. S4), and
in the relative abundance of Acidobacteria, Verrumicrobia, and
δ-Proteobacteria (Fig. 2). These results are likely to be driven by the
strong relationships between aridity and latitude/longitude found in
our database (Fig. 3A).
To further investigate the direct and indirect effects of aridity

on soil bacteria and fungi, we generated structural equation models
(SEMs) based on the known effects and relationships among
aridity and other key drivers of the diversity and abundance of
these microorganisms (mean diurnal temperature range, plant

cover, soil pH, and organic C content; Fig. S2). Latitude and
longitude were also included in our models, given their effects
on microbial abundance (Fig. 2 C and D) and on the rest of biotic
and abiotic variables evaluated (Fig. 3 A and B). Our models
explained between 34% and 49% of the variance found in microbial
diversity and abundance among the sites surveyed (Fig. 3 A and B).
Aridity indirectly impacted the diversity and abundance of soil
bacteria and fungi by strongly affecting soil pH, soil organic C
content, and total plant cover (Fig. 3 C and D). Organic C content
had a direct positive effect on the diversity and abundance of both
bacteria and fungi (Fig. 3 A and B and Fig. S6) and was the
strongest predictor of such community attributes in the case of
bacteria (Fig. 3C). These results suggest that soil microbial com-
munities are limited by C in dryland soils (22, 23) and align with
studies from polar regions, indicating that soil C content is a major
driver of the diversity of soil bacteria and fungi (29). Our findings
also mimic observed global patterns in microbial biomass C, which
have been found to increase in tandem with soil C contents from
southern to northern latitudes (30, 31). The negative effect of
mean diurnal temperature range (MDR) on bacterial and fungal
abundance is likely due to (i) increases in physiological stress

Fig. 2. Relationships between aridity and the relative abundance (arcsine-transformed proportions) of dominant soil bacterial phyla and classes. The solid
lines represent the fitted linear or quadratic OLS model. The proportion of variance explained (R2) of regressions including the dominant eigenvector of the
Euclidean distancematrix of sites, and the differences in theΔAICc between thesemodels and those shown in the figure are as follows: R2 = 0.319,ΔAICc = −6.288 (A);
R2 = 0.164, ΔAICc = −0.173 (B); R2 = 0.112, ΔAICc = 1.047 (C); R2 = 0.245, ΔAICc = −1.376 (D); R2 = 0.341, ΔAICc = −12.93 (E); and R2 = 0.250, ΔAICc = −6.234 (F). The
rest of the legend is as in Fig. 1.
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associated with rapid temperature changes (32); and (ii) negative
effects of MDR on total plant cover, which reduced organic C
inputs into the soil (Fig. 3 A and B). Soil pH was uncorrelated with
bacterial diversity and abundance, in contrast to previous findings
highlighting soil pH as a major predictor of bacterial richness
across a wide range of ecosystem types (20, 33). These discrep-
ancies are likely linked to the high (and relative narrow range of)
pH values found at our study sites (6.2–8.9), because linear in-
creases in bacterial diversity with pH have been found mainly in
soils with pH values of 3.5–6.5 (20, 33). Our findings thus indicate
that the importance of soil pH as a driver of bacterial diversity
patterns reported by previous large-scale studies (20, 33) does not
hold in drylands, where soil pH values are generally >6.5 (34).
However, both soil pH and organic C content were strongly cor-
related with the relative abundance of major bacterial phyla and
classes (Figs. S7 and S8). Despite these results, the relationships
(positive or negative) between soil pH and the relative abundance
of bacterial phyla and classes remained significant, even after
controlling for the effects of both aridity and organic C (partial
correlation analysis; rAcidobacteria = −0.240, P = 0.037; rActinobacteria =
0.363, P = 0.001; rChloroflexi = 0.236, P = 0.040; rVerrumicrobia = −0.626,

