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We assess empirically the effects of the winner’s curse which, in common-value auctions, counsels
more conservative bidding as the number of competitors increases. First, we construct an econometric
model of an auction in which bidders’ preferences have both common- and private-value components,
and propose a new monotone quantile approach which facilitates estimation of this model. Second, we
estimate the model using bids from procurement auctions held by the State of New Jersey. For a large
subset of these auctions, we find that median procurement costs rise as competition intensifies. In this
setting, then, asymmetric information overturns the common economic wisdom that more competition is
always desirable.

1. INTRODUCTION

How do increases in competition affect equilibrium bidding at auctions? According to the

Walrasian analogy of markets as auctions, an increase in the number of bidders should encourage

more aggressive bidding so that, in the limit, as the number of bidders becomes arbitrarily

large, the imperfectly competitive auction setting approaches the efficient perfectly competitive

outcome.

While this is true within the independent private-values paradigm, it may not be true at

auctions with affiliated signals, an important subset of which are common-value (hereafter CV)

auctions in which the competing bidders are differentially (but incompletely) informed about the

value of the object which they are trying to win. A distinctive feature of common-value auctions

is the winner’s curse, an adverse-selection problem which arises because the winner tends to be

the bidder with the most overly optimistic information (or “signal”) concerning the object’s value.

Bidding naively based simply on one’s information would lead to negative expected profits so that,

in equilibrium, a rational bidder internalizes the winner’s curse by bidding less aggressively.1

In common-value settings, however, an increase in the number of bidders has two

counteracting effects on equilibrium bidding behaviour. First, the increased competition

generally leads to more aggressive bidding, as each potential bidder tries to maintain her chances

of winning against more rivals: we call this the competitive effect. Second, the winner’s curse

1. More precisely, in the procurement (low-bid) setting, even if any bidder’s signal x is an unbiased estimate of
the unknown (but common) project cost c (i.e. E(x) = c), conditional on winning the signal is a downwardly biased
estimate of c (i.e. E(x |win) < c). This implies that if a bidder were to naively bid her unbiased signal x , her expected
profits E(x − c|win) would be negative.
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becomes more severe as the number of potential bidders increases, and rational bidders will bid

less aggressively in response: we call this the winner’s curse effect. If the winner’s curse effect

is large enough, prices could actually rise as the number of competitors increases. Recently,

Bulow and Klemperer (1999), Krishna and Morgan (1997), and Bordley and Harstad (1996)

have pointed out this possibility; as these authors note, the winner’s curse provides a prominent

example where asymmetric information can overturn the common economic wisdom that more

competition is always desirable. Recently, Pinkse and Tan (2000) (hereafter PT) have shown

that this decrease in bidding aggressiveness as competition increases can occur generally in

affiliated-values first-price auctions so that, while the winner’s curse does not arise in private-

values settings, an affiliation effect in affiliated private-values models also leads to less aggressive

equilibrium bidding as competition increases, similar to the effect of the winner’s curse in

common-value auctions.2

In this paper, we consider the empirical importance of these considerations using

bid data from construction procurement auctions held by the New Jersey Department of

Transportation (NJDOT) in the years 1989–1997. We address two questions in turn. First,

we examine the importance of common-value components in bidders’ preferences. Second,

provided we find some evidence of common values, we investigate how the winner’s curse affects

equilibrium bidding. We do this by quantifying two comparative statics which have been the

focus of the theoretical work on common-value auctions. First, does an increase in the number

of competitors lead a given bidder to bid more or less aggressively, in equilibrium? Theoretical

examples in Smiley (1979) and Matthews (1984) have shown that the result often depends on

both the parametric assumptions on the information structure as well as the specific values

of the parameters, and we measure the effects using the parameter estimates for our model of

equilibrium bidding. Second, and more important for policy purposes, does the winning bid rise

or fall as competition increases? Previous theoretical work (e.g. Wilson (1977), Milgrom (1979))

have studied convergence of the winning bid in large CV auctions. In contrast, we measure these

effects for the (often modest) range of bidders which we observe in real-world auctions. To our

knowledge, we are the first to address these issues empirically.

The procurement setting is particularly pertinent for the issues raised above. Although exact

figures are difficult to obtain, McAfee and McMillan (1987, p. 3) claim that “the national,

regional, and local governments in a typical modern market economy together spend between

one-quarter and one-third of national income on goods and services [. . . ]; of this amount, perhaps

one-half [. . . ] is paid by governments to firms”. Many of these payments are for contract work

awarded via low-bid auctions identical to those considered here, so that there appear to be

important efficiency and revenue lessons to be learned from the results.

Our results show that different types of contracts differ substantially in the degree that

private- and/or common-value components are important. We find that both common-value

and private-value components are important in auctions for highway-work and bridge-repair

contracts, while more homogeneous road paving contracts are predominantly private-value

auctions. These results indicate that the winner’s curse effect is particularly strong in highway-

work auctions: simulated bid functions show that the median bidder’s equilibrium bid increases

from about $0·2 million with 2 bidders to above $0·6 million with 10 bidders.3 Moreover,

winning bid simulations indicate that the average procurement cost is strictly increasing in the

2. While we focus on the effects of the winner’s curse in this paper, we note that the PT result implies that
winner’s curse-like effects can arise even in private-values settings, as long as signals are affiliated. One advantage of our
structural estimation approach is that we can explicitly test whether any observed decrease in bidding aggressiveness as
competition increases is due to winner’s curse effects, or to PT’s “affiliation effect”.

3. Furthermore, simulations also show that these effects arise from the winner’s curse effect, not from the
affiliation effect described by PT.
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number of bidders as competition intensifies: for example, the average costs rise about 15%, as

the number of bidders increases from three to six. For these auctions, the optimal number of

participants or potential bidders (which would minimize expected procurement costs) would be

three. Clearly, cases exist where the “law of demand” is violated: an increase in competition leads

to higher procurement costs.

In the next section we describe the model of equilibrium bidding which we employ in our

work. In Section 3, we introduce our data on New Jersey transportation department procurement

auctions, and discuss institutional features which affect our model specification, which we

introduce in Section 4. Section 5 contains the empirical results, and in Section 6 we discuss

the policy implications of our results. Section 7 concludes.

2. EQUILIBRIUM BIDDING AT LOW-PRICE PROCUREMENT AUCTIONS

In our empirical work, we employ a structural approach which allows us to recover bidders’

equilibrium strategies.4 We build on the previous literature by considering a model where

bidders’ valuations have both private- and common-value components. Such a model seems

especially warranted for procurement settings, where uncertainty about future input prices could

drive common values but differences in input efficiency across firms could drive private values.5

To our knowledge, this paper is among the first to investigate structural estimation of an

equilibrium bidding model where bidders’ valuations have both private- and common-value

components. Previously, Laffont and Vuong (1996) argued that it is impossible to distinguish

nonparametrically a common value model from a private value model. Subsequently, others have

argued that while it is not possible to identify nonparametrically the joint distribution of the

common-value component and bidders’ signals, it is possible to test nonparametrically between

common- and private-value paradigms. Hendricks et al. (2000) formulated nonparametric tests

by exploiting the presence of a binding reserve price, and in ongoing work (Haile, Hong and

Shum, 2000), we propose tests which exploit exogenous variation in the number of potential

bidders. In this paper, however, we adopt a parametric approach to recover the joint distribution

of bidders’ valuations and signals which characterize the information structure.

Next, we briefly describe equilibrium bidding behaviour in single-unit, low-price

procurement auctions.6 An auction has n risk-neutral contractors (indexed i = 1, . . . , n), each of

whom has a cost ci associated with completing the project, and receives a private signal xi about

ci . Contractor i observes only xi prior to the beginning of the auction, but not any of the costs

(c j , for j = 1, . . . , n), or any of her rivals’ signals (x j , for j 6= i).

The contractors’ costs and private signals are assumed to be distributed according to the

distribution function F̃(c1, . . . , cn, x1, . . . , xn; θ) parametrized by the vector of parameters θ ,

4. The seminal empirical auction papers in the structural vein are by Paarsch (1992) and Laffont, Ossard and
Vuong (1995). Most recently, important progress has been made in the structural estimation of private-value auction
models (see Paarsch (1997), Bajari (1998), Guerre, Perrigne and Vuong (2000), Li, Perrigne and Vuong (2000), Deltas
and Chakraborty (1997)).

5. In previous work (Hong and Shum, 2000), we have empirically implemented an equilibrium ascending-
price auction model also allowing for both private and common values. Previously, Bajari (1998) and Jofre-Bonet and
Pesendorfer (1999) have modelled procurement auctions in a private-values framework. Recently, Hendricks, Pinkse
and Porter (2000) and Bajari and Hortacsu (1999) have also considered common-value models, but they consider pure
common-value (i.e. “mineral rights”) models of competitive bidding. Our model has both common and private values.

In a previous study of procurement auctions, Thiel (1988) concluded that observed bids do indeed reflect winner’s
curse considerations, but we take the analysis one step further by showing what this implies about equilibrium bids and,
more important, equilibrium procurement costs.

