
Increasing Engagement in Automata Theory With JFLAP ∗

Susan H. Rodger
Duke University

Durham, NC
rodger@cs.duke.edu

Eric Wiebe
NC State University

Raleigh, NC
eric wiebe@ncsu.edu

Kyung Min Lee
Duke University

Durham, NC

Chris Morgan
Georgia Tech
Atlanta, GA

Kareem Omar
NC State University

Raleigh, NC

Jonathan Su
Duke University

Durham, NC

ABSTRACT
We describe the results from a two-year study with fourteen
universities on presenting formal languages in a more visual,
interactive and applied manner using JFLAP. In our results
the majority of students felt that having access to JFLAP
made learning course concepts easier, made them feel more
engaged in the course and made the course more enjoyable.
We also describe changes and additions to JFLAP we have
made based on feedback from users. These changes include
new algorithms such as a CYK parser and a user-controlled
parser, and new resources that include a JFLAP online tu-
torial, a wiki and a listserv.

Categories and Subject Descriptors
F.4.3 [Theory of Computation]: Mathematical Logic and
Formal Languages Formal Languages; D.1.7 [Software]: Pro-
gramming Techniques Visual Programming

General Terms
Theory

Keywords
JFLAP, automata, formal languages, pumping lemma, CYK
parser

1. INTRODUCTION
The formal languages and automata (FLA) course has tra-

ditionally been taught with little engagement or feedback,
using pencil and paper exercises limited to small problems.
We have developed JFLAP[18, 17], educational software
used in this course to provide a more visual, interactive and

∗The work of all the authors was supported in part by
the National Science Foundation through NSF grant DUE-
0442513

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03 ...$5.00.

applied experience with theoretical concepts. JFLAP allows
one to create and simulate several types of automata, to cre-
ate and parse strings in grammars, and to experiment with
proof constructions such as converting a nondeterministic
finite automaton (NFA) to a deterministic finite automaton
(DFA) and then to a regular expression or regular grammar.
In JFLAP one can visualize the finite automaton or parse
tree in a graph format, interact with the automaton by run-
ning it with different input strings and see applications by
creating a DFA as part of the SLR parsing process.

Many other tools for experimenting with automata theory
have been developed. Turings World[2] is for experimenting
with Turing machines. Forlan[24] and Emulator[26] are for
experimenting with regular languages. The tool jFAST[27]
allows experimentation with finite automata, pushdown au-
tomata and Turing machines. Grinder[9] focuses on finite
state automata. RegEx[5] allows experimentation with reg-
ular expressions. Taylor[25] explores several types of ma-
chines. Ross[7] is developing a hypertextbook for many top-
ics in automata theory. Many of these tools focus on a small
set of topics. JFLAP is a software tool under development
for over 17 years to incorporate an extensive number of top-
ics in automata theory in one tool.

In the last few years, several tools have been developed
in Algorithm Visualization for different areas of computer
science with the majority for algorithms and data struc-
tures. Examples of these include Balsa-II [6], XTango [21],

Samba [22], AACE [8], Animalscript [19] and JHAVÉ[13]
for algorithms animation, tools for graph theory such as
Guess [1], and tools for discrete mathematics such as Com-
binatorica [15, 20], SetPlayer [3] and LINK [4].

How effective are such tools in the learning process? There
are some results in this area, but there is still much research
to be done. A small study using Samba [23] showed that
there was a learning advantage for students who interacted
with algorithm animations in a lab. In [10] a metastudy
of 24 experimental studies on the educational value of al-
gorithm visualization is presented. Nine of the studies had
no significant differences detected, but the remaining 15 had
results such as participants viewing or constructing anima-
tions scored significantly higher or outperformed in some
way. In [14] an ITICSE Working Group explored the role
of visualization and engagement in computer science educa-
tion and proposed several hypotheses to compare the types
of engagement of 1) no viewing, 2) viewing, 3) respond-
ing, 4) changing, 5)constructing, and 6) presenting, with

the hypothesis that the engagements offer significantly bet-
ter learning outcomes the higher the number associated with
it (with presenting the best outcome).

