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ABSTRACT

Motivated by the recent results of Hansen et al. concerning a noticeable hemispherical power asymmetry in the
Wilkinson Microwave Anisotropy Probe (WMAP) data on small angular scales, we revisit the dipole-modulated
signal model introduced by Gordon et al.. This model assumes that the true cosmic microwave background signal
consists of a Gaussian isotropic random field modulated by a dipole, and is characterized by an overall modulation
amplitude, A, and a preferred direction, p. Previous analyses of this model have been restricted to very low resolution
(i.e., 3°6 pixels, a smoothing scale of 9° FWHM, and £ < 40) due to computational cost. In this paper, we double the
angular resolution (i.e., 1°8 pixels and 4°5 FWHM smoothing scale), and compute the full corresponding posterior
distribution for the five-year WMAP data. The results from our analysis are the following: the best-fit modulation
amplitude for £ < 64 and the ILC data with the WMAP KQ85 sky cutis A = 0.072 4 0.022, nonzero at 3.3, and
the preferred direction points toward Galactic coordinates (/, b) = (224°, —22°) & 24°. The corresponding results
for £ < 40 from earlier analyses were A = 0.11 & 0.04 and (I, b) = (225°, —27°). The statistical significance
of a nonzero amplitude thus increases from 2.80 to 3.3 when increasing £,,x from 40 to 64, and all results
are consistent to within 1o. Similarly, the Bayesian log-evidence difference with respect to the isotropic model
increases from Aln E = 1.8 to Aln E = 2.6, ranking as “strong evidence” on the Jeffreys’ scale. The raw best-
fit log-likelihood difference increases from Aln £ = 6.1 to Aln £ = 7.3. Similar, and often slightly stronger,
results are found for other data combinations. Thus, we find that the evidence for a dipole power distribution in
the WMAP data increases with € in the five-year WMAP data set, in agreement with the reports of Hansen et al.
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1. INTRODUCTION

The question of statistical isotropy in the cosmic microwave
background (CMB) has received much attention within the
cosmological community ever since the release of the first-
year Wilkinson Microwave Anisotropy Probe (WMAP; Bennett
et al. 2003a) in 2003. The reasons for this are twofold. On
the one hand, the current cosmological concordance model is
based on the concept of inflation (Starobinsky 1980; Guth 1981;
Linde et al. 1982; Mukhanov et al. 1981; Starobinsky 1982;
Linde et al. 1983, 1994; Smoot 1992; Ruhl 2003; Rynyan 2003;
Scott 2003), which predicts a statistically homogeneous and
isotropic universe. Since inflation has proved highly successful
in describing a host of cosmological probes, most importantly
the CMB and large-scale power spectra, this undeniably imposes
a strong theoretical prior toward isotropy and homogeneity.

On the other hand, many detailed studies of the WMAP
sky maps, employing higher-order statistics, have revealed
strong hints of both violation of statistical isotropy and non-
Gaussianity. Some early notable examples include unexpected
low-¢ correlations (de Oliveira-Costa et al. 2004), a peculiar
large cold spot in the southern Galactic hemisphere (Vielva
et al. 2004), and a dipolar distribution of large-scale power
(Eriksen et al. 2004b). Today, the literature on non-Gaussianity
and violation of statistical isotropy in the WMAP data has grown
very large, indeed (e.g., Bernui et al. 2006; Bielewicz et al. 2005;
Copi et al. 2006; Cruz et al. 2005, 2006; Eriksen et al. 2004a,
2004c, 2005; Jaffe et al. 2005, 2006; Martinez-Gonzalez et al.
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2006; McEwen et al. 2008; Réth et al. 2007; Yadav & Wandelt
2008), and it would be unwise not to consider these issues very
seriously.

Of particular interest to us is the question of hemispherical
distribution of power in the WMAP data, first reported by Eriksen
et al. (2004b) and later confirmed by, e.g., Hansen et al. (2004)
and Eriksen et al. (2005). The most recent works on this topic
include those presented by Hansen et al. (2008), who found
that the power asymmetry extends to much smaller scales than
previously thought, and by Eriksen et al. (2007a), who quantified
the large-scale power asymmetry in the three-year WMAP data
using an optimal Bayesian framework.

