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ABSTRACT

Contention among tasks concurrently running in a multicore
has been deeply studied in the literature specially for on-chip
buses. Most of the works so far focus on deriving exact upper-
bounds to the longest delay it takes a bus request to be serviced
(ubd), when its access is arbitrated using a time-predictable pol-
icy such as round-robin. Deriving ubd for a bus can be done
accurately when enough timing information is available, which
is not often the case for commercial-of-the-shelf (COTS) pro-
cessors. Hence, ubd is approximated (ubdm) by directly exper-
imenting on the target processor, i.e by measurements. How-
ever, using ubdm makes the timing analysis technique to resort
on the accuracy of ubdm to derive trustworthy worst-case ex-
ecution time estimates. Therefore, accurately estimating ubd
by means of ubdm is of paramount importance. In this paper,
we propose a systematic measurement-based methodology to
accurately approximate ubd without knowing the bus latency
or any other latency information, being only required that the
underlying bus policy is round-robin. Our experimental results
prove the robustness of the proposed methodology by testing
it on different bus and processor setups.

1. INTRODUCTION
The pressure on real-time industry to adopt multicore as its

reference processing platform has increased over the last years.
Chip vendors are driven by the mainstream market and its high
performance demands rather than by the timing requirements
of the comparatively small real-time market. Further, eval-
uations of – typically non commercial-off-the-shelf (COTS) –
multicores in real-time systems performed by academia envis-
age significant benefits of multicores.

Real-time industry, though, is far from completing the transi-
tion to multicores: real-time industry needs to resort to COTS
processors to obtain the level of performance needed at an af-
fordable cost. However, COTS processors do not target time
predictability as needed in the real-time domain. This calls for
timing analysis solutions for COTS multicores, for which to our
knowledge a full-fledged WCET estimation solution does not
exist. For this reason, in this paper we talk about execution
time bounds (ETB) rather than Worst-Case Execution Time
(WCET) estimates that is used for single-cores, or customized
WCET-aware multicores, for which timing analysis techniques
are much more mature.

COTS multicores challenge timing analysis due to the diffi-

culties to consider the impact of contention in shared resources
(e.g., a shared bus) on ETB. There have been several works
analyzing the worst-case contention that tasks in a multicore
suffer due to access to the on-chip bus [6]. For static timing
analysis (STA), if enough information about the processor is
available, it can be derived the worst impact of contention that
applications requests can suffer on the access to the bus, called
Upper Bound Delay (ubd), which can be then factored in when
deriving ETB. However, as the complexity of the multicore pro-
cessors used in real-time domains continues to increase and the
information about their internal functioning is not available,
the a-priori analytical derivation of ubd becomes harder. As a
matter of fact, the contention of the P4080 processor has been
analyzed by an avionics end-user and a STA tool provider [12]
using measured ubd values (ubdm), i.e. values derived from ex-
perimentation on the P4080 [11], rather than ubd. This fact
talks about the difficulties that COTS-multicore end-users and
STA tool-providers have in finding processor internal informa-
tion, about the memory bus in this case, to derive ubd. Hence,
the confidence of the resulting ETB rests on the confidence on
ubdm and, in particular, on how accurately it approximates the
actual ubd. In the context of Measurement-Based Timing Anal-
ysis (MBTA) deriving ubdm is also key to determine whether
the accesses to a shared resource of a task running in a mul-
ticore experience high contention. This ultimately increases
confidence on MBTA, which is widely used across automotive,
avionics and space industries among others.