How effective is JFLAP in enhancing the learning pro-
cess and what additional value might JFLAP add to the
FLA course? This paper describes a two-year study of four-
teen universities using JFLAP in their FLA course including
feedback from both students and faculty.

In Section 2 we give an overview of the study and its
results. In Section 3 we describe changes and additions
to JFLAP based on feedback from users in our study. In
Section 4 we provide an analysis of the worldwide usage of
JFLAP, and in Section 5 we give concluding remarks.

2. JFLAP STUDY

2.1 Overview
Our two year JFLAP study was held from Fall 2005 to

Spring 2007 and included twelve universities the first year
and an additional two universities the second year. The four-
teen schools were Duke University, Emory University, Fayet-
teville State University, Norfolk State University, Rensse-
laer Polytechnic Institute, Rochester Institute of Technol-
ogy, San Jose State University, United States Naval Academy,
University of California Davis, University of Houston, Uni-
versity of North Carolina, University of Richmond, Vir-
ginia State University, and Winston-Salem State University.
These schools included a large mix of public and private,
large and small schools with several HBCU schools to in-
clude a racially diverse population.

In the summer of 2005 we held a workshop with 18 partic-
ipants including mostly faculty adopters, three evaluators,
and three student research assistants. A followup workshop
was held in the summer of 2006 with 17 participants, five of
them new. All fourteen schools participated in at least one
of the workshops. However, with the nationwide trend of en-
rollments dropping in computer science and the automata
theory course an optional course at some schools, not all
schools were able to participate in the collection of data due
to low enrollments or courses not held every year.

Data was collected from students and faculty adopters
through knowledge tests, surveys, structured telephone in-
terviews and face-to-face focus groups.

2.2 Results of Study - First Year
The first year of the study in 2005-2006 we were able to

collect data from 55 students (pretest) and 33 students(
posttest) at the seven schools: Duke University, Norfolk
State University, University of Richmond, University of Hous-
ton, Virginia State University, Fayetteville State University
and University of California Davis. The data collected from
students included a pre and post knowledge test, and a sur-
vey of computer science attitudes, JFLAP implementation
and usability.

The student usability survey can be summarized as fol-
lows. All the instructors did indeed use JFLAP materials in
their course, with the primary use in class for demonstrat-
ing, and extensive use for homeworks. JFLAP was used very
little as part of exams. Student opinion as to usefulness of
JFLAP as a tool to improve their grade was mixed, but a
large majority used JFLAP in 50% or less of their course.
Students had high opinion of the JFLAP software in terms of
its overall usability and power. They felt it was an easy and

useful tool to design, run and interpret simulations. Specific
questions from the usability survey are combined with year
2 and shown in the next section.

Selected questions from the software implementation sur-
vey shown below show that the majority of students used
JFLAP to study for exams and thought JFLAP helped them
to get a better grade.

Question YES/NO No. %

Did you use JFLAP software YES 20 55%
to study for inclass exams? NO 16 45%
Did you feel you had time to YES 33 94%
learn how to use the JFLAP NO 2 6%
software?
Did you feel that using the YES 3 8%
software took time away from NO 33 92%
other study activities?
Did the time and effort it took YES 23 64%
to use JFLAP help you get NO 13 36%
a better grade in the course?
Was it easier to use JFLAP software 30 83%
software or was it easier to by hand 6 17%
draw it out by hand?
Did you feel you would have YES 18 50%
done as well in the course NO 13 36%
if you had not used JFLAP? NA 5 14%

The attitudes survey showed that students were confident
in their abilities as one would expect for upper level com-
puter science majors, and enjoy engaging in the work and
problem-solving that is part of their course work.

