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U
nmanned aerial vehicles (UAVs) are acquiring
an increased level of autonomy as more com-
plex mission scenarios are envisioned [1]. For
example, UAVs are being used for intelli-
gence, surveillance, and reconnaissance

missions as well as to assist humans in the detection
and localization of wildfires [2], tracking of mov-
ing vehicles along roads [3], [4], and performing
border patrol missions [5]. A critical component
for networks of autonomous vehicles is the abil-
ity to detect and localize targets of interest in a
dynamic and unknown environment. The suc-
cess of these missions hinges on the ability of
the algorithms to appropriately handle the
uncertainty in the information of the dynamic
environment and the ability to cope with the
potentially large amounts of communicated
data that will need to be broadcast to synchron-
ize information across networks of vehicles.
Because of their relative simplicity, centralized
mission management algorithms have previously
been developed to create a conflict-free task assign-
ment (TA) across all vehicles. However, these algo-
rithms are often slow to react to changes in the fleet
and environment and require high bandwidth commu-
nication to ensure a consistent situational awareness (SA)
from distributed sensors and also to transmit detailed plans
back to those sensors.

More recently, decentralized decision-making algorithms have
been proposed [6]–[8] that reduce the amount of communication
required between agents and improve the robustness and reactive ability
of the overall system to bandwidth limitations and fleet, mission, and environ-
mental variations. These methods focus on individual agents generating
and maintaining their own SA and TA, relying on periodic intervehicle
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communication to resolve conflicts. Although many researchers
[9]–[11] have examined algorithms for distributed TA problems,
few (such as [12]) have included strong experimental results dem-
onstrating the implementation of these algorithms in tightly
coupled missions such as search and track applications. Some of
the key challenges posed by these missions include the interde-
pendence between the vehicles, the tasks, the high data rates
required to maintain a good estimate of the target state, and broad
area search. Much of the previous work has primarily emphasized
one aspect of the mission (such as search [13], [14] or track [15],
[16]), but little work has addressed a more synergistic combina-
tion of the two operating modes. A Bayesian framework for
search and track was developed in [17] but did not consider
the multivehicle task allocation problem. Elston and Frew [18]
developed a hierarchical approach to the coordinated search
and track mission, but based their revisit times on mean target
motion, rather than explicitly propagating the entire covari-
ance matrix.

The cooperative search, acquisition, and track (CSAT) mis-
sion requires an allocation of UAV assets to the potentially con-
flicting objectives of searching and tracking. Although the
searching component encourages exploration of the environment

and maximizes the probability of finding unknown targets, the
tracking objective requires a vehicle to persistently focus on a sin-
gle target. A successful mission will necessarily tradeoff between
these two modes, because it is generally undesirable to be in only
a search or track mode throughout the course of the mission.
Striking the right balance between these two objectives is of key
importance for overall mission effectiveness, since search must be
performed throughout the course of the entire mission. One of
the key results of this article is that the dynamic transition between
searching and tracking can arise naturally from the problem speci-
fication rather than being a behavior that is artificially encoded in
the problem statement.

This article presents the results of a collaborative effort be-
tween Massachusetts Institute of Technology (MIT) and Aurora
Flight Sciences to develop a new integrated architecture that
combines search and track and solves a challenging multivehicle,
dynamic target resource allocation problem in real time and in
the presence of uncertainty. Thus, multiple UAVs are used to
collaboratively search the environment and keep track of any tar-
gets found. UAVs persist in a baseline search mode, and the
transition to a tracking mode, either once a new target is detected
or when the uncertainty in a target that has been previously
detected (but not currently being tracked), exceeds a desired
threshold. This approach uses true-to-life vision in the loop to
task a fleet of UAVs to efficiently search for and track a large
number of dynamic targets. The experimental demonstrations of
the system are conducted in the real-time indoor autonomous
vehicle test environment (RAVEN) testbed [19], [20] that is part
of the MIT Aerospace Controls Laboratory. The following sec-
tions provide a richer description of the underlying architecture
of our CSAT implementation.