To our knowledge, so far ubdm has been obtained with spe-
cific user-level application kernels called, micro-benchmarks or
resource stressing kernels (rsk) [15, 11, 5]. The basic method-
ology to derive ubdm consists in running a given software com-
ponent under analysis (scua) against several rsk. In particular
ubdm is derived dividing the execution time increase of the scua
w.r.t. its execution time in isolation (det = ExecT imersk −
ExecT imeisol) by the number of bus requests made by the
scua, nr. That is ubdm = det/nr. Despite rsk are designed
to put high load on a target shared resource (e.g., the bus) so
that the scua slowdown significantly increases, no evidence has
been provided about whether ubdm closely matches ubd for this
methodology based on running a given scua against several rsk,
or only running several copies of the rsk. Focusing on round-
robin(RR) buses, this paper makes the following contributions.
1) We show that running a scua against rsk putting high load
on the bus does not make that all scua’s bus accesses suffer a
contention equal to ubd. We also show that taking as scua one
rsk and running it against several rsk copies neither ensures
that each request to the bus suffers ubd nor helps deriving a
good approximation (ubdm) to it.
2) We identify the reasons behind this inability to derive a ubdm

that closely approximates ubd. We show that under heavy load
scenarios round-robin presents a synchrony effect that makes
each request in the scua suffer a given (single) contention de-
lay that cannot be ensured to match ubd. Contention delay is
determined by the time elapsed since the previous request was
served until the current one becomes ready to be sent to the
bus, which we call the injection time.



3) We propose a methodology to derive ubd resorting on mea-
surements and without knowing the latency of the bus, hence
being applicable to a wide range of processor designs. The
basic approach consists in varying the injection time between
requests to the bus until each request suffers ubd. This is im-
plemented by injecting nop operations among the requests ac-
cessing the bus.

With our methodology we successfully derive ubd on two mul-
ticore setups, one of which matches the Cobham Gaisler NGMP
multicore processor [3]. Overall, our methodology helps in-
creasing the trustworthiness of the derived ETB of the timing-
analysis tool/technique on COTS multicores deploying buses.

2. ON-CHIP BUS CONTENTION ANALYSIS
One of the most critical shared resources in multicore proces-

sors is the interconnection network. Bus-based networks can
significantly lower energy consumption and simplify network
protocol design and verification, with small impact in perfor-
mance [16, 19]. Examples of widely used buses include the
Advanced Microcontroller Bus Architecture (AMBA) that is
used not only in microcontroller devices but also on a range of
ASIC and SoC parts with real-time capabilities.

We study round-robin (RR) which allows deriving time- com-
posable bounds for the access latency to the bus, such that the
load that a requester puts on the bus does not affect the time
bounds derived for another requester [13]. Let us assume a
RR arbitrated bus accessed by Nc requesters (cores). If re-
quester ci, with i ∈ {1, .., Nc}, is granted access in a given
round, the priority ordering for the next round is defined as
follows: ci+1, ci+2, ..., cNc, c1, c2, ..., ci. The core with the high-
est priority is ci+1 and ci is the one with the lowest. Since RR
is work conserving, a lower priority requester can use the bus
when all higher priority requesters do not use it. The ubd that
a request can suffer due to contention corresponds to the case
in which the request has the lowest priority and all the rest of
sequesters have pending requests. In that situation, the request
has to wait for all the Nc − 1 sequesters to use the bus for a
maximum of lbus cycles:

ubd = (Nc − 1)× lbus (1)

When not enough details about the hardware are known [12]
,ubd cannot be obtained analytically but it has to be derived
by experimentation. One of the main complexities when de-
signing an experiment to maximize the impact that the inter-
fered scua’s bus requests suffer from other co-running software
components is that contention depends on how scua’s requests
aligns with contending requests. Let us assume several arbi-
trary software components, SC = {sc1, sc2, ..., scNc

}, one of
which is our scua with Nc being the number of cores. If we run
all SC, it is unlikely that each scua’s request suffers ubd, since
when a request ri from the scua becomes ready, its RR priority
is not necessarily the lowest one and hence, it does not have to
wait ubd cycles for the bus.

Given a scua, in theory, one could design a worst-contender
sc such that every time the scua tries to send a request, it has
the lowest priority and all worst-case contenders running in
the other cores have a request ready at exactly that moment.
This makes the scua suffer ubd on every request. However,
such a worst-case scenario is very complex to reproduce because
the worst-contender is scua-dependent. And more importantly,
the level of knowledge on the timeliness of the requests done
by the scua and control required on the worst-contender to
generate requests in the desired processor cycles is too high
to be a viable solution. Hence, from an user perspective it is
hard, if at all possible, controlling the particular cycles when
the worst-contender issues its requests to enforce a particular
interleaving with the request of the scua. Overall, we conclude
that the approach based on designing worst-case contenders is
not possible in general.