P < 0.001; rβ-Proteobacteria = −0.446, P < 0.001; rδ-Proteobacteria =
−0.263, P = 0.022; rγ-Proteobacteria = 0.272, P = 0.017; df = 74 in all
cases). These results support the notion that soil pH drives changes
in bacterial composition in terrestrial ecosystems (20, 33, 35). Soil
pH was negatively related to fungal diversity (Fig. 3 B and D),
consistent with a global study showing a negative correlation be-
tween soil pH and fungal richness after accounting for the effects
of other environmental drivers (12). The relative abundance of
Glomeromycota increased concomitantly with soil pH, but that of
other fungal phyla was not affected by this soil variable (Fig. S9).
These results may have been associated with the wide pH optimum
of many fungal taxa (35). The relative abundance of Chy-
tridiomycota declined, but that ofGlomeromycota increased, as soil
organic C increased. Other fungal groups were not related to soil
organic C (Fig. S9).
Our results indicate that increases in aridity—such as those

forecasted for the second half of this century (15)—will likely
reduce the abundance and diversity of soil bacteria and fungi in
drylands globally and may promote shifts in the composition of
soil bacterial communities. These predictions, however, have a
degree of uncertainty given the observational nature of our survey,

Fig. 3. SEMs fitted to the diversity and abundance of soil bacteria (A) and fungi (B) and standardized total effects (direct plus indirect effects) derived from
them (C and D). Numbers adjacent to arrows are path coefficients (P values) and indicative of the effect size of the relationship. The sign of the spatial
composite is not interpretable; thus, absolute values are presented. Filled and dashed bars in C and D denote the standardized effects on diversity and
abundance, respectively. Cover, total plant cover; OC, soil organic C content; qPCR, abundance measured using real-time PCR; R2, the proportion of variance
explained; spatial, composite variable including latitude and longitude.
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which does not account for the different effects of human activities
and other climate-change drivers that may change with aridity. For
example, if the introduction of exotic, invasive species by humans in
ecosystems occurs along with increasing aridity, some of the ob-
served links between aridity, soil organic C content, and microbial
diversity could break down (36). Increases in water use efficiency
(WUE) due to elevated [CO2] may enhance overall plant growth
and soil C fixation in drylands (37), which could mitigate the re-
duction of microbial abundance and diversity expected as aridity
increases. Whether this enhancement of WUE can compensate for
the detrimental effects of increased aridity on water availability and
plant growth is largely unknown. A recent study showed that in-
creased aridity over the last four decades was responsible for a
sustained decline in plant productivity, regardless of CO2-induced
increases in WUE during this period (38).

Conclusions

Here we show that increases in aridity, such as those predicted by
climate-change models (15, 16), reduce the diversity and abun-
dance of soil bacteria and fungi in drylands, the largest biome on
Earth (39). These responses are mainly driven by reductions in
soil organic C content associated with increases in aridity and, in
the case of microbial abundance, with increases in diurnal tem-
perature variations. Soil pH affected both the abundance of fungi
and the relative abundance of major bacterial phyla and classes, but
had no effect on the diversity of soil bacteria. Unlike reports of
previous global surveys from terrestrial ecosystems (12), fungal
communities in dryland soils were dominated by Ascomycota. These
findings highlight the unique features of soil microbial communities
in drylands. Both the community structure and relative importance
of environmental factors driving variation in microbial communities
in global drylands differ from previous records from other terrestrial
ecosystems. Our results fill a critical gap in our understanding of
microbial community structure in global drylands and provide
additional insights into how soil microbial communities may re-
spond to climate change. Ecosystem models are beginning to in-
corporate information on microbial abundance, composition, and
diversity, which is needed to improve predictions of soil C stocks
and their dynamics (31), and the links between aridity, soil organic
C content, and these microbial community attributes shown here
can be used to refine and validate them.

Materials and Methods

Complete documentation of the study sites, field survey, sample collection,
and laboratory procedures, as well as additional details on the statistical
analyses are provided in SI Materials and Methods.