A separate, but possibly physically related, line of work was
recently presented by Groeneboom & Eriksen (2009), who con-
sidered the specific model for violation of Lorenz invariance in
the early universe, proposed by Ackerman et al. (2007). This
model involves CMB correlations with a quadrupolar distribu-
tion on the sky, and is thus orthogonal to the current dipolar
model. Surprisingly, when analyzing the five-year WMAP data,
Groeneboom & Eriksen (2009) found supportive evidence for
this model at the 3.80 significance level, when considering an-
gular scales up to £ < 400. Thus, assuming that the WMAP
observations are free of unknown systematics, there appears to
be increasing evidence for both dipolar and quadrupolar struc-
ture in the CMB power distribution, at all angular scales.

In this paper, we repeat the Bayesian analysis of Eriksen
et al. (2007a), but double the angular resolution of the data.
Nevertheless, we are still limited to relatively low angular
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resolutions, since the method inherently relies on brute-force
evaluation of a pixel-based likelihood, and therefore scales as
(’)(Nsix). Yet, simply by spending more computer resources we
are able to increase the pixel resolution from Ngge = 16 to
32 and decrease the degradation smoothing scale from 9° to
425 FWHM. This provides additional support for multipoles
between £ ~ 40 and 80. While not sufficient to provide a full
and direct comparison with the results of Hansen et al. (2008),
it is a significant improvement over the results presented by
Eriksen et al. (2007a).

2. OVERVIEW OF MODEL AND ALGORITHMS

The Bayesian analysis framework used in this paper is very
similar to that employed by Eriksen et al. (2007a). We therefore
only give a brief overview of its main features here, and refer
the reader interested in the full details to the original paper and
references therein.

2.1. Data Model and Likelihood

The starting point for our analysis is the phenomenological
CMB signal model first proposed by Gordon et al. (2005),

d(i) = [1+ f()Is(?) + n(n). ey

Here d(n) denotes the observed data in direction 71, s(71) is an
intrinsically isotropic and Gaussian random field with power
spectrum Cy, f(#) is an auxiliary modulating field, and n(#)
denotes instrumental noise.

Obviously, if f = 0, one recovers the standard isotropic
model. However, we are interested in a possible hemispherical
asymmetry, and we therefore parameterize the modulation field
in terms of a dipole with a free amplitude A and a preferred
direction p,

F@R) = AG-p). @)

The modulated signal component is thus an anisotropic, but still
Gaussian, random field, with covariance matrix

Smoa(@, i) = [1+ A (it - P)ISiso(t, i)[1+ A (- p)I,  (3)

where
1 o
Siso(i, 1) = o — ;az + D)Cy Py(ii - ). 4)

We now introduce one new feature compared to the analysis
of Eriksen et al. (2007a), for two reasons. First, we are interested
in studying the behavior of the modulation field as a function of
£-range, and therefore want a mechanism to restrict the impact
of the modulation parameters in harmonic space. Second, we
also want to minimize the impact of the arbitrary regularization
noise (see Section 3) on the modulation parameters at high £’s.
Therefore, we split the signal covariance matrix into two parts,
one modulated low-¢ part and other isotropic high-¢ part,

Stolal = Smod + Sism (5)

where only multipoles between 2 < £ < €4 are included in
Siod, and only multipoles at £ > £p0q are included in Sig,.
(Note that we are not proposing a physical mechanism for
generating the modulation field in this paper, but only attempt
to characterize its properties. This split may or may not be
physically well motivated, but it does serve a useful purpose in
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the present paper as it allows us to study the scale dependence
of the modulation field in a controlled manner.)

Including instrumental noise and possible foreground con-
tamination, the full data covariance matrix reads

C =Sna(A, ]3) +Siso + N+F. (6)

The noise and foreground covariance matrices depend on the
data processing, and will be described in greater detail in
Section 3.

We also have to parameterize the power spectrum for the
underlying isotropic component, C,. Following Eriksen et al.
(2007a), we choose a simple two-parameter model with a free
amplitude g and tilt n for this purpose,

E n
Ci=gq <E> chd. (7

Here ¢, is a pivot multipole and ng is a fiducial model, in the
following chosen to be the best-fit ACDM power-law spectrum
of Komatsu et al. (2009).

Since both the signal and noise are assumed to be Gaussian,
the log-likelihood now reads

—21og L(A, p,q,n) =d’C~'d +1og|C], (8)
up to an irrelevant constant, with C = C(A, p, q, n).

2.2. The Posterior Distribution and Bayesian Evidence

The posterior distribution for our model is given by Bayes’
theorem,

. L(g.n, A, p)P(q.n, A, p|H)
P(g.n. A, pld, H) = =2 i(dé) P )

Here P(q,n, A, p|H) is a prior, and P(d|H) is a normalization
factor often called the “Bayesian evidence.” Note that we now
have included an explicit reference to the hypothesis (or model),
H, in all factors, as we will in the following compare two
different hypotheses, namely “H1: The universe is isotropic
(A = 0)” versus “H2: The universe is anisotropic (A # 0).”