(a) rsk l2hit (b) rsk-nop l2hit (k=1)
Figure 1: Pseudo-code of one rsk and rsk-nop

From the analysis point of view the goal is accounting ubd for
every request to the shared resource when deriving ETB for a
scua. Estimating ubd with measurements requires architecting
a set of test cases such that enough confidence can be obtained
on the execution time measurements to capture the worst con-
tention for the scua, so that every request to the shared resource
suffers ubd.

As building-blocks to design such measurement-based ap-
proach we use rsk [15, 11, 5], which are small user-level kernels
that stress specific hardware resources. rsk comprise a single
loop with instructions of the same type that are chosen to stress
a specific hardware resource. In the particular case of this paper
we designed a rsk that puts high load on the bus on our ref-
erence architecture, in which the bus serves as bridge between
private on-core L1 instruction (IL1) and data (DL1) caches and
the L2 cache. The rsk is architected so that every instruction
misses in the DL1 and hits in the L2. This ensures a short
turn-around time for the requests hence keeping the bus used
as much as possible. For a least recently used (LRU) or FIFO
replacement policy, we do so by building a loop with W + 1
instructions, where W is the number of DL1 cache ways. For
instance, if W = 4, five instructions are needed in the loop (see
Figure 1(a)). Those instructions are loads having a predefined
stride among them which makes them to be mapped into the
same DL1 set and to exceed its capacity, hence systematically
missing in DL1. Further, accessed addresses fit in L2. In this
way all accesses miss in DL1 and hit in L2. Other rsk designs
focusing on exceeding cache capacity, not a single set, can be
easily implemented.

3. SYNCHRONY EFFECT
Intuitively one would expect that running a scua against sev-

eral rsk represents the worst-case contention scenario, which
could be used to obtain ubdm. Next we show that this intu-
ition is wrong in practice. This is so because under heavy load
conditions RR buses trigger a synchrony-effect.

The synchrony-effect makes the bus behave as if it were time-
multiplexed among cores, with each core having a time slot
equivalent to the delay it takes to process one request. In such
a time-shared scenario the RR time window is equivalent to
the addition of the time slot given to each core. The latency
suffered by each scua request(ri) depends on the time interval
between ri and its preceding request ri−1 and how it aligns to
the RR time window.

In this section we analyze the synchrony effect under a sce-
nario with high load on the bus, which we achieve by using
Nc − 1 rsk as the contenders of the scua. In a first experiment,
Section 3.1, we consider as scua an arbitrary sc. In a second
experiment, Section 3.2, we consider as scua a rsk. All experi-
ments are carried out in our reference multicore that is detailed
in Section 5(a 4-core multicore with each core comprising a pri-
vate DL1 and IL1, each core connects to the L2 cache through
a RR arbitrated bus). Designing a rsk that stresses the bus
requires that most of the rsk ’s instructions access and hit in
the L2 cache. In particular we use load operations that hit in



Figure 2: Contention delay, γi+1, suffered by ri+1 when δi+1 = 9

L2. L2 load hits produce the highest bus contention since they
keep the bus busy until the L2 answers the request, rather than
splitting the request as it occurs with L2 load misses or being
immediately answered as happens with all store requests.

3.1 Synchrony effect: scua against rsk
Let us assume that the scua has several requests to the bus:

R = {r0, r1, ..., rm}. Those requests occur at arbitrary times
(e.g., due to a DL1 miss), so that some time elapses since a
request ri is serviced until the next one, ri+1, is ready to be
issued. Such inter-request latency also determines the (injec-
tion) time between the requests they generate. Let δi be the
injection time between requests ri−1 and ri. Hence, for the
scua we have ∆scua = {δ1, δ2, ..., δm}. In our reference ar-
chitecture δi is equivalent to the time elapsed since the data
loaded by ri−1 is sent back to DL1 until ri is ready to access
the bus. When the scua runs simultaneously with other sc,
each of its request ri may suffer a contention γi. Hence, we
have γscua = {γ0, γ1, ..., γm} for the requests in the scua.
As rsk put high load on the bus, intuitively using Nc − 1

rsk as the contenders of the scua should make that each of
its requests suffer ubd in the bus. Since rsk are designed to
access the bus with high frequency, they have low injection
time among requests δrsk. Of course, rsk must not complete
execution before the scua.