6. The assumption of rational equilibrium bidding which characterizes our approach is potentially at odds with
findings in the experimental literature (cf. Kagel and Levin (1986)), which find that bidders only learn to internalize the
winner’s curse (i.e. bid “rationally”) through experience. In the procurement setting, however, the bidders are by and
large experienced firms, so we feel our assumption of rational bidding is justified.
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which are the parameters of interest in the estimation process. As we describe in the next section,

we consider a specification which allows both common-value and private-value components in

bidders’ cost functions.7

The low-price auction proceeds as follows: observing xi , contractor i chooses a bid bi to

maximize his expected payoff, given the other contractors’ equilibrium behaviour:

bi = argmaxb Ex j , j 6=i Eci |x1,...,xn [(b − ci )1(x j ≥ s−1
j,n(b), j 6= i)|xi ]

where si,n(·), i = 1, . . . , n denotes the equilibrium bidding strategy (or bid function) for

contractor i in a n-bidder auction.

We assume that contractors are symmetric, in the sense that the joint distribution F̃ is

exchangeable with respect to the indexes 1, . . . , n. As is standard, we assume that the random

variables (c1, . . . , cn, x1, . . . , xn) are affiliated.8 Given these assumptions, there is a unique

pure-strategy Bayesian–Nash equilibrium in which each contractor bids according to identical,

monotonically increasing strategies; i.e. s j,n(·) ≡ sn(·), ∀ j .9

The first-order condition of this maximization problem is (cf. Milgrom and Weber (1982,

p. 1107))

sn(xi ) = s′
n(xi )[1 − F−i,n(xi |xi )]

f−i,n(xi |xi )
+ vn(xi , xi ), (1)

a differential equation which defines the equilibrium bidding strategy sn(xi ). In this equation,

vn(·, ·) is the conditional expectation

vn(x, y) = E

[

ci

∣

∣

∣

∣

xi = x, min
j∈[1,n]; j 6=i

x j = y

]

,

where the expectation is taken over the posterior distribution of ci conditional on the joint event

(xi = x, min j∈[1,n]; j 6=i x j = y). f−i,n(·|·) (resp. F−i,n(·|·)) denotes the conditional density

(resp. CDF) of min j 6=i x j conditional on xi . After integrating out this differential equation, the

equilibrium bid function can be expressed as (cf. Milgrom and Weber (1982, Theorem 14))

sn(xi ) = vn(xi , xi ) +
∫ x̄

xi

{

exp

[

−
∫ α

xi

f−i,n(s|s)
1 − F−i,n(s|s)ds

]}

v′
n(α, α)dα (2)

where the n subscript emphasizes that for a given xi , the equilibrium bid sn(xi ) varies for

different n.

2.1. Winner’s curse and competitive effects

The competitive and winner’s curse effects alluded to earlier are distinguishable in equation (1)

above. From this equation we see that an equilibrium bid bi = s(xi ) is governed by two

important components: (1) the
s′(xi )[1−F−i (xi |xi )]

f−i (xi |xi )
term and (2) the vn(xi , xi ) term. Given our

affiliation assumptions, an increase in n will increase the second term vn(xi , xi ), holding xi

7. In the pure private-value paradigm, ci = xi ∀ i (i.e. each bidder knows his true valuation for the object) while
in the pure common-value paradigm, ci = c, ∀ i (i.e. the value of the object is the same to all bidders, but none of the
bidders knows the true value of the object; here the individual xi ’s are noisy signals of the true but unknown x).

8. (Cf. Milgrom and Weber (1982).) Affiliation roughly implies that large values for some of the variables make
the other variables more likely to be large than small. Given two n-vectors X1 and X2 which are i.i.d. realizations from
F , let X̄ denote the componentwise maximum of X1 and X2, and X the component-wise minimum. Affiliation means
that the likelihood of (X̄, X) is at least as high as that of (X1, X2).

9. Symmetry and monotonicity imply that bi > b j ⇔ sn(xi ) > sn(x j ) ⇔ xi > x j . Analogously, the event

that bidder i wins can be simplified: 1(x j ≥ s−1
j,n

(bi ), j 6= i) = 1(x j ≥ s−1
n (bi ), j 6= i) = 1(min j 6=i x j ≥ xi ), since

xi = s−1
n (bi ) in equilibrium.
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TABLE 1

Breakdown of auctions by job type

Worktype # Auctions Avg. Std. dev., Total Total
winning bid winning bid bidders winners

(1989$; mils)

A General highway 423 4·97 9·61 274 121
B Bridge construc./repair 194 1·48 1·82 171 74
C Grading & paving 150 0·97 1·11 109 33

fixed (cf. Milgrom (1982, Section 6)).10 This is the winner’s curse effect. On the other hand,

an increase in n will generally have an ambiguous effect on the first term. On the one hand, the

[1− F−i (xi |xi )] portion of the numerator of the first term is essentially the probability of winning

the low-bid auction for a given signal xi , and this probability shrinks to zero as n increases. Thus

for large n, the first term should be decreasing in n: we call this the competitive effect.11

At independent private-value auctions, the winner’s curse effect is absent so, ceteris paribus,

we should expect the bids to decrease as the number of participants increases, due solely to the

competitive effect. At auctions where bidders’ costs have both common-value and private-value

components (as is the case in the model we employ), it is unclear which effect(s) will dominate:

this is an empirical question, which can only be answered once one obtains estimates of the

structural parameters in bidders’ preferences.

3. NEW JERSEY DEPARTMENT OF TRANSPORTATION CONSTRUCTION SERVICES

PROCUREMENT AUCTIONS

In order to examine empirically the questions we have raised, we collected a data set of bids

submitted in procurement contract auctions conducted by the NJDOT in the years 1989–1997.

Over this period, the NJDOT conducted 1018 low-price, sealed-bid auctions of contracts to

procure various services. For our empirical work, we focus on auctions for three types of jobs:

highway work (worktype A in what follows), bridge construction and maintenance (worktype B),

and road paving (worktype C), which together account for over half of the contracts auctioned

during the sample period. (See Table 1 for summary statistics for these auctions.)

Clearly, the variation in the average winning bid across types of contracts indicates that

the jobs defined in these contracts are markedly different. For that reason, we estimate separate

parameters for each type of contract in our empirical work.

Summary statistics. Table 2 presents statistics on the observed bids, broken down

according to the number of actual bidders who participated in the auction. Most auctions have

between 3 and 7 bidders, and the NJDOT did not impose an explicit reserve price.12 Importantly,

there is a generally increasing (but by no means monotonically so) trend between number of

bidders and both submitted and winning bids. For example, the average bid in the worktype A

10. This is only true for common-value models, but not for private-value models. In ongoing work (Haile et al.,
2000), we are using this insight as the basis of a formal test for the presence of common-value components, based upon
recent developments by Guerre et al. (2000) and Hendricks et al. (2000) in the nonparametric estimation of structural
auction models.

11. PT (cf. Lemma 1) note that for high-bid first-price auctions, in the affiliated private-values framework, for
some intermediate values of n and some signals xi , the ratio [ f−i,n(xi |xi )/F−i,n(xi |xi )] could be decreasing in n, thus
exacerbating the winner’s curse effect.

12. We return to the issue of an implicit reserve price later, when we consider the possibility that the actual number
of bidders observed in these auctions may not correspond to the potential number of bidders.
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TABLE 2

Summary statistics on bids

Worktype Number # Auctions Average Std. dev. Median Average
of bidders bid (1989$; mils) bid (1989$; mils) winning bid

A 2 12 5·894 14·954 1·482 5·601
A 3 31 1·692 2·000 1·042 1·520
A 4 46 1·843 1·919 1·124 1·605
A 5 51 3·380 5·223 1·204 3·015

A 6 58 4·513 8·310 1·369 3·982
A 7 46 4·435 9·751 1·406 3·526
A 8 40 6·365 12·567 3·000 5·229
A 9 39 8·658 15·438 4·016 6·640
A 10 22 10·612 12·828 4·745 9·256

A 11 20 15·087 30·432 2·951 11·471
A 12 17 11·704 10·935 7·739 10·263
A 13 12 10·652 14·879 3·767 8·984
A 14 8 10·523 12·264 4·229 9·350
A 15 8 9·274 10·338 4·885 8·274

A 16 3 2·506 1·053 2·477 1·544
A 17 4 9·999 5·029 9·830 8·583

B 2 12 1·265 0·651 1·171 1·167
B 3 7 1·577 1·244 1·368 1·432
B 4 24 1·672 0·495 1·193 1·386
B 5 12 1·049 0·730 0·999 0·819

B 6 23 1·566 1·265 1·175 1·286
B 7 23 1·278 1·120 0·968 1·001
B 8 16 2·644 3·496 1·064 2·241
B 9 19 1·755 1·439 1·266 1·349
B 10 14 1·480 1·245 1·065 1·141

B 11 7 1·149 0·811 1·010 0·888
B 12 10 1·932 1·899 1·019 1·398
B 13 13 2·261 2·457 1·063 1·869
B 14 5 1·784 1·496 0·728 1·462
B 15 3 8·472 6·032 6·953 6·873

B 16 5 2·658 2·816 1·254 1·952
B 17 6 3·056 3·825 1·352 2·415

C 2 9 0·737 0·418 0·679 0·664
C 3 21 0·629 0·308 0·650 0·546
C 4 23 1·086 0·624 0·968 0·910
C 5 34 1·566 2·266 1·068 1·347

C 6 27 0·826 0·674 0·543 0·705
C 7 19 1·469 1·011 1·320 1·273
C 8 8 0·961 0·608 0·963 0·789
C 9 4 2·424 0·939 2·045 2·059
C 10 5 1·087 0·518 0·951 0·955

C 11 4 1·164 0·801 1·056 0·844
C 12 1 1·231 0·098 1·221 1·105
C 14 1 0·152 0·057 0·138 0·094
C 15 1 0·453 0·049 0·448 0·374

auctions rises from about $1·8 million in 4-bidder auctions to over $10 million, in 10-bidder

auctions. While this is consistent with the hypothesis that the winner’s curse (which leads to

more cautious—higher—bids) dominates the increased competition effect (which leads to more

aggressive—lower—bids), a more likely and non-strategic explanation is that these auctions are

characterized by selective participation and contract heterogeneity, so that larger projects (which,
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from a pure cost perspective, command larger bids) attract more bidders. This suggests that

controlling for contract heterogeneity is crucial to measuring the effects of the winner’s curse,

and we discuss this issue further below.