The pretest and posttest given at the beginning and end
of the semester showed that the majority of students learned
key content in the course. There were too few responses and
no control group this year to statistically gauge the efficacy
of JFLAP for improving learning.

At the end of each semester, the research team conducted
structured telephone interviews with faculty adopters and
at the end of the year a focus group of faculty during the
second workshop. We give a summary from these faculty
discussions.

• The faculty felt strongly that JFLAP not be used as
part of exams. The reason cited in some cases had
to do with concerns about cheating and/or the tests
were all paper and pencil. One instructor did use it
for a test but found that students spent too much time
trying to perfect their machines.

• JFLAP was mostly used in homework and some as
part of in class demonstrations. For those who did not
use JFLAP as part of the class lecture/demonstration,
their reasons were varied but usually centered around
the fact that they delivered lectures with static multi-
media (e.g., PowerPoint slides of text and static graph-
ics) or did not use technology at all.

• One instructor noted that JFLAP was good for show-
ing how to build machines, but not why they worked.

• One instructor felt that JFLAP was better at the early
stages of learning but was cumbersome for more ad-
vanced problems.

• One instructor did try JFLAP in a group project with
positive feedback from both the instructor and stu-
dents.

• Another instructor indicated that they mostly used
JFLAP as a tool in lecture but also for electronically
submitted homework assignments.

• Some instructors used JFLAP as a graphics generation
tool since it was often quicker to create a diagram with
JFLAP and capture a graphic of it for use in lecture
than to draw the diagram by hand.

• Another instructor used JFLAP for a robot program-
ming assignment that the students really liked. They
noted that it could also be used as an alternative to
using lex or yacc.

• Unlike many of the instructors, one did not use it much
in lecture, but instead used it more for assignments and
office hours. They felt that it was a useful tool to help
get students to see hard to visualize cases, but that it
was not a substitute for theory instruction.

2.3 Results of Study - Second Year
In the second year of the study, two schools were added to

the study. Feedback from instructors and results of the first
year study were used to refine the evaluation instruments
in preparation for a larger control group study in year 2.
Changes included shortening the pre and post knowledge
test with some of the remaining questions modified. The
student survey was also modified based on instructor feed-
back. We were able to collect data from students at six
universities including 75 students (pretest and posttest), 67
students (pretest only) and 34 students (posttest only). The
six schools were Emory University, University of North Car-
olina, Duke University, San Jose State University, University
of Houston, and Virginia State University. San Jose State
University was our largest data collection site and had a
control group.

The table below shows combined results from the usability
survey in years 1 and 2, showing that students had an easy
time using JFLAP and thought is was a good tool.

Question

How easy was it Very Easy 31%
to use the Easy 48%
drawing tool Neither 15%
of JFLAP? Difficult 5%
(134 respondents) Very Difficult 0%
How easy was it Very easy 33%
to run the Easy 47%
automata you Neither 12%
designed in JFLAP? Difficult 6%
(134 respondents) Very Difficult 2%
How easy was it Very Easy 23%
to interpret Easy 45%
results from the Neither 19%
test run in JFLAP? Difficult 10%
(134 respondents) Very Difficulty 3%
What is your overall Very Poor 2%
assessment of the Poor 4%
JFLAP software? Neither 11%
(133 respondents) Good 63%

Very Good 20%

In the next table, we show two of the questions from the
year two implementation survey that show one third of the
students used JFLAP 21% or more of study time for exams,
and 29% used JFLAP to work additional problems.

QUESTION Time Response

When preparing for exams 0-20% 68%
what percentage of study 21-40% 16%
time involved the use of 41-60% 11%
JFLAP software? 61-80% 3%
(100 responses) 81-100% 2%
How often did you use Never 46%
JFLAP to do Rarely 25%
additional practice Occasionally 21%
problems? Often 4%
(99 responses) Very Often 4%

The next table shows new questions that were added in
year two to the usability study that show the majority of
students felt JFLAP made them more engaged and made
learning concepts easier.