We adopt uniform priors for all priors in the following.
Specifically, we adopt P(g) = Uniform[0.5, 1.5] and P(n) =
Uniform[—0.5, 0.5] for the power spectrum, and a uniform
prior over the sphere for the preferred axis, p. The modulation
amplitude prior is chosen uniformly over [0, Ap.x], wWhere
Amax = 0.20 s sufficiently large to fully encompass the nonzero
parts of the likelihood. If more liberal priors are desired, the
interested reader can easily calculate the corresponding evidence
by subtracting the logarithm of the volume expansion factor
from the results quoted in this paper.

With these definitions and priors, the posterior distribution,
P(g,n, A,p|d, H), is mapped out with a standard MCMC
sampler. The Bayesian evidence, E = P(d|H), is computed
with the “nested sampling” algorithm (Skilling 2004; Mukherjee
et al. 2006). For further details on both procedures, we refer the
interested reader to Eriksen et al. (2007a).

For easy reference, we recall Jeffreys’ interpretational scale
for the Bayesian evidence (Jeffreys 1961): a value of AIn E < 1
indicates a result “not worth more than a bare mentioning;”
a value of 1 < AInE < 2.5 is considered as “significant”
evidence; a value of 2.5 < Aln E < 5 is considered “strong to
very strong;” and Aln E > 5 ranks as “decisive.”
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Table 1
Summary Statistics for Modulated CMB Model Posteriors
Data Mask Lmod (Ivt, byt) Apg Significance (o) Alog L Alog E
ILC KQ85 64 (224°, —22°) £ 24° 0.072 £ 0.022 33 7.3 2.6
V band KQ85 64 (232°, —22°) £ 23° 0.080 £ 0.021 3.8
V band KQ85 40 (224°, —22°) £ 24° 0.119 £0.034 35
V band KQ85 80 (235°, —17°) £ 22° 0.070 £ 0.019 3.7
W band KQ85 64 (232°, —22°) £ 24° 0.074 £ 0.021 35
ILC KQ85e 64 (215°, —19°) £ 28° 0.066 £+ 0.025 2.6
Q band KQ85e 64 (245°, —21°) £ 23° 0.088 £ 0.022 39
V band KQ85e 64 (228°, —18°) £ 28° 0.067 £+ 0.025 2.7
W band KQ85¢e 64 (226°, —19°) £ 31° 0.061 £ 0.025 2.5 ... ...
ILC? Kp2 ~ 40 (225°, =27°) 0.11 £0.04 2.8 6.1 1.8

Notes. Listed quantities are data set (first column); mask (second column); maximum multipole used for modulation covariance
matrix, €mod (third column); marginal best-fit dipole axis (fourth column) and amplitude (fifth column) with 68% confidence
regions indicated; statistical significance of nonzero detection of A (sixth column); the change in maximum likelihood between

modulated and isotropic models, Alog L = 102 Limod —

log Liso (seventh column); and the Bayesian evidence difference,

Alog E = log Enmod — log Ejso (eighth column). The latter two were only computed for one data set, due to a high computational
cost. However, other values can be estimated by comparing the significances indicated in the sixth column.
2 Results computed from Ngige = 16 and 9° FWHM data, as presented by Eriksen et al. (2007a).

3. DATA

In this paper, we analyze several downgraded versions of the
five-year WMAP temperature sky maps, namely the template-
corrected Q-, V-, and W-band maps, as well as the “foreground
cleaned” Internal Linear Combination (ILC) map (Gold et al.
2009). Each map is downgraded to low resolution as follows
(Eriksen et al. 2007b): first, each map is downgraded to a
HEALPix® resolution of Ngge = 32, by smoothing to an
effective resolution of 4°5 FWHM and properly taking into
account the respective pixel windows. We then add uniform
Gaussian noise of o, = 1 uK rms to each pixel, in order to
regularize the pixel-pixel covariance matrix at small angular
scales. The resulting maps have a signal-to-noise ratio of unity
at £ = 80, and are strongly noise dominated at £,,,x = 95.