Contractor reimbursement schemes: is competitive bidding appropriate? Before

proceeding to discuss specification issues, we consider whether our assumption of competitive

bidding is appropriate in the procurement setting, given the schemes used by the NJDOT to

reimburse contractors. The contracts offered by the transportation department are characterized

by contractor reimbursement guidelines which have both cost-plus (government assumption of

all cost overruns above the bid) and fixed price (contractor assumption of all cost overruns above

the bid) features. While each contractor submits a scalar bid b, he is also required as part of the

bid submission process to break down this amount into a vector of unit prices Ep and an associated

vector of tasks Eq which he agrees to perform for the payment b = Ep′ · Eq. While bids are ranked

(and contracts awarded) solely on the basis of the scalar bid b, the contract details (unit prices

and quantities) are important at the contract fulfilment stage.13 The government assumes all cost

increases due to unexpected increases in job quantities Eq, but these cost increases are priced out

at the unit prices bid by the contractors so that the contractor is bound to supply its services at

its submitted unit prices Ep; losses arising from unanticipated cost increases are not borne by the

government.

These compensation guidelines raise two concerns: first, a moral hazard problem arises

since contractors may not keep their costs as low as possible; second, contractors have little

incentive to submit cost-based bids for contracts where their eventual payoff is independent of

their costs. McAfee and McMillan (1987) pointed out that the first problem will not affect the

bidding process, since any rents from post-contractual opportunism should be competed away in

equilibrium.

Institutional features of the procurement process tend to alleviate the second problem

of noncompetitive bidding. Repeated interactions render reputational effects important in this

procurement setting.14 While these reputational effects are not a part of our formal model, we

feel that the potential loss of future bidding eligibility may counteract contractors’ incentives to

submit bids which are non-indicative of their costs. In addition, contractors’ costs are monitored

on a fairly regular basis (every few weeks, from conversations with NJDOT officials). The

original submitted bid must already indicate clearly projected materials costs, labour costs, and

labour hours required. Deviations from these estimates must be rigorously justified.15

Most convincingly, however, the raw data seems to support the competitive-bidding

hypothesis. For a subset of the auctions we study, we were also able to obtain data on the ex-

post compensation. The regression equation of the natural logarithm of compensation16 on the

13. Helpful conversations with Marty Miller at the NJDOT clarified these institutional details.
14. Many of the contractors in these auctions bid on many contracts over time, and likely derive a large part of

their revenues from doing contract work for the state. In our data, we observe 421 distinct bidders, and each firm submits
bids in an average of around 15·86 auctions in our data set. Successful bidders are even more active: in our sample, firms
which are awarded at least one contract bid in an average of 29·43 auctions.

The NJDOT maintains a list of “prequalified contractors” which all firms must be on in order to be eligible to
bid; given that the government observes ex-post compensation from all contracts, it is likely that firms who are judged to
have acted opportunistically will be struck off the list. We did not have access to this list, which (naturally) changed over
the course of the sample period, due mostly to entry of new contractors.

15. The standard text by Halpin and Woodhead (1998) contains examples of typical cost-plus contracts in
Appendix E, as well as a description of cost control/monitoring techniques which are widely used in practice in
Chapter 14.

16. Note that we never observe a firm’s actual costs: the basis for firms’ compensation are the per-unit costs
submitted as part of the bid, which presumably already include a margin above actual costs.
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natural logarithm of the winning bids is

log(compensation) =
(

0·0080

(0·226)

)

+
(

1·0158

(0·0166)

)

log(winning bid)

R2 = 0·928, N = 291 (3)

indicating no systematic overruns (insignificant constant) and a strong correlation between

compensation and the bid (as is consistent with competitive bidding). In fact, cost underruns—

which are inconsistent with any post-contractual opportunism scenario—occurred in 132/291 of

these auctions. In any case, no evidence of systematic underbidding, which would be reflected in

systematic overruns, exists.17

4. SPECIFICATION AND ESTIMATION

Next, we describe the specific parameterization of contractors’ costs which we employ.

Wilson’s log-additive model We follow Wilson (1998) in choosing a log-additive form

for the cost function ci .
18 We employ a symmetric version of Wilson’s log-additive model, where

contractor i’s cost ci is assumed to take the form

ci = ai × v,

where ai is a bidder i’s private cost from undertaking the project (which could include differences

in labour efficiencies between firms) and v is an unknown cost component which is common

across all bidders (including, for example, uncertainty in future materials costs). In other words,

ci is the product of a common value (v) part and a private value (ai ) component.19

We assume that v and the ai ’s are independently log-normally distributed: letting ṽ ≡ log v

and ãi ≡ log ai , then

ṽ = m + ǫv ∼ N (m, σ 2
v )

ãi = ā + ǫai
∼ N (ā, σ 2

a ).

Each bidder is assumed to have a noisy signal of her cost of fulfilling the contract terms, xi ,

which has the form

xi = ci × ei .

Here xi is a contractor i’s noisy estimate of the unknown cost ci , and ei = exp{σeξi } where ξi is

an (unobserved) error term that has a normal distribution with mean 0 and variance 1. If we let

c̃i ≡ log ci and x̃i ≡ log xi then, conditional on c̃i , x̃i = c̃i + ǫei
∼ N (c̃i , σ

2
e ). Since m and ā

always appear together as a sum in this manner, we will not be able to estimate both parameters,

but just their sum µ ≡ m + ā.20

17. In the context of the bidding example above, however, underruns occur chiefly because a job has required less
time or materials than the contractor originally anticipated in submitting its bid.

18. See also Wilson (1983), in which a similar specification was considered for a symmetric first-price auction.
19. Given that ci represents firm i’s costs, there is a natural interpretation of the common component v as an index

of unknown future input prices, and ai as a “quantity index” of inputs (where the amount of each input required depends
on firms’ efficiency levels). Standard assumptions (cf. Varian (1992, Chapter 9)) on the production technology enable
one to aggregate the inner product of vectors of inputs and input prices as the product of a single price and quantity index.

20. Here m, the mean of the prior distribution of v, could potentially include a “cost-padding” component which
represents the bidders’ common opportunities to engage in cost-inflation activities while undertaking the project. In this
way, we accommodate moral hazard issues which are otherwise absent from our analysis. We feel that this is adequate
since, as McAfee and McMillan (1987) note, equal cost-padding (or “shirking”) opportunities across bidders will simply
shift up bidders’ costs by an equal amount, and not affect equilibrium bidding.
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The relative magnitudes of the σ ’s indicate the relative importance of common-value and

private-value components in bidders’ preferences. As σe tends to 0, bidders’ uncertainty about

their costs disappears, and the model resembles a pure (affiliated) private-value model. As σa

tends to 0, the importance of the idiosyncratic component in bidders’ valuations falls, implying a

pure common-value model. As σv tends to 0, bidders’ uncertainty about the common component

v disappears, making the model an independent private-value model, but one in which bidders

imperfectly observe their private values (since σe > 0).21

A similar “log-additive” approach was also taken in the general “conditionally independent

private-information” models considered in Li et al. (2000). Generally, both our approach and

theirs employ the assumption that bidders observe only a one-dimensional signal x , although

correlation among the signals across bidders is induced by a two-factor log-additive model. This

assumption that the signal is one-dimensional is a crucial one which ensures tractibility of the

model.22

Identification Next we discuss identification of the model parameters, especially the

crucial parameters (σv, σa, σe) which indicate the importance of common- and private-value

components in bidders’ preferences. It is generally difficult in nonlinear parametric models to

be very explicit about what types of variation in the data serve to identify particular parameters.

Therefore we address the identification issue by simulating our model in order to investigate how

changes in the parameter values affect the moments and quantiles of the sn(x; θ) function, which

form the basis of our estimation strategy. This exercise will alert us to parameters which are badly

identified as those which spark no independent change in the (simulated) sn(x; θ) function.

Our large auction data set contains variation along two dimensions: bidders and number of

participants. Our symmetry assumption implies that bidders are homogeneous, so that we do not

exploit the fact that we observe an identical bidder across many bidding situations.23 Variation

in the number of participants across auctions drives heterogeneity in bidding behaviour across

contracts of a given worktype: for a given bidder, equilibrium bidding strategies in the low-price,

sealed-bid auction model described in the previous section will differ depending on the number

of rival bidders. Therefore, the distributions of the equilibrium bids will not be identical across

auctions with different number of participants, even among all contracts of the same worktype.

This is an important source of variation which we could exploit to identify the parameters.24

However, this variation in N may not be wholly exogenous: for example, if contractors

selectively participate in auctions of larger contracts, a spurious positive correlation between N

and observed bids arises which could be misattributed to the effects of the winner’s curse. Since

we do not observe any measures of contract heterogeneity in our data set, these considerations

21. In short, this is a private-value model where bidders do not observe their private-value model; it can be turned
into a standard PV model where we redefine the private value as E(ci |xi ).