Question

Using JFLAP made Strongly Agree 12%
the course more Agree 51%
enjoyable for me. Neither 25%
(98 responses) Disagree 6%

Strongly Disagree 4%
Using JFLAP made Strongly Agree 13%
me feel more Agree 59%
engaged in the Neither 15%
course. Disagree 9%
(98 responses) Strongly Disagree 3%
Having access to Much harder 1%
JFLAP made Harder 5%
learning course Neither 26%
concepts ... Somewhat easier 54%
(97 responses) Much easier 14%

The attitudes survey showed that the population sample
was a little less confident in their abilities. The pretest and
posttest again showed that students provided significantly
more correct answers at posttest. However the difference
between the control group and the JFLAP group was not
statistically significant.

3. EXPANDING INTERACTION IN JFLAP
This section describes changes to expand the interaction

in JFLAP. Many of these changes result from feedback from
users either directly or from the study. New interaction in-
cludes a user-controlled parser, and enhancements to the
pumping lemma. New algorithms include an implementa-
tion of CYK parser, and a proof construction from Turing
machine to unrestricted grammar. Several changes allow
JFLAP to fit more closely with a larger variety of textbooks
such as an option to automatically add in a trap state. New
resources are also given in this section including a new online
tutorial.

3.1 User-Control Parser
JFLAP had three parsers: brute-force parser, LL(1) parser

and SLR(1) parser. The later two are used mostly by those
studying compilers. The brute-force parser is used most

Figure 1: User-control Parser

heavily in testing strings but can result in poor performance.
We have added a faster parser, the CYK parser described
in the next section. However, all the parsers were lacking
the interaction of experimentation with rejected strings. In
all the parsers you type an input string and it is rejected or
accepted. If it is accepted you can step through the deriva-
tion or parse tree. If it is not accepted you can only wonder
why it was not accepted.

The user-control parser was developed so students could
try “what-if” parsing. The user guides the parse, and if a
deadend is reached, they can backtrack and try replacing a
variable with another rule. Figure 1 shows an example of a
step in a user-control parse of the string aababbbb. The user
clicks start and the S (start) variable appears in the parse
tree window. To move forward, the user must now select
a replacement rule. When step is selected the replacement
rule is executed. If there is a choice of variables to replace,
the user must also select which variable from the sentential
form shown in the bottom of the window. In Figure 1 the
user has selected the S→aSb rule and the first of the two S’s
in the sentential form aSSb.

3.2 CYK Parser
We have implemented the Cocke-Younger-Kasami (CYK)

parsing algorithm in JFLAP. Internally, the grammar is first
converted to the CNF grammar and then mapped back to
the original grammar. The user only sees the accept or reject
response and can step through the parsing of the string with
the original grammar. This algorithm is substantially faster
then the brute-force parser. The brute-force parser still has
value in that its algorithm is fairly easy to understand, and
its parsing difficulties are easy to see when JFLAP takes a
long time to parse.

3.3 Expanding Pumping Lemma
The pumping lemma game in JFLAP described in [16,

12] was a one-way game, the user against JFLAP with the
user always starting the game. To create more interaction
we have modified the game so that either the user can go
first or JFLAP can go first. This gives the user more expe-
rience with the choices needed in using the pumping lemma.
This change was applied to both the regular and context-free
pumping lemma games.

3.4 Turing Machine to Unrestricted Grammar
We have added the Turing machine to unrestricted gram-

mar proof construction explained in [12] to JFLAP. This
construction works with small examples and we provide two
such examples in the new online JFLAP Tutorial.