Two different sky cuts are used in the analyses, both of which
are based on the WMAP KQ85 mask (Gold et al. 2009). In the
first case, we directly downgrade the KQ85 cut to the appropriate
Niige, by excluding any HEALPix pixel for which more than
half of the corresponding sub-pixels are missing. This mask
is simply denoted by KQS85. In the second case, we smooth
the mask image (consisting of 0’s and 1’s) with a beam of 4°5
FWHM, and reject all pixels with a value less than 0.99. We call
this expanded mask KQ85e. The two masks remove 16.3% and
26.9% of the pixels, respectively.

The instrumental signal-to-noise ratio of the WMAP data
is very high at large angular scales, at about 150 for the V
band at £ = 100. The only important noise contribution in the
downgraded sky maps is therefore the uniform regularization
noise, which is not subject to the additional beam smoothing.
We therefore approximate the noise covariance matrix by N;; =
028 ;- Note that this approximation was explicitly validated by
Eriksen et al. (2007a) for the three-year WMAP data, which have
higher instrumental noise than the five-year data.

We also marginalize over a fixed set of “foreground tem-
plates,” t;, by adding an additional term to the data covariance
matrix of the form F; = o;t;t!, with o; > 10°, for each tem-
plate. In addition to one monopole and three dipole templates,’

8 http://healpix.jpl.nasa.gov
9 For an explicit demonstration of the importance of monopole and dipole
marginalization on this specific problem, see Gordon (2007).

we use the V-ILC difference map as a template for both the
V band and ILC maps, the Q-ILC difference for the Q band,
and the W-ILC difference for the W band. However, these fore-
ground templates do not affect the results noticeably in either
case, due to the sky cuts used.

4. RESULTS

The main results from the analysis outlined above are summa-
rized in Table 1. We consider nine different data combinations
(i.e., frequency bands, masks, and multipole range), and show
(1) the best-fit modulation axis and amplitude, both with 68%
confidence regions, (2) the statistical significance of the corre-
sponding amplitude (i.e., A/oy4), and (3) the raw improvement
in x2 and Bayesian log-evidence for the modulated model over
the isotropic model. The last items are shown for the ILC with
the KQ85 sky cut only. For reference, we also quote the ILC re-
sult for the Kp2 mask (Bennett et al. 2003b) reported by Eriksen
et al. (2007a) when analyzing the Ng4. = 16° and 9° FWHM
data.

The reason for providing the full evidence for only one data
set is solely computational. The total CPU cost for the full set
of computations presented here was ~50,000 CPU hr, and the
evidence calculation constitutes a significant fraction of this. On
the other hand, the evidence is closely related to the significance
level A /o4, and one can therefore estimate the evidence level for
other cases in Table 1 given the two explicit evidence values and
significances. We have therefore chosen to spend our available
CPU time on more MCMC posterior analyses, rather than on
more evidence computations.

We first consider the results for the ILC map with the KQ85
mask and £,,,g = 64. In this case, the best-fit amplitude is
A = 0.072 £ 0.022, nonzero at the 3.30 confidence level.
The best-fit axis points toward Galactic coordinates (I, b) =
(224°, —22°), with a 68% uncertainty of 24°. These results are
consistent with the results presented by Eriksen et al. (2007a),
who found an amplitude of A = 0.11 & 0.04 and a best-fit axis
of (I, b) = (225°, —27°) for £ < 40.

Second, we see that these results are only weakly dependent
on frequency, as both the V band and W band for the same mask
and ¢-range have amplitudes within 0.5¢ of the ILC map, with
A = 0.080 and A = 0.074, and nonzero at 3.8¢ and 3.50,


http://healpix.jpl.nasa.gov

988 HOFTUFT ET AL.

— ILC
— V-band
— W-band

Probability distribution

! | ! | !
0 0.05 0.1

Modulation amplitude

Figure 1. Posterior distributions for the dipole modulation amplitude, marginal-
ized over direction and CMB power spectrum, computed for the KQ85 sky cut
and o4 = 64.

respectively. (We have not included the O-band analysis for the
KQ85 mask, as there were clearly visible foreground residuals
outside the mask for this case.) The corresponding marginal
posteriors are shown in Figure 1, clearly demonstrating the
consistency between data sets. Figure 2 compares the best-fit
axes of the three data sets, and also indicates the axes reported
by Eriksen et al. (2004b) and Eriksen et al. (2007a).

Next, we also see that the results are not strongly dependent
on the choice of mask, as the amplitudes for the extended
KQ85e mask are consistent with the KQ85 results, even though
it removes an additional 10% of the sky. However, we do see,
as expected, that the error bars increase somewhat by removing
the additional part of the sky, and this reduces the absolute
significances somewhat.