22. In short, we assume that bidder i observes only one signal xi , and cannot distinguish between its two
components ai and v × ei . A growing literature on auctions with multi-dimensional signals has shown that, outside
of specific examples, it is difficult to characterize equilibrium in these situations. For example, Pesendorfer and Swinkels
(2000) employ a model where a bidder’s type consists of two quantities: a private-value component and a (discrete)
signal of the object’s value. Indeed, they are only able to prove existence of ǫ-equilibria in this setting. The model of
Wilson (1998) also assumes bidders to observe both a private value as well as a signal of their unknown valuation, but
the equilibrium he describes hinges upon his assumption that bidders have diffuse priors on the common value v, as well
as log-normality. Finally, the difficulties of multi-dimensional types extend far beyond auctions into mechanism design
in general; see Armstrong (1996) and Rochet and Stole (2000) for discussions.

23. Such variation will be important once we investigate the asymmetric case, which is the topic of ongoing
research.

24. Given the sizeable variation in the number of bidders observed in the auction data set, even for contracts of a
given worktype, the possibility arises that bidders may not be aware of the number of rivals when they submit their bid.
Hendricks et al. (2000) derive the equilibrium bidding strategies for a symmetric affiliated value auction. In what follows
(in the appendix) we consider a specification which allows for this possibility.
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suggest that controlling for unobserved heterogeneity is crucial to measuring the effects of the

winner’s curse.

In Figure 1, we explore the effects of σv, σa and σe on the equilibrium bids holding N fixed

(at six), in order to address the identification of these parameters without relying on variation

in N . Equilibrium strategies are computed for different combinations of the σ ’s. As we would

expect, the effects of changing σa and σe differ depending on whether σv is far or close to zero.

When σv = 1 (as in the top graph) the effect of an increase in σe is generally to increase bids

(the dotted-cross line, which has the highest value of σe, is the highest bid function). This is

completely in line with the effects of the winner’s curse: here, an increase in the noisiness of the

signals (as measured by σe) leads to more cautious (i.e. higher) bids.

From the bottom graph, however, we see that when common values are not important (we

set σv = 0), these winner’s curse effects are not present at all. Here, note that the dotted-cross

line remains low throughout, demonstrating that an increase in the signal’s “noisiness” actually

leads to more competitive bidding over the entire range of signals.

These graphs demonstrate that perturbations in the basic parameters in the log-additive

model do lead to changes in the shapes and/or magnitudes of the equilibrium bid functions, even

without variation in N . This suggests that, from a computational point of view, the parameters

are indeed identified and estimable.

4.1. Estimation approach: monotone quantile estimator

Equation (2) shows how the joint distribution F(x1, c1, . . . , xn, cn; θ) induces a joint distribution

for the equilibrium bids, which we observe. Given that the distribution of sn(x; θ) is likely

to be quite asymmetric, even if we assume any individual x to be symmetrically distributed,

we estimate the parameters via quantile restrictions, which try to match the “shapes” of the

distributions of the observed bids and the sn(x; θ).25 As is well known, quantile estimators are

more robust to outliers in the data than estimators based on matching the centred moments.

Two insights drive our estimation procedure. First, the quantiles of a distribution F(x) are

invariant to monotonic transformations of the random variable x . Second, for our symmetric

first-price auction, the equilibrium bidding strategies sni
(x; θ) for auction i (which had ni

participants) are monotonic transformations of the unobserved signals x ∼ F(x; θ), where

F(· · · ) denotes the marginal distribution for a single signal.26 In particular, q
ni
τk

(θ), the τk-th

quantile of the equilibrium bid function for the i-th auction, is just sni
(xτk

, θ), the equilibrium

bid function evaluated at xτk
, the τk-th quantile of the marginal distribution Fni

(x; θ).

Our estimator θ̂ minimizes the quantile objective function

Q(θ) =
∑T

i=1

∑ni

j=1

∑K

k=1
ρτk

[bi j − q
ni

k (xτk
; θ)] (4)

where the function ρτk
(·) is defined as

ρτk
(x) = [τk − 1(x ≤ 0)]x . (5)

There are two important features of this estimator. First, it alleviates (dramatically) the

computational burden associated with simulating the moments of the equilibrium bid

distribution.27 Second, this estimator has a formal appeal since the quantile restrictions follow

25. Recall that log x is normally distributed.

26. For our log-normal model, xτk
= exp(σ8−1(τk ) + µ), where 8(·) is the standard normal cumulative

distribution function, and µ and σ are, respectively, the mean and variance of log xτk
.

27. More precisely, to compute sni
(xτk

; θ), the τk -th quantile of the equilibrium bid distribution, the bid function
need be evaluated only once, at xτk

. In contrast, in order to simulate Ex sni
(x; θ), the mean equilibrium bid, the bid
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FIGURE 1

How bid functions vary in σa and σe , for N = 6

wholly from the theoretical result that the bidding strategies are monotonic transformations of the

signals in equilibrium. Such an estimation approach is potentially very useful in other incomplete

function must be computed at S random draws from the marginal signal distribution, where S is the number of draws
used to compute the simulated mean. Therefore, the monotone quantile estimator reduces the computational burden by
an order of S by obviating the need to simulate the moments of the equilibrium bid distribution.
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TABLE 3

Parameter estimates: baseline specification. Standard errors in parentheses

Worktype: A B C
Parameter

σv 2·4529(0·3883) 1·4877(0·1280) 1·3811(0·0523)
σa 0·0024(0·0038) 0·0064(0·0084) 0·0376(0·1006)
σe 0·9771(0·0007) 0·1612(0·1075) 0·4317(0·2191)
µ −0·4261(0·0309) 0·0694(0·0190) −0·4803(0·2095)

Simulation draws:a 50 50 50

a Number of simulation draws used in calculating vn(x, x; θ).

information settings where the equilibrium strategies (or the “policy functions”) are monotonic

transformations of the unobserved types: for example, nonlinear pricing (and, more generally,

mechanism design) models appear very well suited to this approach.28

5. ESTIMATION RESULTS

Table 3 presents estimates of the four parameters of the benchmark model. In the discussion

below, standard errors are enclosed in square brackets ([· · · ]).
Recall that the model resembles a private-value model as σe tends to 0, and resembles a pure

common-value model as σa tends to 0. The small estimated σa for all three types of contracts

(0·0024 [0·0038] for worktype A; 0·0064 [0·0084] for worktype B; and 0·0376 [0·1006] for

worktype C) suggests that all these auctions can be described as predominantly pure common-

value auctions.29

While striking, this finding is not wholly surprising, given the upward trend in both average

and median bids observed in the raw data (cf. Table 2). Abstracting away from all else, this

upward trend can be attributed to the less aggressive bidding caused by the winner’s curse, which

only occurs in common-value auctions. However, a more likely and non-strategic explanation is

that these auctions are characterized by selective participation and contract heterogeneity, so that

larger projects (which, from a purely cost perspective, command larger bids) attract more bidders.

This suggests that controlling for contract heterogeneity is crucial to measuring the effects of the

winner’s curse. Unfortunately, we were not able to obtain engineering estimates of the costs

associated with each contract, which Bajari (1998) and Jofre-Bonet and Pesendorfer (1999) used

to control for contract heterogeneity in their papers. Therefore, we control for this heterogeneity

in several ways, first by allowing the (parameters which characterize the) distribution of signals

in auction i to depend explicitly on ni , the number of participants in auction i .30

Robustness check 1: controlling for selective participation First, we allow µi , the mean

of the log-costs ci in auction i , to have a quadratic trend in ni , the number of participants

28. The same insight appears implicit in the War of Attrition example considered in Milgrom and Weber (1985).
Powell (1984) used the same intuition to derive a distribution-free least-absolute deviations (LAD) estimator for censored
linear regression models: in his case, the monotonic censoring operation preserved the quantiles between the distribution
of the additive error term and the (censored) dependent variable. Manski (1994, Section 4.4) labels these “quantile
independent monotone models”.

29. In general, given the parameter restrictions that σa , σv , σe are all ≥ 0, it is not always straightforward to test
whether any of the σ ’s are equal to zero, the lower bound of the parameter space. However, nonstandard tests need be
employed only when testing joint hypotheses that two or more of the σ ’s are equal to zero (cf. Andrews (1998), Wolak
(1989)); a standard one-sided t-test is valid for univariate tests.

30. While an explicitly structural model of contractors’ participation decisions is beyond the scope of this paper, a
model of bidder participation based on reserved price is discussed in the appendix.
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TABLE 4

Parameter estimates. Robustness check 1: control for selective participation. Parametrize

µ = µ0 + µ1 ∗ n + µ2 ∗ n2. Standard errors in parentheses

Worktype: A B C

Parameter

σv 2·2621(0·1898) 0·7847(0·1038) 0·9054(0·0349)

σa 0·1294(0·0824) 1·1382(0·1174) 0·9778(0·0078)

σe 0·5196(0·1675) 0·4030(0·2445) 0·3622(0·0740)

µ0 −1·6814(0·4086) 0·8266(0·3000) −1·6563(0·3248)

µ1 0·3891(0·1143) −0·2759(0·0959) 0·4146(0·0948)

µ2 −0·0142(0·0080) 0·0191(0·0095) −0·0258(0·0063)

Simulation draws:a 50 50 50

a Number of simulation draws used in calculating vn(x, x; θ).

in auction i :

µi = µ0 + µ1 ∗ ni + µ2 ∗ n2
i (6)

and estimate µ0, µ1, and µ2 as parameters. The results from these specifications are given in

Table 4.