Field datawere collected from 80 dryland sites selected to represent awide
range of the environmental and biotic characteristics of global drylands (Fig.
S1; figshare DOI 10.6084/m9.figshare.1487693). At each site, the cover of

perennial vegetation was measured by using the line-intercept method along
four 30-m-long transects (5). Replicated soil samples (0- to 7.5-cm depth) were
randomly taken under the canopy of the dominant perennial plant species and
in open areas devoid of perennial vegetation (10–15 samples per site). After field
collection, a fraction of the soil samples was immediately frozen at −20 °C for
microbial analyses. These analyses were conducted on composite samples of each
microsite (open and vegetated areas) and site. Soil DNA was extracted from
0.5 g of defrosted soil samples by using the Powersoil DNA Isolation Kit (Mo
Bio Laboratories). qPCR reactions were performed in triplicate by using 96-well
plates on an ABI 7300 Real-Time PCR (Applied Biosystems). The bacterial 16S-rRNA
genes and fungal ITS were amplified with the Eub 338-Eub 518 and ITS
1-5.8S primer sets (40). After qPCR analyses, the extracted DNA samples were
frozen and shipped to the Next Generation Genome Sequencing Facility of
Western Sydney University, where they were defrosted and analyzed by using
the Illumina MiSeq platform (41) and the 341F/805R (bacteria) and FITS7/ITS4
(fungi) primer sets (42, 43). Initial sequence processing and diversity analyses
for both bacterial 16S rDNA and fungal ITS genes were conducted as described
in SI Materials and Methods.

Before numerical and statistical analyses, all soil and microbial variables
used in this study were averaged to obtain site-level estimates by using the
mean values observed in bare ground and vegetated areas, weighted by their
respective cover at each site (5). We first modeled the relationships between
aridity and the abundance and diversity of bacteria and fungi using either
linear or curvilinear (quadratic) regressions. The aridity [1 − aridity index (AI),
where AI is precipitation/potential evapotranspiration] of each site was
obtained by using data from ref. 44. Similarly, we explored the relationships
between aridity and the abundance and diversity of main bacterial and fungal
phyla and classes, as well as between soil organic C content/pH and these taxa
using regression and partial correlation analyses as described in SI Materials

and Methods. To determine the mechanisms underlying the observed effects
of aridity on microbial abundance and diversity, we used SEM (45). This ap-
proach tests the plausibility of a causal model encompassing a set of a priori
hypotheses (Fig. S2). Our a priori model included spatial structure (latitude and
longitude), aridity, mean diurnal temperature range (obtained from ref. 46), soil
pH, organic C, and total plant cover as predictors of the total amount (as mea-
sured with qPCR) and diversity (Shannon index) of both bacteria and fungi. SEM
analyses were conducted as described in SI Materials and Methods by using
AMOS (Version 18.0; Amos Development). All of the data used in the primary
analyses are available from figshare (DOI 10.6084/m9.figshare.1487693).
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SI Materials and Methods

Field Survey and Sample Collection. Field data were collected from
80 dryland sites located in 12 countries from all continents except
Antarctica (Fig. S1). Data collection took place between June
2006 and January 2011, and all of the sites were surveyed by
using a standardized sampling protocol. At each site, a 30-m ×

30-m plot representative of the dominant vegetation was estab-
lished, and the cover of perennial vegetation was measured by
using the line-intercept method along four 30-m-long transects
(5). The coordinates and elevation of each plot were recorded in
situ with a portable global positioning system and were stan-
dardized to the WGS84 ellipsoid for visualization and analyses
by using Google Earth (https://www.google.com/earth/). We es-
timated the degree of aridity of each site by obtaining its aridity
index (precipitation/potential evapotranspiration) using data in-
terpolations provided by Worldclim (44, 46). To facilitate the
interpretation of our results, we used 1-AI as our surrogate of
aridity (21). This index increases with decreasing annual mean
precipitation in the sites studied (Spearman ρ = −0.829, n = 80,
P < 0.001).
Soils were sampled during the dry season in most of the sites

using a stratified random procedure. At each plot, five 50-cm ×

50-cm quadrats were randomly placed under the canopy of the
dominant perennial vegetation element and in open areas devoid
of perennial vegetation. A composite sample consisting of five
145-cm3 soil cores (0- to 7.5-cm depth) was collected from each
quadrat, bulked, and homogenized in the field. When more than
one dominant plant species was found, samples were also col-
lected under the canopies of five randomly selected individuals
of the codominant species. Thus, the number of soil samples
varied between 10 and 15 per site. To avoid problems associated
with the use of multiple laboratories when analyzing the soils
from different sites, and to facilitate the comparison of results
between them, dried and frozen soil samples from all of the
countries were shipped to Spain for laboratory analyses.