Finally, the best-fit modulation amplitudes for the V-band
data and KQS85 mask are A = 0.12 for £, = 40, A =
0.080 for £peq = 64, and A = 0.070 for £pq = 80
at 3.50, 3.80, and 3.70, respectively. This is an interesting
observation for theoreticians who are interested in constructing
a fundamental model for the effect: taken at face value, these
amplitudes could indicate a non-scale-invariant behavior of A,
as also noted by Hansen et al. (2008). On the other hand, the
statistical significance of this statement is so far quite low, as
a single common value A ~ 0.07 is also consistent with all
measurements. Better measurements at higher £’s are required
to unambiguously settle this question.

5. CONCLUSIONS

Shortly, following the release of the first-year WMAP data
in 2003, Eriksen et al. (2004a) presented the early evidence
for a dipolar distribution of power in the CMB temperature
anisotropy sky, considering only the large angular scales of the
WMAP data. Next, Groeneboom & Eriksen (2009) presented
the evidence for a quadrupolar distribution of CMB power,
and found that this feature extended over all £’s under con-
sideration. Finally, Hansen et al. (2008) found that the dipolar
CMB power distribution is also present at high £’s. The evidence
for violation of statistical isotropy in the CMB field is currently
increasing rapidly, and the significance of these detections are
approaching 4o.

In this paper, we revisit the high-¢ claims of Hansen et al.
(2008), by applying an optimal Bayesian framework based on a
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Figure 2. Posterior distribution for the dipole modulation axis, shown for the V-
band map and KQ85 sky cut, marginalized over power spectrum and amplitude
parameters. Gray sky pixels indicate pixels outside the 20 confidence region.
The dots indicate the axis (1) reported by Eriksen et al. (2004b) in white; (2)
for both the ILC and V-band maps (these have the same best-fit axis) with the
KQ85 sky cut in black; (3) for the W bands in blue, and the axis reported by
Eriksen et al. (2007a) in green. Note that the background distribution has been
smoothed for plotting purposes to reduce visual Monte Carlo noise.

parametric modulated CMB model to the WMAP data at higher
multipoles than previously considered with this method, albeit
lower than those considered by Hansen et al. (2008). In doing so,
we find results very consistent with those presented by Hansen
et al. (2008): the evidence for a dipolar distribution of power in
the WMAP data increases with £. For example, when considering
the V-band data and KQ85 sky cut, the statistical significance of
the modulated model increases from 3.20 at £,,04 = 40 to 3.80
at £0q = 64, and 3.70 at £, = 80.

The Bayesian evidence now also ranking within the “strong
to very strong” category on Jeffreys’ scale. However, it should
be noted that the Bayesian evidence is by nature strongly prior
dependent, and if we had chosen a prior twice as large as the
one actually used, the corresponding log-evidence for the ILC
map would have fallen from Aln E = 2.6 to 1.7, ranking only
as “substantial” evidence. For this reason, it is in many respects
easier to attach a firm statistical interpretation to the posterior
distribution than the Bayesian evidence.

It is interesting to note that the absolute amplitude A may
show hints of decreasing with €. It is premature to say whether
this is due simply to a statistical fluctuation, or whether it might
point toward a non-scale-invariant underlying physical effect, in
which case the amplitude A should be replaced with a function
A(¥). Either case is currently allowed by the data.

To answer this question, and further constrain the overall
model, better algorithms are required. The current approach
relies on brute-force inversion of an Npix X Npix covariance

matrix, and therefore scales as (’)(Ngix) or O(Nfide). However,
already the present analysis, performed at N4, = 32, required
~50,000 CPU hr, and increasing Niq. by an additional factor of
2 would require ~3 million CPU hr. More efficient algorithms
are clearly needed.

To summarize, there is currently substantial evidence for both
dipolar (Hansen et al. 2008 and this work) and quadrupolar
power distribution (Groeneboom & Eriksen 2009) in the WMAP
data, and this is seen at all probed scales. The magnitude of
the dipolar mode is considerably stronger than the quadrupolar
mode, as a ~ 3.50 significance level is reached already at
£ ~ 64 for the dipole, while the same significance was obtained
at £ ~ 400 for the quadrupole.