When a given scua runs (in a given core cj) against Nc − 1
rsk we observe that in the same cycle when a given request ri
of the scua is completed, each of the Nc−1 rsk have a pending
request. This is generally the case sinceNc−1 can fully load the
bus – otherwise the resource would be overdimensioned. That
is, the time it takes ri to be processed by the bus, is longer
or equal than δrsk, which is the time any rsk needs to have a
request ready. As a result, the rounds of arbitration after ri is
processed are fixed with RR priority given to cores cj+1, cj+2,
..., cNc

, c1, ... cj . In Figure 2, once request ri sent from core
c3 is serviced in cycle 0, the requests from the other contenders
(c0, c1, c2) are ready. In this scenario, the sequence of events
after ri is processed is fixed. In fact the same sequence happens
after every request of c3. This sequence starts with the grant
being given to c0 then to c1 and finally to c2. If at the end of
this sequence c3 has another request ri+1 ready, it is given the
grant and the process starts again. The arbitration sequence
repeats until c3 has a request. Note that it does not matter how
RR priorities are assigned at the beginning of the execution:
after the first request of c3 the rounds of arbitration, and hence
the contention delay each request suffers (γi) by the following
requests, are the same and depend on ∆scua.
In the scenario drawn in Figure 2, ri+1 becomes ready in

cycle 9 when the grant is given to c1, so it has to wait γi = 3
cycles that is smaller than ubd, 6 cycles in this example. In a
different run ri+1 may become ready in a different cycle, hence
suffering different contention. Hence, the fixed injection time
among requests makes that each request ri suffers a given γi in
each run that can be smaller than ubd. Overall, the synchrony
behavior that RR presents under high load conditions makes
that the sequence of events after each arbitration is the same
so that running the scua against rsk fails achieving that each
request of the scua suffers ubd.

Figure 3: Contention delay γ as a function of δ. In each cycle
priorities are those at the start of the cycle, prior to arbitration.

3.2 Synchrony effect: rsk against rsk
Next we show that when we use a rsk as scua and run it in

a workload with other rsk as contenders, requests of the scua
do not suffer ubd delay. In such experiment all requests have
the same injection time, i.e δi = δ, ∀i, with δ = δrsk.

Let us assume that request ri from core cj becomes ready ex-
actly the same cycle when the previous request ri−1 completes
its execution in the bus, i.e. δ = 0. In that scenario, we know
that 1) in that very same cycle the priority of cj is the lowest,
and 2) due to the synchrony effect in that very same cycle the
rest of contenders will have a request ready and hence ri would
suffer a contention γ = ubd = 6. This scenario is presented
in the upper part of Figure 3. The first column in the matrix
in the lower part of the figure shows δ – that equals 0 in this
case –, the core with the highest and lowest priority, and the
contention delay γ suffered by ri.

Let us now assume that the injection time is higher than 0,
δ > 0. This may be due to the fact that after ri−1 completes
in the bus, it takes a given processing time the core to execute
the next instruction that generates ri. In the matrix at the
bottom of Figure 3 we see that, as δ increases γi decreases
down to 0. This happens when all the other contenders have
already processed their requests and the priority of c3 is the
highest, making ri suffer a contention γ = 0. In Figure 3 we
observe that this latter case happens for δ = 6. When the
delay of the current request ri and the previous request ri−1 is
δ = ubd+1 = 7, by the time ri is sent c3 has the lowest priority
and the next core in RR order, c(3+1)%4 = c0, already spent one
cycle on the bus, so γ = ubd − 1. The same behavior repeats
periodically with a period of ubd. Overall, the contention delay,
γ, that each request of the rsk suffers is:

γ(δ) =

{

ubd if δ = 0
(ubd − (δ mod ubd)) mod ubd otherwise

(2)

If δ = 0 then each rsk request suffers a contention delay
γ = ubd . However, if there is a minimum injection time between
the accesses generated by two consecutive instructions, the ubd
is never reached, despite the rsk having consecutive instructions
making requests to the bus. Hence, our methodology has to
deal with this consideration when deriving ubd.
In the general case δ depends on the architecture under con-

sideration. For instance, in our reference architecture, with
δ = δrsk = 1, we are only able to reach γ(δ) = ubd−1. As seen
in Figure 3, for δ = 1 we have γ = 5 (so ubd − 1). Without
knowing the particular values of ubd and δ it is hard – if at all
possible – to determine which value has γi for each request ri in
rsk and even harder ensuring if γi matches ubd. Overall, using
rsk as scua and running it against other rsk is not sufficient to
make ubdm = ubd.

4. PROPOSED METHODOLOGY
Our goal is deriving a methodology based on several test

cases executed on the target multicore platform to derive ubd .
We build on the synchrony effect presented in Section 3.



Figure 4: Saw-tooth behavior of RR under high load

4.1 The rsk-nop kernel
The synchrony effect allows enforcing each request to suf-

fer contention as determined by the injection time (see Equa-
tion 2). To that end we generate a new rsk called rsk-nop( Fig-
ure 1(b) ) in which we inject low-latency operations, e.g. nop
operations, between the instructions accessing the bus (e.g.,
loads). Those nops delay the cycle in which each request to the
bus becomes ready with respect to the previous request, which
artificially modifies the injection time of the rsk. That is, while
in the original case with consecutive bus-accessing operations
the time between them is δ = δrsk, if we add one nop the la-
tency becomes δ = δrsk + δnop, where the latter is the delay
added by one nop.

By varying the number of nop operations, k, inserted be-
tween bus-accessing operations, each request experiences dif-
ferent contention delays (δ). As a result, the contention delay
experienced by the different rsk-nop has a saw-tooth behavior
as shown in Figure 4. The maximum contention (shown in the
Y axis) obtained with Equation 2 is ubd and only occurs when
δ = 0 (shown in the X axis). With δ > 0, the maximum con-
tention obtained is ubd − 1 at every point in which δ is one
cycle more than a multiple of ubd .
This phenomenon is better illustrated in Figure 5. We start

from the scenario in Figure 5 a), in which we focus on an ar-

chitecture with δrsk = 1 and a request that suffers γ(δrsk) = 5
cycles. In Figure 5 b)-d) we show the effect of increasing
the number of nop operations between instructions generating
consecutive requests, with δnop = 1. In scenario Figure 5b),

γ(δrsk + δnop) decreases down to 4 with respect to the original
scenario depicted in Figure 5a). γ(δ) keeps decreasing as the
number of nop operations injected, k, increases from 1 up to
5, see Figure 5c). Note that cases for k = 2, k = 3 and k = 4
have been omitted for space constraints. However, in the sce-
nario d), when k = 6, we observe that the next request has to
wait for all 3 other cores to proceed with their requests, thus
increasing γ(δ) up to 5. It can be observed that, by varying
the number of nop operations between requests, we can explore
different alignment scenarios that appear due to the synchrony
effect.

Overall, when δrsk > 0, the maximum contention that re-
quests can suffer as k varies is ubd −1, as shown in Equation 2.
The contention reaches ubd only when the injection time among
any of the bus-accessing instructions is zero. However, the pe-
riod of the saw-tooth is exactly the ubd value regardless of δrsk.
Hence, the exact value of ubd can be derived from the saw-tooth
period of γ(δ) when varying k, and this holds true for any in-
jection time.