Architecture
To achieve the goal of a decentralized search and track mission,
the CSATalgorithm has been divided into a number of modules
that communicate with each other over a network. Figure 1
shows the architecture for several vehicles and several targets.
Each vehicle runs three modules onboard [the onboard vision
module (OVM), the onboard planning module (OPM), and the
autopilot module (APM)], which work together to perform the
sensing, planning, and control of each vehicle. The OVM takes
in images from the vehicle’s camera and provides a state estimate
to the OPM for each target that it detects in the image. The
OPM then either updates its own target state estimate based on
the new information or propagates the estimate and uncertainty
of the target if no measurements are available. If the vehicle does
not find the target after a planned revisit, then the OPM reverts
back to searching for the target but aided by the knowledge of
the target’s last known position and velocity. The OPM uses
these estimates and creates a plan for the vehicle to search for or
track targets as appropriate. The waypoints generated by the
OPM are sent to the APM, which implements the plan by inter-
facing to the low-level controller on the flight vehicle. The
APM also manages the vehicle’s state estimate and distributes it
to the other modules as necessary. The target manager (TM)
module generates commands for the targets and gathers their
actual state information (rather than the estimate provided by
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the OVM), which are used as truth data for display in the user
interface (UI) and for subsequent analysis. The UI receives data
from the OPM, APM, and TM and displays it in a bird’s-eye
view of the operations area.

For each new vehicle, an additional instance of the OVM,
OPM, and APM is executed. Since the vehicles are operating in
a distributed manner, each UAV will only have direct access to
its local information, which can lead to conflicts in the SA. To
mitigate the effects of conflicting information, the OPMs on
the vehicles communicate with each other to achieve global
consensus on their plans and to coordinate their search and track
efforts. This setup not only allows each vehicle to run its own
algorithms but allows separation of functions within the vehicle
itself. For example, the high-level planner is a separate module
from the low-level autopilot. The various modules communi-
cate with each other over a transmission control protocol
(TCP)/Internet protocol (IP) network, which allows the mod-
ules to run on separate computers or simply as separate processes
on the same computer. This modular approach adds additional
robustness to the system, allowing for the overall system to con-
tinue to execute the mission even if one or many modules fail.

Onboard Planning Module
The OPM is the vehicle’s high-level path and task planner. It
assigns the vehicle to search for targets (whose number and
location are unknown until they are found) or to track known
targets. Whenever a vehicle is searching, the OPM uses a set of
probability distributions to guide the vehicle along an optimal
search path that maximizes the likelihood of detecting a target
[13], [21]–[24]. Once a target is found and classified, it must
then be periodically revisited to maintain an up-to-date esti-
mate of its position and velocity [25], [26]. Between revisits,
the OPM determines whether other tasks need to be executed
or if the vehicle should resume searching the local area. This
decision is made by a decentralized TA algorithm [7], [8] that
continuously runs within the OPM on each vehicle and
ensures that as many tasks as possible are executed without con-
flicting assignments. The following will first describe the search
and track behaviors followed by how the two are allocated by
the tasking algorithm within the OPM.

Search

To be able to search effectively [13], [21]–[24], the OPM
maintains information about what areas of the operational map
have previously been observed. It does this by maintaining a
set of probability maps, where each cell (x, y) in the map Mi has
a probability of containing a target Pi

t(x, y), at some time t. (All
Pi

t(x, y) ¼ 0 for (x, y) in an obstacle.) A generic map is main-
tained for each potential target environment encountered,
such as land or water environments, and is initialized to repre-
sent any a priori knowledge of the unknown targets’ position
distributions. In addition, a new map is generated for each tar-
get that had been found at one point but has since been lost.
This approach assumes that there may always be at least one
additional undiscovered target in each environment type
beyond those that have already been found. Thus, the generic
search map provides the OPM with a constant incentive to

continue searching the environment even if many targets have
already been discovered and are successfully being tracked,
ensuring that the UAVs maintain a nominal level of explora-
tion of the environment.

When in search mode, the OPM uses the combined proba-
bility maps to determine a finite-horizon path that maximizes
the sum of the probabilities that the sensor footprint will cover.
This path generation scheme is based on a breadth-first tree
search with limited depth and turn constraints and includes not
only the search path but also the route to the next task, if appli-
cable. If other UAVs are in the area, they will hierarchically
coordinate their search paths so that they avoid searching the
same area twice.