Microbial Analyses. The extracted DNA was of high quality, with
ratios of A260/A230 and A260/A280 above 1.5 and 1.8, re-
spectively. Initial sequence processing and diversity analyses for
both bacterial 16S rDNA and fungal ITS genes were conducted by
using theQIIMEpackage (47). Initially, low-quality regions (Q< 20)
were trimmed from the 5′ end of sequences, and paired ends were
joined with FLASH (48) for 16S rDNA sequences and Fastq-join
(49) for ITS reads. Sequences were demultiplexed, and a further
round of quality control was conducted to remove sequences con-
taining ambiguous bases (N) and reads containing bases with a
quality score <25. Chimeric 16S rDNA sequences were detected by
using the UCHIME algorithm from the USEARCH package (50,
51) implemented within VSEARCH (https://github.com/torognes/
vsearch). The RDP training dataset (Version 9; ref. 52) was used
as a reference for chimera detection, as recommended by the
UCHIIME documentation. De novo (abundance-based) chimera
detection was used for ITS data using USEARCH (50). The re-
maining high-quality chimera-free sequences were used for down-
stream analysis. Operational taxonomic units (OTUs) were defined
as clusters of 97% sequence similarity using UCLUST (50). Tax-
onomy was assigned using UCLUST (50) against the Greengenes
database (Version 13_850) for 16S rDNA OTUs (53, 54). For
fungal ITS sequences, taxonomy was assigned by using BLAST (55)
against the UNITE database (Version 6.9.7; ref. 56) (E < 10−5).
This database, however, considers the Zygomycota as a phylum,
whereas the most recent taxonomical references no longer do so (57).

We thus refer to Zygomycetous fungi when referring to the
different taxonomical units formerly included in the Zygomycota
(57). The resultant OTU abundance tables for both primer sets
were filtered to remove singletons and rarefied to an even
number of sequences per samples to ensure an equal sampling
depth (11,925 and 17,000 for 16S rDNA and ITS, respectively).
Shannon diversity was calculated on these rarefied OTU tables by
using QIIME (47). We estimated diversity using this metric be-
cause it has been recommend when quantifying and comparing
microbial diversity (58). The number of bacterial sequences ob-
tained from two of the sites surveyed was too low to estimate
microbial diversity accurately, so they were not used in further
analyses.

Assessing Relationships Between Microbial Community Attributes,

Aridity, and Soil Variables. We explored the relationships be-
tween aridity and the abundance and diversity of main bacterial
and fungal phyla and classes, as well as between soil organic C
content/pH and these taxa by using OLS regression analyses. We
used the AICc (59) to compare linear, logarithmic, and quadratic
models; when differences in the AICc (ΔAICc) values of these
models were <2, the linear model was selected (60). To account for
possible large-scale spatial nonindependence of sample sites (25),
we also included the dominant eigenvector of the Euclidean dis-
tance matrix of sites as an additional predictor into the OLS re-
gressions (26, 27). Results of OLS regressions with and without this
spatial predictor were compared by using AICc; ΔAICc values of
spatial vs. nonspatial models >4 suggest that the models are clearly
different (60). Some of the regressions conducted did not fulfill
some of the assumptions of OLS regression (normality and ho-
mogeneity of variance). Thus, we conducted additional analyses
using permutation tests to obtain P values (61), because these
provide superior type I error control when assumptions of normality
and homogeneity of variance are violated (62–64). Nonparametric
significance levels were obtained from 10,000 permutations each. In
all of the regressions conducted, the differences between OLS- and
permutation-obtained P values were minimal and did not change
either the statistical significance of the regression or the in-
terpretation of the results. Hence, for simplicity, we report in the
main text results of OLS regression. We conducted partial cor-
relation analyses between soil pH and the relative abundance of
major bacteria phyla and classes controlling for the effects of aridity
and soil organic C content. OLS regression and nonparametric
permutation analyses were conducted with Sigma Plot (Version 11;
Systat) and Past (Version 3.09) (65), respectively. Spatial regression
models were calculated by using Statistica (Version 12; StatSoft).
Partial correlation analyses were conducted by using SPSS (Version
21; IBM).