4.2 rsk-nop application methodology
Our methodology to derive ubd requires carrying out several

experiments using rsk-nop as scua and several rsk – the orig-
inal ones without any nop operations between bus-accessing
instructions – as contender sc.

rsk-nop, used as scua, can be parameterized by varying in
an incremental way the number of nop operations, k, between
bus-accessing requests, as well as the type of instructions used
to access the bus: rsk-nop(t, k). In our target architecture the
type of instructions that can be used are store or load instruc-
tions. By default we use load instructions for both the rsk-nop

Figure 5: Timing of the scenario draw in Figure 3 as we add nop
operations: a) 1 nop, b) 2 nop, c) 5 nop, d) 6 nop.

and the rsk. In Section 5 we show the issues of using stores due
to the presence of store buffers in the pipeline.

rsk, used as contender sc, can be parameterized by varying
the type of instruction, t, used to stress the resource, sc(t).

We run rsk-nop(t, k) against Nc−1 copies of rsk(t), recording
its execution time, etscscua(t, k), and computing the execution
time increase with respect to the execution time of scua in
isolation, dbus(t, k) = etscscua(t, k) − etisolscua(t, k). The observed
dbus(t, k) has a saw-tooth behavior as we vary k and its period
gives ubd(t) for each type of access t. As expressed in the
Formula 3, the execution time increase suffered for two different
injection times, ki and kj , will be equal if i− j =ubd :

ubd(t) = |ki − kj | : (ki 6= kj) and (dbus(t, ki) = dbus(t, kj)) (3)

In the previous discussion we have assumed that δnop = 1.
This is typically the case in most architectures since nop op-
erations do not have input/output dependencies and use the
fast integer pipeline – if any. In the unlikely case δnop > 1,
varying the number of nops will be equivalent to sampling the
saw-tooth behavior presented in Figure 4. If the value of δnop

can be derived, we can obtain the saw-tooth period easily. To
this end, we have designed a rsk in which all the operations
in the loop-body are nops. The loop body is made as big as
possible without causing instruction cache misses. By dividing
the execution time of such rsk by the number of nop operations
executed we can derive δnop very accurately.

4.3 Summary
The proposed methodology empirically derives ubdm requir-

ing very limited knowledge about the underlying architecture
(often available in the corresponding manuals).

Inputs: Our approach requires knowing that the bus arbitra-
tion policy is RR and the type of instructions that may generate
requests to the bus. Both of which can be found in processors’
manuals.

Confidence: Two elements are central to confidence on the
obtained ubdm. First, Nc−1 cores running a rsk should suffice
to increase the utilization of the bus to 100%, other than hand-
shaking time. In many architectures, performance monitoring
counter support exists to measure the bus utilization. For in-
stance, counters 0x17 and 0x18 in the Cobham Gaisler NGMP



provide per-core and overall bus utilization [4]. And second,
it is required deriving δnop since it is needed to determine the
saw-tooth period. As stated before, our simple rsk including
only nop operations can be used to derive δnop.

Using ubdm: The derived bound, ubdm, can be used by STA
by simply adding it to the access time to the bus [12]. With
MBTA it is required to determine an upper-bound to the num-
ber bus requests, nr, that the scua performs to the bus. The
ETB of the scua is padded with pad = nr × ubdm.

5. EVALUATION
First, we detail our experimental setup in Section 5.1. Then,

we show how rsk-nop helps deriving ubd in the presence of
the synchrony effect (Section 5.2). For this validation of the
methodology we assume that the bus latency and the actual
value of ubd are known. This information is not provided in
Section 5.3, which represents the actual case of the applicability
of the methodology to a COTS multicore.

5.1 Experimental Setup
We model a 4-core NGMP [3] running at 200MHz compris-

ing a bus that connects cores to the L2 cache and an on-chip
memory controller. Each core has its own private instruction
(IL1) and data (DL1) caches. IL1 and DL1 are 16KB, 4-way
with 32-byte lines. The shared second level (L2) cache is split
among cores with each core receiving one way of the 256KB
4-way L2. Hence, contention only happens on the bus and the
memory controller. DL1 is write-through and all caches use
LRU replacement policy. With DRAMsim2 [20] we model a
2-GB one-rank DDR2-667 [10] with 4 banks, burst of 4 trans-
fers and a 64-bit bus, which provides 32 bytes per access, i.e.,
a cache line. In a study with the European Space Agency we
evaluated the performance estimates provided by our simulator
against a real NGMP implementation, the N2X [4] evaluation
board, using a low-overhead kernel that allowed cycle-level val-
idation. Our results for EEMBC benchmarks showed a devi-
ation in terms of accuracy of less than 3% on average and for
the NIR HAWAII benchmark [8] the inaccuracy reduces to less
than 1%.