These observations may prove useful for theorists attempt-
ing to construct alternative models for these features, either
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phenomenological or fundamental. Considerable efforts have
gone toward this goal already (e.g., Ackerman et al. 2007;
Bohmer & Mota 2008; Carroll et al. 2008, 2009; Chang et al.
2009; Erickcek et al. 2008a, 2008b; Gordon et al. 2005; Emir
Gilimriikciioglu et al. 2007; Himmetoglu et al. 2009a, 2009b;
Kahniashvili et al. 2008; Kanno et al. 2008; Koivisto & Mota
2008a, 2008b; Pereira et al. 2007; Pitrou et al. 2008; Pullen &
Kamionkowski 2007; Watanabe et al. 2009; Yokoyama & Soda
2008), but so far no fully convincing model has been estab-
lished. Clearly, more work is needed on both the theoretical and
observational side of this issue. Fortunately, it is now only a
few years until Planck will open up a whole new window on
these issues by producing high-sensitivity maps of the CMB po-
larization, as well as measuring the temperature fluctuations to
arcminute scales. We will then be able to measure the properties
of the dipole, quadrupole, and, possibly, higher-order modes of
the modulation field to unprecedented accuracy.
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Office of Space Science.

REFERENCES

Ackerman, L., Carroll, S. M., & Wise, M. B. 2007, Phys. Rev. D, 75, 083502

Bennett, C. L., et al. 2003a, ApJS, 148, 1

Bennett, C. L., et al. 2003b, ApJS, 148, 97

Bernui, A., Villela, T., Wuensche, C. A., Leonardi, R., & Ferreira, I. 2006, A& A,
454, 409

Bielewicz, P., Eriksen, H. K., Banday, A. J., Gérski, K. M., & Lilje, P. B.
2005, Apl, 635, 750

Bohmer, C. G., & Mota, D. F. 2008, Phys. Lett. B, 663, 168

Carroll, S. M., Dulaney, T. R., Gresham, M. I., & Tam, H. 2009, Phys. Rev. D,
79, 065011

Carroll, S. M., Tseng, C.-Y., & Wise, M. B. 2008, arXiv:0811.1086

Chang, S., Kleban, M., & Levi, T. S. 2009, J. Cosmol Astropart. Phys.,
JCAP04(2009)025

Copi, C.J., Huterer, D., Schwarz, D. J., & Starkman, G. D. 2006, MNRAS, 367,
79

Cruz, M., Martinez-Gonzilez, E., Vielva, P., & Cayon, L. 2005, MNRAS, 356,
29

Cruz, M., Tucci, M., Martinez-Gonzalez, E., & Vielva, P. 2006, MNRAS, 369,
57

de Oliveira-Costa, A., Tegmark, M., Zaldarriaga, M., & Hamilton, A.
2004, Phys. Rev. D, 69, 063516

Emir Giimriik¢iioglu, E. A., Contaldi, C. R., & Peloso, M. 2007, J. Cosmol.
Astropart. Phys., JCAP11(2007)005

Eriksen, H. K., Banday, A. J., Gorski, K. M., Hansen, F. K., & Lilje, P. B.
2007a, ApJ, 660, L81

Eriksen, H. K., Banday, A. J., Gorski, K. M., & Lilje, P. B. 2004a, ApJ, 612,
633

Eriksen, H. K., Banday, A. J., Gorski, K. M., & Lilje, P. B. 2005, ApJ, 622, 58

INCREASING EVIDENCE FOR HEMISPHERICAL POWER ASYMMETRY 989

Erickcek, A. L., Carroll, S. M., & Kamionkowski, M. 2008a, Phys. Rev. D, 78,
083012

Eriksen, H. K., Hansen, F. K., Banday, A. J., Gérski, K. M., & Lilje, P. B.
2004b, ApJ, 605, 14

Erickcek, A. L., Kamionkowski, M., & Carroll, S. M. 2008b, Phys. Rev. D, 78,
123520

Eriksen, H. K., Novikov, D. L., Lilje, P. B., Banday, A. J., & Goérski, K. M.
2004c¢, Apl, 612, 64

Eriksen, H. K., et al. 2007b, ApJ, 656, 641

Gold, B., et al. 2009, ApJS, 180, 265

Gordon, C. 2007, ApJ, 656, 636

Gordon, C., Hu, W., Huterer, D., & Crawford, T. 2005, Phys. Rev. D, 72,
103002

Gorski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke,
M., & Bartelman, M. 2005, ApJ, 622, 759

Groeneboom, N. E., & Eriksen, H. K. 2009, ApJ, 690, 1807

Guth, A. H. 1981, Phys. Rev. D, 23, 347

Hansen, F. K., Banday, A. J., & Gérski, K. M. 2004, MNRAS, 354, 641

Hansen, F. K., Banday, A. J., Gorski, K. M., Eriksen, H. K., & Lilje, P. B. 2008,
arXiv:0812.3795