Evaluating Direct and Indirect Effects of Aridity on Microbial

Community Attributes: SEM. Our a priori SEM is based on the
known effects and relationships among key drivers of bacterial
and fungal diversity and abundance (Fig. S2). This model in-
cluded: spatial structure (latitude and longitude), aridity, mean
diurnal temperature range, soil pH, organic C, and total plant
cover as predictors of the total amount (as measured with qPCR)
and diversity (Shannon index) of both bacteria and fungi. The
mean diurnal temperature range was obtained as the average of
monthly differences between maximum and minimum air tem-
peratures, as provided by Worldclim (46). Before modeling, we
examined the distributions of all of our variables and tested their
normality. Bacterial and fungal abundance were log10-transformed.
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When these data manipulations were complete, we parameterized
our model using our dataset and tested its overall goodness of fit.
There is no single universally accepted test of overall goodness of fit
for SEMs, so we used multiple goodness-of-fit criteria. We used the
χ2 test (the model has a good fit when χ2 is low and probability
value is high, traditionally P > 0.05; ref. 66) and the root mean
square error of approximation (RMSEA; the model has a good fit
when RMSEA is near 0 and the probability is high, traditionally P >

0.05; ref. 66). Additionally, and because some variables were not
normal, we confirmed the fit of the model using the Bollen–Stine
bootstrap test (the model has a good fit when bootstrap P is high,
traditionally P > 0.05; ref. 66). Our a priori model attained an ac-
ceptable fit by all criteria (Fig. 3), and thus no post hoc alterations
were made. After attaining a satisfactory model fit, we introduced
composite variables into our model. The use of composite variables
does not alter the underlying model, but collapses the effects of
multiple conceptually related variables into a single composite ef-
fect, aiding interpretation of model results (45). Both latitude and
longitude were necessary to represent the spatial distribution of the
dryland sites and thus were included as a composite variable.
With a reasonable model fit, and composite variables constructed,

we were free to interpret the path coefficients of the model and their
associated P values. A path coefficient is analogous to a partial

correlation coefficient and describes the strength and sign of the
relationships between two variables (45). Because some of the var-
iables introduced did not follow a normal distribution, the probabil-
ity of a path coefficient to differ from zero was tested by using
bootstrap tests (45). Bootstrapping is preferred to the classical
maximum-likelihood estimation in these cases because, in boot-
strapping, probability assessments are not based on an assumption
that the data match a particular theoretical distribution. Thus, data
are randomly sampled with replacement to arrive at estimates of
SEs that are empirically associated with the distribution of the data
in the sample (45).
Another important capability of SEM is its ability to partition

direct and indirect effects that one variable may have on another
and estimate the strengths of these multiple effects. To aid final
interpretation in light of this ability of SEM, we calculated the
standardized total effects of latitude, longitude, aridity, mean
diurnal temperature range, plant cover, soil organic C content,
and soil pH (and also total microbial abundance in the case of
diversity). The net influence that one variable has upon another
was calculated by summing all direct and indirect pathways be-
tween the two variables. If the model fits the data well, the total
effect should approximate the bivariate correlation coefficient for
that pair of variables (45).

Fig. S1. Location of the 80 sites used in this study. Some of them overlap and are thus indistinguishable. Exact locations and additional site characteristics are

provided in figshare (DOI 10.6084/m9.figshare.1487693).
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Fig. S2. A priori SEM used in this study. Spatial is a composite variable formed by latitude and longitude. MDR, mean diurnal temperature range (mean of

monthly differences between maximum and minimum temperature). The numbers in the arrows denote example references used to support our predictions,

which can be found in the reference list.
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Fig. S3. Relative proportion of major bacterial (A) and fungal (B) taxa in the main ecosystem types surveyed. [n = 21, 11, 17 (19 in the case of fungi) and 29 for

grasslands (< 10% woody plant cover), mixed grasslands (10–50% woody plant cover), mixed shrublands (51–90% woody plant cover), and shrublands (> 90%

woody plant cover), respectively.]
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Fig. S4. Relationships between aridity and the diversity (Shannon index, in bits) of dominant bacterial phyla in the ecosystems studied. The proportion of

variance explained (R2) of regressions including the dominant eigenvector of the Euclidean distance matrix of sites (spatial models) and the ΔAICc between

these models and those shown in the figure, are as follows: R2 = 0.267, ΔAICc = −12.301 (A); R2 = 0.269, ΔAICc = −4.991 (B); R2 = 0.115, ΔAICc = 2.072 (C); R2 = 0.333,