Allowing the means to differ depending on the number of bidders does lead to changes in the

parameter estimates for the important σ parameters. While we continue to reject the importance

of private values in the worktype A auctions (σa is estimated to be 0·1294 [0·0824]), we can

no longer do so for the auctions of the other types of contracts. The point estimates for σa in

the auctions of worktypes B and C contracts are much larger than before (1·1382 [0·1174] for

worktype B, and 0·9778 [0·0078] for worktype C). From these results, we conclude that auctions

for highway-work contracts are very close to a pure common-value auction, while both common

and private values are important in auctions of bridge repair and paving contracts.

The positive estimates of µ1 for all three worktypes are consistent with the hypothesis that

auctions with more bidders feature larger contracts; correspondingly, the negative estimate for the

quadratic coefficient µ2 for these worktypes indicates that this positive relationship only holds at

smaller values of ni .

Robustness check 2: random effects for unobserved contract heterogeneity The

preceding specification is still restrictive because all contracts of the same worktype and with

the same number of bidders are still assumed to be homogeneous. Therefore, we focus next

on a specification which used random effects to control for unobserved heterogeneity across

auctions.31 More precisely, we assume that µi , the median of the signal distribution for auction

i , is drawn from a normal distribution with mean ηi and standard deviation σηi
, and independent

across auctions.32 Furthermore, we parametrize ηi and σηi
as a function of the number of bidders

31. This is a very common remedy in estimating duration models also, where unobserved heterogeneity can lead
to spurious duration dependence (cf. Heckman and Singer (1984)).

32. As suggested by a referee, we also decomposed the correlation among bids into the intra-auction and inter-
auction components, in order to distinguish between the correlation among bids arising from common components that
are observed by the bidders but not by the econometrician (unobserved heterogeneity), and the correlation that arises from
common components unobserved by the bidders (a common value information structure). If the common component v is
not observed by the bidders (as in an affiliated signals information structure), then bids are uncorrelated across auctions
but correlated within auctions. If v is observed by the bidders but not by the econometrician, then the opposite could be
true. For all three worktypes, we found that our measure of intra-auction correlation was much larger than the measure
of inter-auction correlation, indicating that most of the correlation in the bids is within the auctions. This suggests that
affiliation between the signals may be more important than unobserved heterogeneity in these auctions.
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TABLE 5

Parameter estimates. Robustness check 2: random effects. Standard errors in

parentheses

Worktype: A B C
Parameter

σv 0·6741(0·0148) 0·4583(0·0900) 0·0634(0·0335)
σa 1·1938(0·0236) 0·3298(0·1769) 0·5201(0·0311)
σe 2·3048(0·0444) 0·4383(0·0818) 0·3455(0·0618)

η1 −2·5873(0·0713) 0·9074(0·1116) −1·5803(0·0312)
η2 −1·7721(0·0419) 0·3125(0·0241) −0·9035(0·0174)
η3 −1·4274(0·0305) 0·0776(0·0330) −0·6331(0·0130)
η4 −1·1247(0·0221) −0·1155(0·0669) −0·4082(0·0106)
η5 −0·8639(0·0177) −0·2670(0·0990) −0·2287(0·0102)
η6 −0·6451(0·0180) −0·3768(0·1275) −0·0946(0·0113)
η7 −0·4682(0·0213) −0·4449(0·1522) −0·0059(0·0130)
η8 −0·3333(0·0259) −0·4713(0·1728) 0·0375(0·0153)
η9 −0·2404(0·0308) −0·4560(0·1896) 0·0354(0·0181)
η10 −0·1893(0·0361) −0·3990(0·2024) −0·0121(0·0217)
η11 −0·1803(0·0418) −0·3004(0·2115) −0·1049(0·0264)
η12 −0·2132(0·0484) −0·1600(0·2169) −0·2432(0·0323)
η13 −0·2880(0·0562) 0·0221(0·2189) −0·4269(0·0395)
η14 −0·4048(0·0656) 0·2459(0·2176) −0·6559(0·0480)
η15 −0·5635(0·0766) 0·5113(0·2136) −0·9304(0·0579)

ση1 0·1553(0·0062) 0·3661(0·0101) 0·5943(0·0096)
ση2 0·1553(0·0062) 0·3661(0·0101) 0·5943(0·0096)
ση3 0·1691(0·0064) 0·3675(0·0099) 0·5817(0·0081)
ση4 0·1856(0·0065) 0·3718(0·0094) 0·5689(0·0069)
ση5 0·2052(0·0067) 0·3790(0·0087) 0·5560(0·0060)
ση6 0·2288(0·0069) 0·3893(0·0079) 0·5428(0·0056)
ση7 0·2571(0·0072) 0·4028(0·0070) 0·5296(0·0057)
ση8 0·2911(0·0077) 0·4200(0·0064) 0·5162(0·0062)
ση9 0·3323(0·0086) 0·4413(0·0067) 0·5027(0·0069)
ση10 0·3823(0·0101) 0·4672(0·0087) 0·4892(0·0077)
ση11 0·4434(0·0126) 0·4983(0·0124) 0·4757(0·0086)
ση12 0·5182(0·0166) 0·5356(0·0178) 0·4621(0·0096)
ση13 0·6104(0·0226) 0·5800(0·0251) 0·4486(0·0105)
ση14 0·7248(0·0315) 0·6329(0·0346) 0·4350(0·0114)
ση15 0·8674(0·0442) 0·6958(0·0467) 0·4216(0·0122)

Simulation draws:a 50 50 50

a Number of simulation draws used in calculating vn(x, x; θ).

ni in auction i :

ηi = γ0 + γ1 ∗ ni + γ2 ∗ n2
i

σηi
= exp(γ3 + γ4 ∗ ni + γ5 ∗ n2

i )

where (γ0, . . . , γ5) are parameters to be estimated. Note that this specification allows µi (the

median signal for auction i) to be a random (across auctions, and from the econometrician’s

point of view) function of the number of bidders ni . In the previous specification (equation (6)),

the median bid µi is a deterministic function of ni (and the same across all auctions with the same

ni ). We believe that by allowing the signal distribution to be shifted explicitly by the number of

bidders n, we are “handicapping” our model against a finding of winner’s curse, so that any

evidence of winner’s curse which persists could be interpreted as strong evidence.

Table 5 contains parameter estimates from this specification. Instead of reporting estimates

of γ1, . . . , γ5 directly, we report the more easily interpretable estimates of ηM and σηM
, for
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M = 1, . . . , 15. Importantly, the above result that worktype A auctions can be described as

almost pure common-value auctions disappears in this set of results. For these auctions, it now

appears that the variation in the private component (as parametrized by σa : 1·1938 [0·0236]) and

the noisiness in the signals (measured by σe: 2·3048 [0·0444]) contribute more to the variation

in the stochastic costs across bidders than uncertainty regarding the common component v (as

parametrized by σv: 0·6741 [0·0148]).

For worktype B, we continue to find that both private and common components are

important, while for the worktype C auctions, we now find that σv , while marginally statistically

different from zero (0·0634 [0·0335]), is very small in magnitude, making them similar to IPV

auctions. Generally speaking, the worktype A contracts are longer in duration and larger in

magnitude than the worktype B or C contracts, which support the finding that both CV as well as

PV components are important in contractors’ cost functions. Below, we will graphically consider

the qualitative differences in these magnitudes in terms of predicted bids.

As for the unobserved heterogeneity parameters, the estimates indicate that for the

worktype A contracts, the means of the heterogeneity distribution grow larger as the number

of bidders increases, supporting the selective participation hypothesis (i.e. that larger contracts

attract more contractors). However, the increasing values of σηM
suggest that there is a greater

degree of heterogeneity in auctions attracting a larger number of bidders. While the results are

qualitatively similar for worktype B, they are generally reversed for worktype C. Encouragingly,

these results correspond to the patterns observed in the raw data (as given in columns 4 and 5 of

Table 2), suggesting that we are, indeed, adequately controlling for contract heterogeneity.

In the appendix, we consider two additional robustness checks: controlling for potential

vs. actual competition, and controlling for observed heterogeneity (for the worktype A auctions

only). Since the results from these specifications do not differ greatly from the random effects

results from Table 5, we will not discuss them here.

Model fit In Section 4 above, we note that parametric restrictions of our log-normal model

play an important role in identifying the parameters of the model. Therefore, before proceeding,

we check that our chosen parametric specification indeed fits the observed data. In Figure 2, we

plot the actual and predicted median bids, by worktype and across different number of bidders.

The predicted median bids were calculated from the estimation results reported in Tables 4

and 5.33 In general, the predicted and actual bids correspond reasonably closely, with the Table 5

results fitting noticeably better.

The “hump” from 8–10 bidders in the actual worktype A auctions are missed by both

specifications, but the predicted values are close at a smaller number of bidders. For the

worktype B contracts, the Table 5 results fit remarkably close for auctions with less than 10

bidders. For the worktype C contracts, the Table 5 results also fit reasonably well, across the

whole range of cost signals. In what follows, therefore, we focus on the Table 5 results.