Himmetoglu, B., Contaldi, C. R., & Peloso, M. 2009a, Phys. Rev. Lett., 102,
111301

Himmetoglu, B., Contaldi, C. R., & Peloso, M. 2009b, Phys. Rev. D., 79, 063517

Jaffe, T. R., Banday, A. J., Eriksen, H. K., Gérski, K. M., & Hansen, F. K.
2005, ApJ, 629, L1

Jaffe, T. R., Banday, A. J., Eriksen, H. K., Gérski, K. M., & Hansen, F. K.
2006, A&A, 460, 393

Jeffreys, H. 1961, Theory of Probability (3rd ed.; Oxford: Oxford Univ. Press)

Kahniashvili, T., Lavrelashvili, G., & Ratra, B. 2008, Phys. Rev. D, 78, 063012

Kanno, S., Kimura, M., Soda, J., & Yokoyama, S. 2008, J. Cosmol. Astropart.
Phys. JCAP08(2008)34

Koivisto, T., & Mota, D. F 2008a, J. Cosmol. Astropart. Phys.
JCAP08(2008)021

Koivisto, T., & Mota, D. F. 2008b, ApJ, 679, 1

Komatsu, E., et al. 2009, ApJS, 180, 330

Linde, A. D. 1982, Phys. Lett. B, 108, 389

Linde, A. D. 1983, Phys. Lett. B, 155, 295

Linde, A. D. 1994, Phys. Rev. D, 49, 748

Martinez-Gonzélez, E., Cruz, M., Cayodn, L., & Vielva, P. 2006, New. Astron.
Rev., 50, 875

McEwen, J. D., Hobson, M. P, Lasenby, A. N., & Mortlock, D.J. 2008, MNRAS,
388, 659

Muhkanov, V. E,, Chibishov, G. V., & Pis’mah, Zh. 1981, Eskp. Teor. Fiz., 33,
549

Mukherjee, P., Parkinson, D., & Liddle, A. R. 2006, ApJ, 638, L51

Pereira, T. S., Pitrou, C., & Uzan, J.-P. 2007, J. Cosmol. Astropart. Phys.
JCAP09(2007)006

Pitrou, C., Pereira, T. S., & Uzan, J.-P. 2008, J. Cosmol. Astropart. Phys.
JCAP04(2008)004

Pullen, A. R., & Kamionkowski, M. 2007, Phys. Rev. D, 76, 103529

Riith, C., Schuecker, P.,, & Banday, A. J. 2007, MNRAS, 380, 466

Ruhl, J. E. 2003, ApJ, 599, 786

Runyan, M. C. 2003, ApJS, 149, 265

Scott, P. F. 2003, MNRAS, 341, 1076

Skilling, J. 2004, in AIP Conf. Proc. 735, Bayesian Inference and Maximum
Entropy Methods in Science and Engineering, ed. R. Fischer, R. Preuss, &
U. von Toussaint (Melville, NY: AIP), 395

Smoot, G. F. 1992, ApJ, 396, L1

Starobinsky, A. A. 1980, Phys. Lett. B, 91, 99

Starobinsky, A. A. 1982, Phys. Lett. B, 117, 175

Vielva, P., Martinez-Gonzilez, E., Barreiro, R. B., Sanz, J. L., & Cayon, L.
2004, ApJ, 609, 22