The user starts with a Turing machine. The construction
proof works by generating three sets of productions that
include variables with special notation from the proof. The
first set of productions are generated by clicking on the Start
variable and include an encoded string with a start state, a
start string and an arbitrary number of blanks on either side.
The next set of productions are generated by clicking on a
labeled transition and include encoded productions to mimic
the transitions. The third set of productions are generated
by clicking on the final state and include rules to remove
everything but the derived string w. Once the grammar is
generated it appears in a new window. Because it includes
variables with special notation there is a parser specifically
for this grammar that can be used to parse a string.

3.5 Other new items
We describe some of the other new items in JFLAP.

• To conform with more textbooks, we have added an
option to automatically add a trap state and arcs to
make a DFA complete.

• We have created additional transition diagram graph
layouts.

• The user can load an input string from a file. This is
helpful when viewing the universal Turing machine.

• There is an option to identify the type of grammar.

• We have written an online tutorial that includes JFLAP
file examples that can be downloaded.

4. JFLAP USAGE AND RESOURCES
We have tracked JFLAP’s usage around the world in a

number of ways including an online form when downloading
JFLAP. JFLAP has over 64,000 downloads from users in
161 countries since January 2004. The majority of users
are undergraduates (41%). Other users include graduate
students (26%), faculty(22%) and a small number of K-12
teachers (<2%, 713) and K-12 students (<2%, 1093). Of
those using JFLAP in a course, the majority (51%) say it is
not required, showing students are using it for courses even
though it is not required. The majority of use for JFLAP
is taking a course (60%) teaching a course (17%), Research
(8%) or other. JFLAP and source are provided for free.

New resources on the JFLAP web pages[17] include a wiki,
a listserv, and a list of books and papers referring to JFLAP.
An example is the paper [11] in which they modify JFLAP
to allow students to write Java programs to alter automata
to aid in understanding topics such as Church-Turing thesis
and undecidability.

5. SUMMARY
The results of our two year study showed that all the fac-

ulty used JFLAP in their courses and that students had a
high opinion of JFLAP. The faculty in our study mostly
used JFLAP for homework. Some used it in class demon-
strations. JFLAP was used very little in exams. Four-fifths

of the students thought JFLAP was easy to use to draw
automata, simulate and interpret the results. The majority
of students felt that having access to JFLAP made learning
course concepts easier, made them feel more engaged in the
course and made the course more enjoyable. Over half of
the students used JFLAP to study for exams, and thought
that the time and effort spent using JFLAP helped them
get a better grade in the course.

With feedback from the study and other users, we have
made several additions and changes to both JFLAP and
the JFLAP web site. JFLAP includes new algorithms for
experimenting with concepts such as the user-control parser
to try to derive a string from a grammar on your own. The
JFLAP web site has new resources for learning such as the
online tutorial and for sharing with the new wiki and listserv.

6. ACKNOWLEDGMENTS
We thank the evaluators and consultants involved in the

study: Joseph Bergin, Rockford Ross, Thomas Finley and
Peter Linz. We thank the fourteen faculty adopters for par-
ticipating and providing us feedback.

7. REFERENCES
[1] E. Adar. Guess: A language and interface for graph

exploration. In SIGCHI, pages 347–363, April 2006.

[2] J. Barwise and J. Etchemendy. Turing’s World 3.0 for
the Macintosh. CSLI, Cambridge University Press,
1993.

[3] D. Berque and et al. The SetPlayer System: An
Overview and a User Manual. Department of
Computer Science, Technical Report 91-17, Rensselaer
Polytechnic Institute, Troy, New York, 1991.

[4] J. Berry. Improving discrete mathematics and
algorithms curricula with link. In ACM
SIGCSE/SIGCUE Conference on Integrating
Technology in Computer Science Education, 1997.

[5] C. W. Brown and E. A. Hardisty. Regexex: An
interactive system providing regular expression
exercises. In Thirty-eighth SIGCSE Technical
Symposium on Computer Science Education, page (to
appear). SIGCSE, March 2007.

[6] M. Brown. Exploring algorithms using balsa-ii.
Computer, 21(2):14–36, May 1988.