If a previously discovered target is lost, it is converted to a
search target with an associated, newly created search map.
This map is initialized with a nonzero probability, only within
an estimated reachable region based on the target’s last known
position and velocity and is thereafter propagated based on the
last estimate of the target’s speed through the equations given
later. To account for dynamic search targets that have not been
found yet, each generic search map is associated with a
phantom search target with its own velocity estimate to be used
to determine how quickly uncertainty diffuses back into previ-
ously explored space. The probability diffusion update for each
cell (x, y) in map Mi at time t is given by the two-stage process

Pi
t(x, y) ¼ (Pi

t�1(x, y)þ Pi
t�1(x

0, y0)

3 P(x, yjx0, y0, vi))(1� sc), (1)

Pi
t(x, y) Pi

t(x, y)
P

x̂, ŷ2Mi

Pi
t (x̂, ŷ)

, (2)

where P(x, yjx0, y0, vi) is the probability that a target transitions
from (x0, y0) to (x, y) given the search target velocity vi, and sc is
the percentage of the cell that is covered by the sensor at time t.
The first equation is the diffusion process while the second
ensures that the sum of the probabilities is unity. By diffusing
the probabilities as such, the OPM promotes searching for
dynamic targets that may have traveled back into previously
explored territory.

Track

Once a target is successfully detected by the vision module, it
is classified and tracked by a UAV that has the required capabil-
ity. The OVM provides target state measurements to update
the OPM’s internal estimator. In our experiments, a Kalman
filter was used under the assumption that the dynamic system
is linear [25]. Target tracks are maintained by recursively
updating the state estimates X̂kþ1jk using a kinematic model A

Multiple UAVs are used to
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environment and keep track

of any targets found.
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of the target motion with additive noise wk � N (0, Q) to cap-
ture any unmodeled dynamics because of this simplification

True Model: Xkþ1 ¼ AXk þ Bwk,

Estimate: X̂kþ1jk ¼ AX̂kjk: (3)

Once the uncertainty in the target estimate has been
reduced through tracking measurements, the UAV can tempo-
rarily leave the target to execute other tasks and be confident
that the target will be relocated upon its return. This permits
each vehicle to complete multiple tasks even if the number of
available tasks exceeds the number of capable agents.

In order to determine the necessary revisit time, Algorithm 1
is run for each track-capable UAV (because of possibly differing
sensor footprints). The target estimate and error covariance are
both propagated forward until a scaled representation of the
covariance ellipse no longer can be contained within the vehicle’s
sensor footprint. (This forward propagation uses the existing
process noise to propagate the error covariance by recursively
using the prediction step of the Kalman filter and is measurement
independent.) The scaling multiplier used, denoted nr in Algo-
rithm 1, can be thought to represent a desired confidence level
on finding the target at the revisit time and location, with higher
values leading to more conservative revisit times. UAVs with dif-
ferent sensor footprints will in general predict a unique revisit
time based on their physical sensor properties. A track task is then
created to visit the target at the revisit time and the target’s propa-
gated position using a vehicle capable of tracking.

When a vehicle is assigned to track a target, the OPM gener-
ates a path that coordinates the vehicle arrival time at the revisit
location to match the predicted revisit time. Upon UAVarrival
at the desired location, the target may or may not be within the
UAV’s field of view. In the first case, the vehicle overflies the
intended target for a predetermined time, keeping the target in
its field of view and updates its position and velocity estimates.
The specified track time is an empirically chosen value that was
determined to be long enough to obtain a reliable state estimate
of the target, though both the tracking trajectory and duration
can be modified to incorporate any desired tracking algorithm.
In the second case, however, the target is declared lost and a

new search has to be initialized, as described in the ‘‘Search’’
subsection of the ‘‘Onboard Planning Module’’ section. If the
target is once again found, then the search probability map is
removed and a new revisit location and time is calculated.

TA Algorithm

Given the updated search probabilities maps and target esti-
mates, the OPM can then decide whether to search regions of
the map that have a high likelihood of containing targets or
execute existing track tasks. In our framework, search is con-
sidered a spare time strategy rather than a task. This means that
the vehicles search for targets when they are not assigned to a
track task or when their next track task is far enough in the
future that they can search in the intervening time. This
approach assumes that, given the choice between keeping
track of a known, nontrivial target and searching, it is more
beneficial to follow the targets that have already been found.

The OPM uses a modification of a multiagent TA algo-
rithm introduced in [7] and [8], called the consensus-based
bundle algorithm (CBBA). CBBA is a cooperative, low-
communication-bandwidth iterative auction approach that
uses two phases to achieve a conflict-free TA. In the first phase,
each vehicle generates a single-ordered bundle of tasks by
greedily selecting tasks for itself. The second phase resolves
inconsistent or conflicting assignments through heuristic
methods and improves the global reward through the bidding
process. The implementation of CBBA in the OPM executes
these two phases continuously and concurrently at each time
step, allowing the algorithm to rapidly adjust to changes in the
network and environment. See [7] and [8] for additional details.