AICc = −2.477 (E); and R
2
= 0.068, ΔAICc = 1.706 (F). The relationship presented in D is nonsignificant (P > 0.05), hence no regression model is shown. A negative

ΔAICc value indicates that the AICc of the spatial model is lower than that of the nonspatial model.
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Fig. S5. Relationships between aridity and the diversity (Shannon index, in bits) of dominant fungal taxa in the ecosystems studied. The proportion of

variance explained (R2) of regressions including the dominant eigenvector of the Euclidean distance matrix of sites and ΔAICc between these models and those

shown in the figure, are as follows: R2
= 0.204, ΔAICc = −0.717 (A); R2

= 0.083, ΔAICc = 2.059 (B); R2
= 0.090, ΔAICc = −0.410 (C); and R

2
= 0.200, ΔAICc =

−10.456 (D). The relationship presented in E is nonsignificant (P > 0.05), hence no regression model is shown. The rest of the legend is as in Fig. S4.
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Fig. S6. Relationships between soil organic C content and the diversity and abundance of bacteria and fungi in the ecosystems studied. The solid lines

represent the fitted OLS model. The proportion of variance explained (R2) of regressions including the dominant eigenvector of the Euclidean distance matrix

of sites and the ΔAICc between these models and those shown in the figure, are as follows: R2
= 0.325, ΔAICc = 1.085 (A); R2

= 0.281, ΔAICc = −0.143 (B); R2
=

0.271, ΔAICc = −5.705 (C); and R
2
= 0.350, ΔAICc = −11.855 (D). The rest of the legend is as in Fig. S4.
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Fig. S7. Relationships between soil pH and the relative abundance (arcsine-transformed proportions) of dominant bacterial phyla and classes in the eco-

systems studied. The proportion of variance explained (R2) of regressions including the dominant eigenvector of the Euclidean distance matrix of sites and

ΔAICc between these models and those shown in the figure, are as follows: R2
= 0.125, ΔAICc = 1.893 (A); R2

= 0.174, ΔAICc = 0.462 (B); R2
= 0.255, ΔAICc =

−14.619 (C); R2
= 0.100, ΔAICc = 1.058 (D); R2

= 0.423, ΔAICc = 0.893 (E); and R
2
= 0.264, ΔAICc = −1.935 (F). The rest of the legend is as in Fig. S4.
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Fig. S8. Relationships between soil organic C content and the relative abundance (arcsine-transformed proportions) of dominant bacterial phyla and classes

in the ecosystems studied. The solid lines represent the fitted OLS model. The proportion of variance explained (R2) of regressions including the

dominant eigenvector of the Euclidean distance matrix of sites and ΔAICc between these models and those shown in the figure, are as follows: R2 = 0.383, ΔAICc =

−12.652 (A); R2 = 0.359,ΔAICc = −0.793 (B); R2 = 0.179,ΔAICc = 2.011 (C); and R
2
= 0.329, ΔAICc = −16.068 (E). The relationships presented in D and F are nonsignificant

(P > 0.05), hence no regression models are shown. The rest of the legend is as in Fig. S4.
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Fig. S9. Relationships between soil pH and organic C content and the relative abundance (arcsine-transformed proportions) of dominant fungal phyla in the

ecosystems studied. The solid lines represent the fitted OLS model. The proportion of variance explained (R2) of regressions including the dominant eigenvector

of the Euclidean distance matrix of sites and ΔAICc between these models and those shown in the figure, are as follows: R2 = 0.108, ΔAICc = −0.997 (D); R2 = 0.066,

ΔAICc = 2.177 (E); and R
2
= 0.129, ΔAICc = −4.016 (F). The relationships presented in A, B, and C are nonsignificant (P > 0.05), hence no regression models are shown.

The rest of the legend is as in Fig. S4.
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