6. INCREASING COMPETITION AND EQUILIBRIUM BIDDING

6.1. Increasing competition and individual bids

First, we examine how individual contractor bids would be potentially affected by increases

in the number of competitors, i.e. whether sn(x) is increasing or decreasing in n, fixing the

signal x . We are unaware of any general comparative static results. Previously, Smiley (1979,

Chapter 3), Matthews (1984), and Pinkse and Tan (2000) have shown that the sign can go

33. For the Table 5 results, we evaluate the bid functions at the mean random effect, i.e. assuming µi = γi .
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FIGURE 2

Predicted vs. actual bid functions: using Tables 4 and 5 results. Legend: actual median bid (from Table 2; solid line);

predicted median bid using Table 4 results (dotted line); predicted median bid using Table 5 results (dashed line)
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either way, depending on the parametric assumptions.34 Since our information structure is more

complicated than that considered by these authors, we treat this as an open question which we

address empirically.

Equilibrium bid functions We simulate the equilibrium bidding function sn(x; θ)

function via formula (2) for the results from Table 5. The graphs are shown in Figure 3. In

order to isolate the pure effect of the winner’s curse, we zero out the coefficients attached to the

number of bidders (i.e. γ1, γ2, γ4, γ5) in these simulations. Clearly, the shapes of the graphs vary

noticeably over the three worktypes.

For worktypes A and B, the importance of uncertainty regarding a common component in

costs is reflected in the fact that the equilibrium bid functions for these cases are increasing in

the number of bidders n, across the range of signals; for instance, the equilibrium bid function

evaluated at log x = −1·0 rises from about $0·25 million with two bidders to over $1 million

in ten-bidder auctions, a 400% increase; the magnitude of increase is even greater for the

worktype B auctions. We attribute this increase primarily to the winner’s curse effect.35

On the other hand, the graph for worktype C reflects the finding that private values are

important in these auctions. At low values of x , the equilibrium bids are falling in n, as we would

expect in pure private value auctions. At large levels of x , however, some of the bid functions

cross, indicating that the winner’s curse seems to be more important in this range of x . For

example, at log(x) = −2·0, the worktype B equilibrium bid function for n = 10 lies below

that for n = 6 (indicating that the competitive effect dominates), but at log(x) = −1·0 the

bid function for n = 10 has crossed over the n = 6 bid function. The winner’s curse effect is

stronger at larger value of x : for a given n, the probability of winning is smaller as signals get

larger, which implies that as n increases the competitive effect will be relatively weaker upon

bidders with larger signals, and winning an auction with a less optimistic signal (i.e. higher x)

conveys worse news than winning with a more optimistic signal (i.e. lower x).

Equilibrium mark-ups Some additional insights of these results are obtained by

investigating the bid “mark-ups” implied by our results, where we define the mark-up to be
b(xi )−E[ci |xi ]

b(xi )
. Here, E[ci |xi ] is the expected project cost to bidder i based just upon his signal xi ,

which we take as a “naive” estimate which bidder i might have bid were he incognizant of the

winner’s curse.

In Table 6, equilibrium mark-ups for the median bidder were calculated at different values

of σe, which parameterizes the noisiness of contractors’ signals regarding their unknown costs,

with a larger σe corresponding to greater uncertainty. The mark-ups were calculated after

reducing σe by one-half (column 4) and then by 90% (column 5). Note that the reduction in

uncertainty reduces the equilibrium mark-ups for the worktype A auctions dramatically (for

7-bidder auctions, the mark-up falls from over 51–33·6% when σe is cut in half, and down to

just 10·8% when σe is at one-tenth of its estimated value). This illustrates how a reduction in

34. Smiley (1979) gave examples of multiplicative bid functions where sn(x) decreases in n (i.e. more aggressive
bidding), whereas Matthews (1984) focuses on the uniform distribution where sn(x) increases in n (i.e. less aggressive
bidding). Pinkse and Tan (2000) characterize general conditions under which the latter occurs in affiliated private-value

settings, with the striking implication that common values are not required to obtain equilibrium bidding behaviour which
becomes less aggressive as competition increases.

35. As noted above, PT’s affiliation effect can also cause bids to rise in n, even in the private-values setting. It
is difficult to verify PT’s conditions (cf. Lemma 1 in PT) analytically for our log-additive model, and so to gauge the
importance of this affiliation effect, we simulated the bid functions setting σe = 0 (which turn all the models into
affiliated private-values models). Across all three worktypes, the results indicated that the bid functions, after making
this change, were all decreasing in n, suggesting that the affiliation effect is absent. As a result, we mostly attribute the
increase in equilibrium bids shown in Figure 3 to the winner’s curse.
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Equilibrium bid functions: simulated using Table 5 results. Legend: –•–•–, two bidders; – - — - —, four bidders;

△–△–△–, six bidders; · · + · · + ·, eight bidders; –*–*–*, ten bidders



HONG & SHUM INCREASING COMPETITION 889

TABLE 6

Equilibrium mark-ups: the effect of reduction in uncertainty

Worktype # Bidders Mark-up: Mark-up: Mark-up:
σe 0.5∗σe 0·1 ∗ σe

A 2 0·155 0·168 0·256
A 3 0·227 0·181 0·198
A 4 0·303 0·209 0·159
A 5 0·374 0·246 0·133
A 7 0·511 0·336 0·108
A 10 0·676 0·467 0·103
A 12 0·736 0·513 0·108
A 15 0·823 0·612 0·143

B 2 0·010 0·036 0·041
B 3 0·066 0·070 0·053
B 4 0·113 0·099 0·064
B 5 0·153 0·123 0·074
B 7 0·226 0·161 0·087
B 10 0·307 0·190 0·085
B 12 0·326 0·184 0·070
B 15 0·380 0·181 0·041

C 2 0·168 0·118 0·129
C 3 0·166 0·091 0·100
C 4 0·166 0·075 0·081
C 5 0·167 0·064 0·068
C 7 0·169 0·053 0·055
C 10 0·173 0·055 0·056
C 12 0·176 0·068 0·069
C 15 0·180 0·124 0·128

uncertainty reduces the winner’s curse, and therefore the “risk premia” which bidders demand in

this market. Similar trends are present for the worktype B auctions.

For worktype C auctions, however, a reduction in mark-ups is not an obvious consequence

of a reduction in uncertainty: for most n, the mark-ups remain largely unchanged when going

from 0·5 ∗ σe to 0·1 ∗ σe. This emphasizes the point that when private-value components in

costs are important, winner’s curse concerns are not significant in auctions with few bidders, so

that equilibrium mark-ups in these cases are attributable in large part to “market power”. When

the number of bidders increases, however, winner’s curse effects become more important, and

a reduction in uncertainty from σe to 0·5σe brings about a larger fall in equilibrium mark-ups

just as in the worktype A/B cases. Next, we explicitly explore what these effects imply about

government procurement costs.

6.2. Increasing competition and project procurement costs

In procurement, common wisdom dictates that increasing the number of contractors would lower

project costs. This is true for private-value models but, given the results above (for worktypes A

and B at least), one questions whether this is a wise policy for reducing project costs auctions

where common values are important. Next, we present results from simulations of the winning

bid in auctions in which the number of competitors is varied. We do this for the results in Table 5,

and graph the simulated bids in Figure 4.

For the worktype A results, the average of the simulated winning bids is generally increasing

in n, indicating that procurement costs would rise if the government invites more competition.

The median winning bid rises from about $0·20 million with two bidders to $0·35 million once 10
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Do procurement costs increase in the number of bidders? Legend: average winning bid in solid line; +2 st. dev. and −2

st. dev. in dashed lines
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bidders are involved, and continues to increase for n > 10. Furthermore, these simulations

indicate that the “optimal” number of participants (which would minimize expected procurement

costs) would be three, which is half of six, the mode of the empirical distribution of n for the

worktype A auctions (cf. Table 2). Our results suggest that the government could lower expected

procurement costs by about 15% by reducing n from 6 to 3 which, considering the average

contract outlay of about $5 million, constitute substantial savings.

Opposite results are obtained for the worktypes B and C results. For the worktype C results,

which indicate a negligible common value component, the average winning bids fall quickly in n,

from an average bid of $0·23 million with 2 bidders to about $0·18 million, with 10 bidders. This

drop also appears in the worktype B results, but is much less precipitous. For these two types of

contracts, then, increasing competition would indeed lower procurement costs, and it is optimal

for the government to invite as many tenders as possible.

Some well-known results (cf. Wilson (1977), Milgrom (1979)) exist concerning the limiting

behaviour of the winning bid at first-price auctions, as the number of bidders grows large. The

simulated winning bids for the worktype A auctions indicate that, for the range of n which

we observe in the data, the average winning bid is increasing at smaller values of n. This

does not contradict the theoretical results on information aggregation since that literature has

remained silent about whether the (non-stochastic) sequence of average winning bids converges

monotonically, at the given parameter values.36

7. CONCLUSIONS

We empirically measure the effects of the winner’s curse on equilibrium bidding in procurement

auctions. First, we have estimated a model which allows bidders’ latent valuations for a contract

to have both common-value and private-value components. To our knowledge, this is the first

empirical implementation of a model with such flexible bidder preferences, and represents a

methodological contribution of this paper.

Second, we estimate our model on a data set of construction procurement auctions run by

the NJDOT in the years 1989–1997. Winning bid simulations performed using our parameter

estimates indicate that the average procurement cost in a subset of these auctions is strictly

increasing in the number of bidders as competition intensifies: for example, the median costs rise

about 15%, as the number of bidders increases from three to six. These results emphasize how

asymmetric information can overturn the conventional economic wisdom that more competition

is always desirable.