Onboard Vision Module
Images captured from the onboard camera are loaded and ana-
lyzed by the vision processing unit using OpenCV [27]. The
received image is converted from a red-green-blue (RGB) for-
mat to a hue-lightness-saturation (HLS) format for easier color
separation. Then, given the expected color ranges for each tar-
get, a detection algorithm determines which pixels fall within
the range of colors for each target, and a smoothing function is
applied to each color blob to locate its centroid. The location
of the target in the image plane is then projected to the inertial
world frame using a calibrated pinhole camera model, assum-
ing that targets exist on the ground plane (z¼ 0). This estimate
of the targets’ locations is then fed into a particle filter to
smooth the measurement before transmission to the OPM.

Target state estimation relies on principles from particle fil-
tering [28]. Upon receiving a (noisy) measurement of the loca-
tion of the target in the inertial world frame, each particle’s
location is updated using the kinematic motion model of the
target. The particles are then reweighted based on their dis-
tance from the target location as measured from the camera
image, and importance resampling is performed on the set of
particles [28]. Particles with low weight are rejected, and new
particles are generated. At this point, the set of particles should
approximate the distribution of possible target states, and the
weighted mean value is transmitted to the OPM as the new
target measurement.

Algorithm 1. Revisit time and location calculation

k 0
Initialize process noise covariance Q
Initialize state estimate X̂k  X̂0

Initialize error covariance Pk  P0

Initializecharacteristicsizeuk  p
ffiffiffiffiffiffiffiffi
jPkj

p

while nruk < usensor do
X̂kþ1  AX̂k

Pkþ1  APkAT þ BQBT

ukþ1  p
ffiffiffiffiffiffiffiffiffiffiffiffi
jPkþ1j

p

k kþ 1
end while
return Revisit time¼ k D t
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Autopilot Module
The APM acts as the interface between the low-level vehicle
controller and the rest of the CSAT architecture. In simulation
modes, it also simulates vehicle dynamics. Specifically, the auto-
pilot maintains the vehicle state estimate, provides guidance to
fly the vehicle along the waypoints provided by the OPM, and
monitors the health of the vehicle, including fuel status.

The APM’s open architecture allows it to accept state estimate
input from various sources depending on the situation. For
example, in simulation, it simply takes the state estimate from the
simulated dynamics, while in flight experiments it might use
state estimates from onboard or offboard sensors. The APM can
also perform additional filtering on the state information. This
state estimate is then distributed to the other modules that need
the estimate, including the OPM and the OVM, for use in plan-
ning and target estimation.

The APM periodically receives a list of waypoints from the
OPM that describe the planned path over a short time horizon.
If the APM is using simulated dynamics, it generates appropriate
steering commands using the nonlinear control law developed
in [29]. If a separate vehicle controller with waypoint following
ability is used, such as in the RAVEN testbed, then the APM
only keeps track of which waypoint the vehicle should fly to
next using the logic developed in [30] and sends that waypoint
to the vehicle controller. Waypoints are specified as a position, a
time at which the vehicle should reach that location, and a type,
such as flyby, flyover, or stop, which specifies when the vehicle
can continue on to the next waypoint.

Flight Experiments

Indoor Flight Tests

The RAVEN System

Experimental trials of the presented CSAT formulation
were conducted in the MIT’s RAVEN [19], [20], a multive-
hicle platform allowing for rapid prototyping of high-level
mission management algorithms. This capability is achieved
by using a very accurate Vicon MX motion capture system
[31] to produce high bandwidth state estimates of numerous
aerial and ground vehicles, as well as in-house vehicle con-
trollers to provide low-level control and stabilization of the
vehicle hardware.

The motion capture system detects lightweight reflective
dots on the vehicles and uses these to calculate the vehicles’
position and orientation within the 25 by 30 ft test room. This
data is transmitted via Ethernet to each vehicle’s ground-based
control computer, which in turn commands its vehicle
through a commercial off-the-shelf (COTS) radio control
(R/C) transmitter [19], [20]. Along those same lines, the
OPM and OVM modules are also run offboard, allowing the
use of COTS vehicle hardware with minimal requirements for
onboard computational capacity. This offboard computation
replicates the exact type of computation that would be per-
formed onboard each vehicle, and it is performed offboard
simply to ease the integration process given the payload restric-
tions of the current vehicles.