In order to show the robustness of the proposed methodology
we evaluate it in this reference architecture as well as a variant
architecture (labeled as ref and var respectively in following
figures) in which DL1 and IL1 latency is 4 instead of 1 cycle,
which increases the injection time of all bus-access instructions
by 3 cycles, from 1 to 4. We show how our methodology based
on rsk-nop manages to derive ubd on both setups.

For the evaluation we use the EEMBC Autobench suite [14],
which models some real-world automotive critical functional-
ities. We also use rsk and rsk-nop as presented in previous
Sections, which use load operations to access the bus.

5.2 Observing the Synchrony Effect
For the purpose of showing how rsk-nop allows approximat-

ing ubd we use the following timing information: the bus has
a maximum latency of 9 cycles per contender (6 cycles corre-
sponding to the L2 hit latency and 3 cycles for bus transfer and
arbitration handover). As a result ubd is 27 cycles in this case,
see Equation 1.

In a first experiment, we run 8 randomly generated 4-tasks
workloads with EEMBC benchmarks under the ref architec-
ture. Figure 6(a) shows the histogram of the number of con-
tenders ready to send a request when the EEMBC in core c0
tries to access the bus. Results across different workloads are
quite similar. As it can be seen (dark bars), the EEMBC in core
c0 finds the bus empty or with one contender most of the times
when other EEMBC are used as contenders. This shows that
with real workloads it is very difficult to obtain a worst-case
scenario in which the contention suffered is ubd.

(a) Contending requests (b) Contention delay

Figure 6: Histogram of bus contenders and latency

(a) Load rsk. (b) Store rsk.
Figure 7: Slowdown when executed rsk-nop as scua against 3 rsk
co-runners. Results shown as as a function of nop instructions

In a second experiment we run 4 rsk that constantly access
the bus. In this case, see light-gray bars in Figure 6(a), we
observe that on almost every arbitration round the number of
contenders is Nc = 4. However this does not imply that the ubd
is suffered by each request due to the synchrony effect. This is so
because a given ci does not always have the lowest RR priority.
For instance, it can happen that when ci tries to access the bus
three other contenders are also ready but the core holding the
bus is ci−1, so that ci suffers low contention delay to get the
bus.

We analyze this phenomenon in more detail by measuring
the actual contention delay γi each request suffers. Figure 6(b)
shows the histogram of the contention delay suffered by all re-
quests of the rsk under the reference and the variant architec-
ture. We observe that the synchrony effect makes that almost
all requests in each case have the same latency since the in-
jection time among requests is the same. Further, we observe
that the distance among the observed upper-bound delay, i.e.
ubdm, and the actual one –27 in this case – varies across the
two architecture: ubdm is 23 for the var architecture and 26
for the ref one. Hence, depending on the the injection time in
the underlying architecture, the accuracy of ubdm varies, which
prevents using rsk to accurately derive ubd.

We observe that most of the requests, 98% of them in Fig-
ure 6(b), have the same contention delay. This value depends
on the number of load operations in the body of the rsk : the
load operations in the boundary of loop iterations have a higher
injection time than consecutive load operations inside the body
due to the effect of loop-iteration control operations. In our
case we unroll the loop body as much as possible not to cause
instruction cache misses. This allows reducing the overhead to
less than 2%.