[7] J. Cogliati, F. Goosey, M. Grinder, B. Pascoe,
R. Ross, and C. Williams. Realizing the promise of
visualization in the theory of computing. JERIC, 5,
2005.

[8] P. Gloor. Aace - algorithm animation for computer
science education. In Proceedings of the 1992 IEEE
Workshop on Visual Languages, pages 25–31, 1992.

[9] M. T. Grinder. A preliminary empirical evaluation of
the effectiveness of a finite state automaton animator.
In Thirty-fourth SIGCSE Technical Symposium on
Computer Science Education, pages 157–161. SIGCSE,
February 2003.

[10] C. Hundhausen, S. Douglas, and J. Stasko. A
meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing,
13(3):259–290, 2002.

[11] J. Jarvis and J. Lucas. Incorporating transformations
into jflap for enhanced understanding of automata. In

Thirty-ninth SIGCSE Technical Symposium on
Computer Science Education, pages 14–18. SIGCSE,
March 2008.

[12] P. Linz. An Introduction to Formal Languages and
Automata, 4th Edition. Jones and Bartlett, Sudbury,
MA, 2006.

[13] T. Naps. Jhave: Supporting algorithm visualization.
IEEE Computer Graphics, 25:49–55, 2005.

[14] T. Naps, G. Rossling, V. Almstrum, W. Dann,
R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi,
M. McNally, S. Rodger, and J. A. Velazquez-Iturbide.
Exploring the role of visualization and engagement in
computer science education, report of the working
group on improving the educational impact of
algorithm visualization, 2002. ITICSE.

[15] S. Pemmaraju and S. Skiena. Computational Discrete
Mathematics Combinatorics and Graph Theory with
Mathematica. Cambridge University Press, 2003.

[16] S. Rodger, J. Lim, and S. Reading. Increasing
interaction and support in the formal languages and
automata theory course. In The Twelfth Annual
Conference on Innovation and Technology in
Computer Science Education, pages 379–383. ITICSE,
June 2007.

[17] S. H. Rodger. Jflap web site, 2008. www.jflap.org.

[18] S. H. Rodger and T. W. Finley. JFLAP - An
Interactive Formal Languages and Automata Package.
Jones and Bartlett, Sudbury, MA, 2006.

[19] G. Roessling and B. Freisleben. Animalscript: An
extensible scripting language for algorithm animation.
In Twenty-second SIGCSE Technical Symposium on
Computer Science Education, pages 70–74, Feb 2001.

[20] S. Skiena. Implementing Discrete Mathematics.
Addison Wesley, Redwood City, CA, 1990.

[21] J. Stasko. Tango: A framework and system for
algorithm animation. IEEE Computer, pages 27–39,
Sept 1990.

[22] J. Stasko. Using student-built algorithm animations as
learning aids. In Twenty-eighth SIGCSE Technical
Symposium on Computer Science Education, pages
25–29, March 1997.

[23] J. Stasko and A. Lawrence. Empirically assessing
algorithm animations as learning aids. In Software
Visualization, pages 419–438. MIT Press, 1998.

[24] A. Stoughton. Experimenting with formal languages.
In Thirty-sixth SIGCSE Technical Symposium on
Computer Science Education, page 566. SIGCSE,
February 2005.

[25] R. Taylor. Models of Computation and Formal
Languages. Oxford University Press, New York, 1998.

[26] L. F. M. Vieira, M. A. M. Vieira, and N. J. Vieira.
Language emulator, a helpful toolkit in the learning
process of computer theory. In Thirty-fifth SIGCSE
Technical Symposium on Computer Science Education,
pages 135–139. SIGCSE, March 2004.

[27] T. M. White and T. P. Way. jfast: A java finite
automata simulator. In Thirty-seventh SIGCSE
Technical Symposium on Computer Science Education,
pages 384–388. SIGCSE, March 2006.