Test Vehicles

While the RAVEN testbed allows for a wide range of vehicle
types to be used, the room space constraints and prior proven
vehicle performance led us to select the Hummingbird quad
rotor produced by Ascending Technologies [32] as the aerial
vehicles (see Figure 2). The particular model used can stabilize
the vehicle attitude using onboard sensors and microcontrol-
lers while an associated midlevel control program running on
one of the RAVEN vehicle computers generates attitude
commands to control the position of the vehicle. This vehicle
wrapper code is the link between the Vicon motion capture
state estimates, the CSAT APM, and the vehicle itself. The
wrapper implements a simple linear quadratic regulator
(LQR) controller to follow a reference trajectory generated
by an internal waypoint follower [20]. The APM sends acti-
vate, takeoff, land, and waypoint commands to the wrapper,
which are then converted to the relevant control signals to
send to the vehicle.

The Hummingbirds are modified with the COTS wireless
fidelity (Wi-Fi) enabled Panasonic BL-C131A network camera
to provide the vehicles with visual detection capabilities. The
camera is networked with the OVM module of the CSAT
framework. The internal mechanisms to control the pan and
the tilt of this camera are removed to reduce the overall payload
weight, making the current hardware configuration to con-
strain the cameras to a fixed orientation looking vertically
downward from the vehicle. This is a 1/6 in CMOS sensor,
with approximately 320,000 pixels that provides a footprint of
1:0 m width by 0:75 m height at an altitude of 1:2 m.

Results
This section presents some the results of the CSATarchitecture
flown in RAVEN. The indoor flight experiments used five tar-
gets and three UAVs. The number and composition of vehicles
for the flight tests is limited only by the physical size of our
indoor test environment; the planning algorithm can return

Figure 2. Hummingbird UAVs performing a coordinated
search and track task on tank targets.
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assignments with as many as ten UAVs and 50 waypoints in real
time (in the order of seconds).

To scale the experiment to the size of the environment, the
UAVs were flown with a maximum speed of 0.2 m/s at an alti-
tude of 1.2 m. Some of the targets were stationary, while the
dynamic targets were controlled autonomously and by R/C
and designed for a nominal speed of 0.05 m/s. All were assigned
the same score for the tests in Scenario I, while in Scenario II,
one target was designated a higher value than the others.

Scenario I: Effect of Estimated Noise Covariance Q

This scenario considered a set of three UAVs and five target
hardware experiments in which the goal was to investigate the
sensitivity of the CSAT planner to the choice of the process
noise covariance Q. Under the assumption of a target motion
model driven by process noise, the noise covariance is used to
determine the revisit time for the tracking exercise. The process
noise covariance is an effective tuning parameter for the CSAT
controller that must be chosen carefully, based on anticipated
target maneuverability. Thus, the true Q will inherently vary
between vehicles, specifically between static and mobile targets,
according to the vehicle dynamics.

Two choices of Q were made in this scenario resulting in two
distinct experiments (the scaling factor nr ¼ 1 for both experi-
ments). The results are shown in Figure 3. Figure 3(a) shows
experiments with low covariance (Q ¼ 0:001 3 I2 3 2 m2=s4) for

all targets, and Figure 3(b) shows experiments with high covari-
ance (Q ¼ 0:05 3 I2 3 2 m2=s4) for all targets. In the first experi-
ment, a low value of Q was used, implying that the targets being
tracked were assumed not to be very maneuverable. Because of
this, the UAVs track the targets occasionally, but spend most of
their time searching. Consequently, the cumulative area searched
quickly approaches and eventually reaches 100%. Conversely, in
the second experiment, where a high value of Q was used, the
motion of the targets is assumed to be very uncertain and, conse-
quently, the targets must be revisited often. Once a UAV finds a
target, it spends most of its time in tracking mode and only has a
few seconds of search between each revisit. This is reflected in
the cumulative search area, which quickly plateaus once the first
UAV begins tracking and never reaches the same level as in the
low Q experiment. Furthermore, because the UAVs in the high
Q situation have so little time to search between revisits, they can
never wander far from their assigned targets. As a result, they will
have difficulty finding any new targets entering the operations
area. Essentially, the area searched after tracking has begun is
much lower in the second case than in the first.