5.3 Evaluation of rsk-nop methodology
As shown in Section 4, the injection time can be varied by

inserting nop instructions between consecutive accesses of the
rsk used as scua to derive ubd. In Figure 7(a) the vertical
axis shows the slowdown (in millions of cycles) suffered by rsk-
nop with respect to its execution in isolation and the horizontal
axis represents the variation of γ in nops injected. As predicted
in Figure 4, the slowdown is saw-tooth shaped, whose period
is ubd (27 = 51 − 24) for var and (27 = 54 − 27) for the
ref. Hence, the period of the saw-tooth shape is the same for
both variant architectures, which evidences the robustness of



the method detecting ubd under different setups. Note that
slowdown results have been obtained reading the execution time
that can be easily obtained in any COTS multicore.

So far we have used load operations in the rsk and rsk-nop.
We can also use stores, having in mind that our reference archi-
tecture has a store buffer that keeps store requests and allows
instructions to proceed in the pipeline unless the buffer is full,
i.e. a store request is considered completed as soon as it is put
in the buffer. The requests in the buffer access the bus with an
injection time δ = 0 since once the buffer is filled, requests can
be issued in consecutive cycles. In a high occupation scenario
of the buffer, store request suffer ubd in our scenario, i.e., one
entry of the buffer is freed every ubd cycles. As δ increases (by
inserting nop operations), the slowdown in the rsk-nop corre-
sponds to the difference between the latency of a new empty
slot in the buffer, i.e., ubd, and δ. When δ is higher than ubd
the buffer is able to allocate an empty slot before a new request
comes, thus the slowdown suffered is always zero because the
buffer is effectively hiding the store latency. As it can be seen
in Figure 7(b), this causes that for one entire period the slow-
down has a saw-tooth shape, while for following periods, the
slowdown is zero. We observe that the first period spans from
k ∈ [1, .., 28], whose length matches the ubd. The one cycle
shift in k is caused by the number of entries in the store buffer
and its processing time.

6. RELATED WORK
Buses in real-time systems are used for off-chip and on-chip

communication. Our work focuses on on-chip buses, such as the
AMBA bus [7]. Deriving WCET estimates for various arbitra-
tion policies has been analyzed in the past including Round-
Robin [13], TDMA [9] a similar policy to round-robin with
groups [13] called MBBA [2], or even a comparison between
arbitration policies [6]. In [17] authors propose a method based
on Performance Monitoring Counters (PMC) to enable deriv-
ing WCET estimates with Measurement-based timing analysis,
when the ubd for a round-robin bus is known. All these works
assume knowledge about the bus timing: slot sizes or maxi-
mum transfer times. Our work assumes no knowledge about
the timing of the bus.

In [18] authors report a counter intuitive behavior with a
round-robin based multicore: the execution time of a task run-
ning against a given number of cores can be smaller than its
execution time when running against fewer number of cores.
Our work identifies the reasons behind this counter intuitive
behavior, namely the synchrony effect behavior, and takes ad-
vantage of it to derive the ubd.
Resource-stressing kernels (rsk) [15], are used to characterize

the contention on certain resources of a multithreaded architec-
ture. They are also used in [5] to characterize the NGMP [3]
or in [11] to characterize the Freescale P4080.

In [1], which analyzes the impact of resource sharing in mul-
ticore, authors criticize the confidence that one can obtain with
rsk. We acknowledge the need to increase the confidence on the
results provided with rsk, and in fact the focus of this paper
is increasing confidence on those measurements for which we
propose rsk-nop. The need to increase confidence with mea-
surements is also confirmed by [12] in which the contention
results obtained with micro-benchmarks in [11] for the P4080
are used as input to a commercial timing analysis tool.

7. CONCLUSIONS
The lack of information about internal processor timing be-

havior advocates for the use of measurements to derive those
unknown timing parameters. For the bus, this parameter is
the maximum contention delay a request can suffer when ac-
cessing the bus: ubd. We have proposed a measurement-based
methodology that needs no information about the bus timing

parameters to successfully derive ubd. Overall our methodology
increases the trustworthiness on the derived ETB for COTS
multicore processors deploying round-robin buses. Trustwor-
thyness depends on both the soundness of the timing-analysis
tool/technique and the input parameters given to the timing
analysis tools, ubdm in this case.
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