While these results are robust to our attempts to control for across-contract heterogeneity,

we recognize that one weakness of our data set is the lack of variables which proxy well for

observable contract heterogeneity (such as engineering cost estimates, which have been used in

the studies by Bajari (1998) and Jofre-Bonet and Pesendorfer (1999)). It would clearly be of

interest to apply the methodology developed in this paper to a data set which contained these

variables.

One striking policy implication of our results is that governments may wish to restrict entry,

or favour “negotiations” over auctions (cf. Bulow and Klemperer (1996)) when the winner’s curse

is particularly strong. But in practice, this may not be always feasible, since government pro-

curement agencies try to reduce the possibility of collusion among contractors by inviting more

36. In results which we have not reported, we simulated sequences of winning bids for all three worktypes, and
found that while convergence obtains for B and C type contracts, the sequence of winning bids for worktype A contracts
appears to diverge.
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tenders (i.e. increasing competition).37 Our findings, while not directly addressing these issues,

do contain a striking implication: in situations where the winner’s curse is so severe as to lead

to higher procurement costs as the number of bidders increases (as in the worktype A results in

Figure 4), municipal authorities may actually prefer to allow collusion, since in a common-value

setting the informational pooling that arises from bidder discussions may defuse the winner’s

curse effects. This is one potential justification for why the U.S. government allowed joint bid-

ding in the outer continential shelf offshore lease auctions from their inception in the 1950’s until

the mid-1970’s (cf. Hendricks and Porter (1992, 1996)). The potential benefits of such restric-

tions on competition have been noted previously in the theoretical literature by, among others,

Bulow and Klemperer (1999), and we leave a more thorough analysis to future research.

APPENDIX A. DETAILS ON ESTIMATION

A.1. Simulation details

For the Wilson log-normal specification, E(ci |x1, . . . , xn) can be expressed in analytic form. Before deriving this,

we introduce some notation. In this model, the vector (c̃1 = log c1, . . . , c̃n = log cn , x̃1 = log x1, . . . , x̃n =
log xn) is distributed jointly normal with identical means µ for all elements and variance–covariance matrix 6̂ =
((6, 612), (6′

12, 6∗))′. Furthermore, given the log-normality assumptions, the conditional expectation functions for

ci are:

E[ci | x1, . . . , xn ] = exp[E(c̃i | x̃1, . . . , x̃n) + 1
2 Var(c̃i | x̃1, . . . , x̃n)], i = 1, . . . , n. (A.1)

Next, we denote the marginal variance–covariance matrix of (c̃i , x̃1, . . . , x̃n) by

6i ≡
(

σ 2
c σ∗

c
′

σ∗
c 6∗

)

where σ 2
c = σ 2

v + σ 2
a is the variance of ci . Using the normality assumption

E(c̃i | x̃) = µ + σ∗
c 6∗−1(x̃ − µ),

Var(c̃i | x̃) = σ 2
c − σ∗

c
′
6∗−1σ∗

c . (A.2)

Combining expressions (A.2) with equation (A.1), given parameter estimates, the conditional expectation (A.1) can be

explicitly evaluated for every vector of log-signals (x̃1, . . . , x̃n). Consequently, the desired conditional expectations can

be obtained by simulation.

Given the analytic expressions for the conditional expectations (A.1), the next step is to calculate the conditional

expectations v(x, x). Recall that the vector of log-signals (x̃1, . . . , x̃n) is jointly normal with mean vector M∗ =
(µ, . . . , µ) and variance–covariance matrix 6∗. Let x̃3+ denote the sub-vector of log-signals x̃3, . . . , x̃n , and x̃+2 denote

the vector of log-signals x̃1, x̃2. Then

(

x̃3+
x̃+2

)

∼ normal

(

[

µ

µ

]

,

[

6∗
3+ 6∗′

3+,+2
6∗

3+,+2 6+2

])

where the elements of the mean vector and variance–covariance matrix can be determined from the information structure

of the model.

Then, again using the multivariate normal conditional expectation formulas:

x̃3+ | x̃+2 ∼ normal
(

µ + 6∗
3+,+2

′
6∗−1

+2 (x̃+2 − µ), 6∗
3+ − 6∗

3+,+2
′
6∗−1

+2 6∗
3+,+2

)

. (A.3)

Thus, given log-signals (x̃1, x̃2), we can take S draws of x̃3+ according to the conditional distribution (A.3) and simulate

the conditional expectation v(x, x). In the results below, we utilized the GHK algorithm for drawing from truncated

multivariate distributions. Essentially, this algorithm “importance samples” recursively from the truncated region, one

dimension at a time, and allows for smooth (in θ ) simulation of the required conditional expectation vn(x, x; θ).

37. For example, a recent tender of auto-towing contracts in Toronto was scrapped due to low levels of participation
while municipal staff were “instructed [. . . ] to come back with suggestions on how more companies might be able
to participate” (Toronto Star, 1999). In general, collusion and bid-rigging seem rampant in procurement settings, for
example, Pesendorfer (2000), Baldwin, Marshall and Richard (1997) and Porter and Zona (1993) for studies of several
instances.
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A.2. Asymptotic distribution for quantile estimator

Pakes and Pollard (1989) derive a general asymptotic theory for estimators obtained by maximizing simulated objective

functions. We utilize expressions for the variance–covariance matrices of the estimators which assume that the number

of simulation draws used to calculate the vn(· · · ; θ) function increase faster than
√

T , the rate at which θ̂ converges to

the true θ̂0.

In what follows, we assume that θ is L-dimensional. For the objective function given in equation (4) in the main

text, the following approximate first-order condition characterizes the simulated quantile (SQ) estimator θ̂ SQ :

1√
T

∑T

i=1

∑ni

j=1

∑K

k=1
{τk − 1[bi j ≤ q

ni
k

(θ̂ SQ)]}
∂q

ni
k

(θ̂ SQ)

∂θ
= op(1).

It can be shown (cf. Gourieroux and Monfort (1995, Section 8.5.2)) that
√

T
(

θ̂ SQ − θ
)

= −A−1
T

BT + op(1) (A.4)

where

BT = 1√
T

∑T

i=1

∑ni

j=1

∑K

k=1
{τk − 1[bi j ≤ q

ni
k

(θ0)]}
∂q

ni
k

(θ0)

∂θ
,

AT = 1

T

∑T

i=1

∑ni

j=1

∑K

k=1
f

ni
τk

[qni
k

(θ0)]
q

ni
k

(θ0)

∂θ

q
ni
k

(θ0)

∂θ ′

′

where f
ni
τk

is the density of the marginal distribution of the random variable sni
(x; θ) in a ni bidder auction at the τk -th

quantile, where x denotes the signal.

Via a central-limit theorem (using independence over auctions i), the L-vector BT has a limit distribution N (0, V ).

Therefore, from equation (A.4), the asymptotic variance–covariance matrix for θ̂ SQ can be approximated by

1

T
Â−1

T
V̂T Â−1

T
.

V̂T denotes a consistent estimator of V , which can be

V̂T = 1

T

∑T

i=1
m̂i (bi )m̂i (bi )

′ (A.5)

where

m̂i (bi ) =
∑K

k=1

∑ni

j=1
(τk − 1(bi j ≤ q

ni
k

(θ̂ SQ)))
∂q

ni
k

(θ̂ SQ)

∂θ
.

The gradient vector
∂q

ni
k

(θ̂ SQ )

∂θ
, as well as the density f

ni
τk

(·) and the gradient
q

ni
k

(θ0)

∂θ
in the expression for AT can all be

evaluated using finite difference methods.

APPENDIX B. ADDITIONAL SPECIFICATIONS

B.1. Robustness check 3: potential competition vs. actual competition

Next we consider a model which allows for the possibility that N , the number of actual bidders observed in the data,

does not equal N , the number of potential bidders. We present a model where the difference between N and N arises

from a reserve price r , which we assume to be constant across all auctions (and is a parameter to be estimated).38

We utilize a model of equilibrium bidding in first-price auctions with a reserve price, as in Milgrom and Weber

(1982, Section 7). Define the screening value

x∗
n (r) = sup{x |E[V1|X1 = x, Y1 > x] ≤ r} (B.1)

38. As noted above, there was no explicit reserve price in these auctions. However, in the model proposed in this
section, we rely on an implicit reserve price to generate differences between the potential and actual number of bidders.
Note that, without a reserve price, there is no reason in our model why all qualified bidders would not participate in each
and every auction (we do not consider capacity constraints or other intertemporal linkages in this analysis). Furthermore,
entry or bid preparation costs would not discourage entry in our low-bid auctions (as they do in the high-bid auctions
considered in Hendricks et al. (2000) or Milgrom and Weber (1982, Section 7)); they would simply lead bidders to “pad”
their bids by the amount of the entry costs.
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where we have subscripted by n, the number of bidders. Note that the R.H.S. of this expression is a “participation

constraint” which defines the highest participating signal.

Note that the entry cost does not affect the differential equation (1) at all, but changes the boundary conditions to

b∗(x∗
n (r)) = r . Therefore, the equilibrium bid function becomes

b∗
n(x; r)

{

= Ln(x, x∗
n (r)) ∗ r +

∫ x∗
n (r)

x vn(α, α)d Ln(x, α) if x < x∗
n (r)

> r otherwise

where

Ln(x, y) = exp

(

−
∫ y

x

f−1,n(s|s)
1 − F−1,n(s|s) ds

)

.