Even in the restricted testing space, we have been able to exper-
imentally show that a small change in the choice of the process
noise Q can lead to significant variations in the tracking strategies.
In particular, if the target dynamics is unknown but likely very
erratic, as would be the case with highly maneuverable targets, it is
probably a good choice to select a high Q and emphasize tracking
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at the expense of search performance. Conversely, if the choice of
the dynamic model is assumed very accurate or the expected tar-
gets are not very maneuverable, then a matching low Q value will
allow the agents to execute other tasks while proceeding with the
track. Thus, it is very beneficial to the overall execution of the
CSAT mission to choose a representative Q for each target to best
tradeoff between the two competing tasks.

Scenario II: Three UAVs and Five Targets

This scenario demonstrated a multivehicle, multitarget mission
with three autonomous UAVs and five targets (two of which
were dynamic). Using results from the first scenario as a guide,
the process noise covariance matrices were set to Q ¼
0:001 3 I2 3 2 m2=s4 for any target with measured velocity less
than 0.005 m/s, and Q ¼ 0:05 3 I2 3 2 m2=s4 for those with
velocities over 0.005 m/s. Also, Target 2 (green) was given a
higher tracking score and desired confidence level (nr > 1),
specifying that it is a high-priority target that the agents need
to track if found. The CSAT planner’s search map was initial-
ized with a uniform prior distribution of target locations. All
vehicles in this experiment were eligible to both search and
track targets.

Figure 4 shows a summary of the mission. In general, this
mission shows a good balance between searching and tracking,
as well as alternating between tracking erratic dynamic targets

and static targets. Figure 4(a) shows the trajectory of the three
UAVs (the apparent noise in the paths is due to perturbations
from the downwash effects of the multiple UAVs rather than the
algorithm). We can see from the overlapping trajectories that
the UAVs are using a fluid search method rather than partition-
ing the operations area or flying fixed Zamboni patterns. The
advantage of this approach is that the team is inherently flexible
and the agents can explore regions of high uncertainty regardless
of their location, as opposed to remaining constrained to local
areas or inefficient search paths. Additionally, as agents are sent
to complete other tasks, they can handoff their original search
regions to the remaining nearby searching vehicles.

Figure 4(b) shows the mode (search or track) of each UAV.
Since the environment has a mix of dynamic targets (with high
covariance) and static targets (with low covariance), the UAVs
exhibit both short and long revisit times. This permits agents
to naturally execute target handoffs if one agent needs to
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allocation of UAV assets to the

potentially conflicting objectives of

searching and tracking.
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service another target or refuel. This plot also demonstrates
the natural shift of focus from primarily searching early on to
primarily tracking as more targets are found.

Figure 4(c) and (d) demonstrates this shift even more clearly. In
Figure 4(d), it can be seen that the UAVs have enough time to
search, despite the track tasks, close to 100% of the map. Figure
4(c) displays a line when the target estimate of each target is within
a specified threshold of the true position. All five targets were
found, tracked, and revisited during the mission. As was intended,
UAV 2 (in green) is tracked more frequently because of its higher
priority and higher desired revisit confidence. This results in the
UAVs maintaining a better estimate of that target than of the other
targets, though the agents were all able to contribute to the search
and track components for the duration of the mission.

Conclusions
This article has presented a tightly integrated systems architec-
ture for a decentralized CSAT mission management algorithm
and demonstrated successful implementation in actual hardware
flight tests. This CSATarchitecture allows each UAV to accom-
plish a combined search and track mission by conceptualizing
the searching aspect as a spare time strategy to be executed opti-
mally over a short time horizon when the agents are not actively
tracking a vehicle. This presented a balance between the two
conflicting search and track modes and allowed the mission to
achieve more than simply searching or tracking alone.

Using the RAVEN testbed, we demonstrated this system in
action using three agents and both static and dynamic targets.
The first set of tests showed the importance of accurately
representing the expected maneuverability of the targets in the
revisit time calculation. The results demonstrated that the
presented system achieves a successful balance between search-
ing unexplored regions of the environment and tracking
known targets. The second set of flight tests demonstrated a
mission using static and dynamic targets with varying levels of
uncertainty about the target models and nonuniform scoring.
This second mission demonstrated the flexibility of the
presented CSAT formulation and its ability to deal with vari-
ous search and track requirements even in environments where
the track targets outnumber the sensing vehicles.

Our immediate future work is dedicated to the identifica-
tion of the process noise covariance Q using adaptive estima-
tion techniques so that it does not need to be specified a priori.
Also, we intend to extend the OVM to account for target
recognition using other features such as target shape or velocity.
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