Note that L(x, x) = 1.

Integrating by parts, we derive a simpler expression

b∗
n(x; r)

{

= (r − vn(x∗
n (r), x∗

n (r))) ∗ Ln(x, x∗
n (r)) + vn(x, x) +

∫ x∗
n (r)

x Ln(x, α)v′
n(α, α)dα if x < x∗

n (r)

> r otherwise.
(B.2)

We need an estimate of r in order to simulate the equilibrium bid function. Assuming that r is constant across all auctions

of a given worktype, a natural estimate of r is maxi, j bi j , the highest bid observed in the data. As is well known (cf.

Donald and Paarsch (1993, 1996)), this estimate is superconsistent, and its estimation does not affect the asymptotic

distribution of our SQ estimator. Given r , we compute the screening values x∗
n (r) for n = 1, 2, . . . via the implicit

relation (B.1). Given these screening values, we compute the equilibrium bid function (B.2).

Furthermore, given our parametric assumption and the parameter values, we can calculate the probability that N

out of theN potential bidders submit bids (see Paarsch (1997) for a derivation of this result):

PN ,N ≡ Binomial(N ,N , 8(log x∗
N

(r)))

=
(

N

N

)

[8(log x∗
N

(r))]N [1 − 8(log x∗
N

(r))]N−N (B.3)

where 8(·) denotes the marginal CDF of the log-signals.

SinceN is unobserved by the econometrician, we treat it as a random variable which, conditional on the observed

number of bidders N , we assume to follow a multinomial probability law:

Pr(N |N ) = PN ,N
∑N+5
N ′=N

PN ,N ′
, N = N , N + 1, . . . , N + 5. (B.4)

For an auction with N observed bidders, we simulated bids by drawing anN according to (B.4), and then calculating the

equilibrium bid corresponding to thisN using the top equation in (B.2) above. The results from these specifications are

given in Table B1. The magnitudes of the important σ parameters do not differ greatly from the random effect estimates

from Table 5, and for that reason we will not discuss them further.

B.2. Robustness check 4: accounting for contract-specific heterogeneity

In the final robustness check, we control for observed heterogeneity across contracts by parameterizing µi , the median of

the signal distribution for auction i , as a function not only of ni , the number of bidders in auction i , but also the covariates

specific to auction i . The two most important dimensions of heterogeneity are size differences across contracts of a given

worktype, and changes in input costs across time which also exogenously affect bids for a contract. Since our bid data

do not allow us to determine the per-unit costs submitted by the bidders, adequately controlling for size heterogeneity is

particularly important.

We were only able to obtain contract-specific covariates for the worktype A contracts. This is because many of

these contracts specified roads upon which work was to be done. We obtained contract-specific covariates which were

characteristics of these roads, as extracted from a database maintained by the NJDOT. They are: TRAFFIC, a measure

of the weekday traffic volume (in both directions) of the road being repaired; and geographic dummies (GATEWAY,

SKYLANDS, SHORE, DELAWARE, SOUTH) which describe the geographic location of the road. Furthermore, we

also obtained construction cost indices corresponding to the month in which a particular contract was auctioned from the

trade publication Engineering News-Record (NY is the index for New York City, and PHIL is the index for Philadelphia;

in our specification, we use an average of the two). Table B2 summarizes the covariates.
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TABLE B1

Parameter estimates. Robustness check 3: potential competition vs. actual competition.

Standard errors in parentheses

Worktype: A B C
Parameter

σv 0·9625(0·0002) 0·0995(0·0003) 0·0133(0·0002)
σa 2·5029(0·0072) 0·2115(0·0010) 0·6319(0·0013)
σe 1·3393(0·0020) 0·6618(0·0003) 0·1538(0·0010)

η1 −2·5979(0·0098) 2·0491(0·0078) −1·9606(0·0050)
η2 −1·7019(0·0098) 1·3089(0·0073) −1·2616(0·0028)
η3 −1·2705(0·0102) 0·9913(0·0072) −0·9659(0·0015)
η4 −0·8501(0·0109) 0·7086(0·0072) −0·7060(0·0007)
η5 −0·4407(0·0118) 0·4608(0·0073) −0·4820(0·0022)
η6 −0·0424(0·0129) 0·2480(0·0074) −0·2939(0·0042)
η7 0·3448(0·0142) 0·0702(0·0076) −0·1416(0·0064)
η8 0·7210(0·0155) −0·0728(0·0079) −0·0251(0·0089)
η9 1·0862(0·0170) −0·1807(0·0083) 0·0555(0·0115)
η10 1·4403(0·0186) −0·2537(0·0088) 0·1002(0·0144)
η11 1·7834(0·0202) −0·2918(0·0093) 0·1091(0·0174)
η12 2·1154(0·0219) −0·2949(0·0099) 0·0821(0·0207)
η13 2·4363(0·0237) −0·2630(0·0106) 0·0193(0·0241)
η14 2·7463(0·0256) −0·1963(0·0114) −0·0794(0·0278)
η15 3·0451(0·0274) −0·0945(0·0123) −0·2139(0·0317)

ση1 0·4314(0·0019) 0·3403(0·0004) 0·7867(0·0007)
ση2 0·4314(0·0019) 0·3403(0·0004) 0·7867(0·0007)
ση3 0·4648(0·0021) 0·3468(0·0004) 0·7689(0·0006)
ση4 0·5017(0·0024) 0·3575(0·0004) 0·7506(0·0006)
ση5 0·5424(0·0027) 0·3727(0·0004) 0·7317(0·0006)
ση6 0·5875(0·0031) 0·3929(0·0005) 0·7125(0·0006)
ση7 0·6374(0·0035) 0·4190(0·0005) 0·6929(0·0006)
ση8 0·6928(0·0041) 0·4519(0·0006) 0·6730(0·0007)
ση9 0·7543(0·0047) 0·4929(0·0007) 0·6529(0·0007)
ση10 0·8227(0·0054) 0·5437(0·0008) 0·6326(0·0007)
ση11 0·8988(0·0062) 0·6066(0·0010) 0·6121(0·0007)
ση12 0·9837(0·0071) 0·6844(0·0012) 0·5916(0·0008)
ση13 1·0785(0·0082) 0·7810(0·0015) 0·5710(0·0008)
ση14 1·1845(0·0095) 0·9014(0·0019) 0·5505(0·0009)
ση15 1·3031(0·0109) 1·0521(0·0025) 0·5301(0·0009)

Simulation draws:a 50 50 50

a Number of simulation draws used in calculating vn(x, x; θ).

Using these covariates, we parameterize µi as:

µi = µ0 + µ1 ∗ ni + µ2 ∗ n2
i + µ3 ∗

( 1
2 ∗ NY+PHIL

)

+ µ4 ∗ TRAFFIC + (µ5 µ6 µ7 µ8 µ9)













GATEWAY

SKYLANDS

SHORE

DELAWARE

SOUTH













.

Since we were only able to obtain covariates for the worktype A contracts, this specification was only estimated on

those auctions. The results are reported in Table B3. The magnitudes and signs of the parameters common across all

the specifications remain quite stable (relative to the random effects specifications in Table 5) to the incorporation

of covariates. In particular, note that σe , which measures the noisiness of bidders’ signals, continues to be large in

magnitude (2·3400 [0·0072]), which implies that contractors’ cost signals are very noisy, which tends to reinforce our

finding of a strong winner’s curse effect in these auctions (as we discuss below). Furthermore, most of the covariates

enter significantly in the specification, and in the direction expected (for example, COST enters positively). Give the

stability of the point estimates between the random effects and observed heterogeneity specifications, then, we will not

discuss these results further.
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TABLE B2

Contract-specific covariates: highway-work contracts

Variable N Mean Std. dev. Minimum Maximum

Total Auctions 415
NY 410 7588·57 737·28 6234·50 8967·49
PHIL 410 6005·94 521·88 5083·90 7311·37
TRAFFIC 364 27,996·41 21,227·55 0 97,235·00
GATEWAY 364 0·56 0·50 0 1·00
SKYLANDS 364 0·35 0·48 0 1·00
SHORE 364 0·24 0·43 0 1·00
DELAWARE 364 0·49 0·50 0 1·00
SOUTH 364 0·26 0·44 0 1·00

See text for definitions of variables.

TABLE B3

Parameter estimates. Robustness check 4:

accounting for observed contract heterogeneity.

Standard errors in parentheses. Estimated for

worktype A contracts only

Parameter

σv 0·2767(0·0014)
σa 0·9023(0·0004)
σe 2·3400(0·0072)

µ0 −2·0214(0·0088)
µ1 0·4179(0·0072)
µ2 −0·0545(0·0015)

COSTa (µ3) 3·469E−5(1·761E−7)
TRAFFIC (µ4) −4·856E−7(2·331E−9)
GATEWAY (µ5) 0·0616(2·399E−4)
SKYLANDS (µ6) 0·0760(7·369E−4)
SHORE (µ7) −0·0062(4·424E−5)
DELAWARE (µ8) −0·0190(6·495E−5)
SOUTH (µ9) 0·1479(5·694E−4)

# contracts 356

Simulation draws:b 50

a See text for definitions of covariates. COST =
1
2 (NY + PHIL).
b Number of simulation draws used in calculating
vn(x, x; θ).
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