Watanabe, M.-a., Kanno, S., & Soda, J. 2009, arXiv:0902.2833

Yadav, A. P. S., & Wandelt, B. D. 2008, Phys. Rev. D, 100, 181301

Yokoyama, S., & Soda, J. 2008, J. Cosmol. Astropart. Phys. JCAP08(2008)005


http://dx.doi.org/10.1103/PhysRevD.75.083502
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvD..75h3502A
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvD..75h3502A
http://dx.doi.org/10.1086/377253
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJS..148....1B
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJS..148....1B
http://dx.doi.org/10.1086/377252
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJS..148...97B
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJS..148...97B
http://dx.doi.org/10.1051/0004-6361:20054243
http://adsabs.harvard.edu/cgi-bin/bib_query?2006A&A...454..409B
http://adsabs.harvard.edu/cgi-bin/bib_query?2006A&A...454..409B
http://dx.doi.org/10.1086/497263
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...635..750B
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...635..750B
http://dx.doi.org/10.1016/j.physletb.2008.04.008
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhLB..663..168B
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhLB..663..168B
http://dx.doi.org/10.1103/PhysRevD.79.065011
http://adsabs.harvard.edu/cgi-bin/bib_query?2009PhRvD..79f5011C
http://adsabs.harvard.edu/cgi-bin/bib_query?2009PhRvD..79f5011C
http://www.arxiv.org/abs/0811.1086
http://dx.doi.org/10.1088/1475-7516/2009/04/025
http://adsabs.harvard.edu/cgi-bin/bib_query?2009JCAP...04..025C
http://dx.doi.org/10.1111/j.1365-2966.2005.09980.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.367...79C
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.367...79C
http://dx.doi.org/10.1111/j.1365-2966.2004.08419.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.356...29C
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.356...29C
http://dx.doi.org/10.1111/j.1365-2966.2006.10312.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.369...57C
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.369...57C
http://dx.doi.org/10.1103/PhysRevD.69.063516
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PhRvD..69f3516D
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PhRvD..69f3516D
http://dx.doi.org/10.1088/1475-7516/2007/11/005
http://adsabs.harvard.edu/cgi-bin/bib_query?2007JCAP...11..005E
http://dx.doi.org/10.1086/518091
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...660L..81E
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...660L..81E
http://dx.doi.org/10.1086/422807
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...612..633E
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...612..633E
http://dx.doi.org/10.1086/427897
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...622...58E
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...622...58E
http://dx.doi.org/10.1103/PhysRevD.78.083012
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..78h3012E
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..78h3012E
http://dx.doi.org/10.1086/382267
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...605...14E
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...605...14E
http://dx.doi.org/10.1103/PhysRevD.78.123520
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..78l3520E
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..78l3520E
http://dx.doi.org/10.1086/422570
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...612...64E
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...612...64E
http://dx.doi.org/10.1086/509911
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...656..641E
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...656..641E
http://dx.doi.org/10.1088/0067-0049/180/2/265
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJS..180..265G
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJS..180..265G
http://dx.doi.org/10.1086/510511
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...656..636G
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...656..636G
http://dx.doi.org/10.1103/PhysRevD.72.103002
http://adsabs.harvard.edu/cgi-bin/bib_query?2005PhRvD..72j3002G
http://adsabs.harvard.edu/cgi-bin/bib_query?2005PhRvD..72j3002G
http://dx.doi.org/10.1086/427976
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...622..759G
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...622..759G
http://dx.doi.org/10.1088/0004-637X/690/2/1807
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJ...690.1807G
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJ...690.1807G
http://dx.doi.org/10.1103/PhysRevD.23.347
http://adsabs.harvard.edu/cgi-bin/bib_query?1981PhRvD..23..347G
http://adsabs.harvard.edu/cgi-bin/bib_query?1981PhRvD..23..347G
http://dx.doi.org/10.1111/j.1365-2966.2004.08229.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2004MNRAS.354..641H
http://adsabs.harvard.edu/cgi-bin/bib_query?2004MNRAS.354..641H
http://www.arxiv.org/abs/0812.3795
http://dx.doi.org/10.1103/PhysRevLett.102.111301
http://adsabs.harvard.edu/cgi-bin/bib_query?2009PhRvL.102k1301H
http://adsabs.harvard.edu/cgi-bin/bib_query?2009PhRvL.102k1301H
http://dx.doi.org/10.1103/PhysRevD.79.063517
http://adsabs.harvard.edu/cgi-bin/bib_query?2009PhRvD..79f3517H
http://adsabs.harvard.edu/cgi-bin/bib_query?2009PhRvD..79f3517H
http://dx.doi.org/10.1086/444454
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...629L...1J
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...629L...1J
http://dx.doi.org/10.1051/0004-6361:20065748
http://adsabs.harvard.edu/cgi-bin/bib_query?2006A&A...460..393J
http://adsabs.harvard.edu/cgi-bin/bib_query?2006A&A...460..393J
http://dx.doi.org/10.1103/PhysRevD.78.063012
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..78f3012K
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..78f3012K
http://dx.doi.org/10.1086/587451
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...679....1K
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...679....1K
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJS..180..330K
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJS..180..330K
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://adsabs.harvard.edu/cgi-bin/bib_query?1982PhLB..108..389L
http://adsabs.harvard.edu/cgi-bin/bib_query?1982PhLB..108..389L
http://adsabs.harvard.edu/cgi-bin/bib_query?1985PhLB..155..295L
http://adsabs.harvard.edu/cgi-bin/bib_query?1985PhLB..155..295L
http://dx.doi.org/10.1103/PhysRevD.49.748
http://adsabs.harvard.edu/cgi-bin/bib_query?1994PhRvD..49..748L
http://adsabs.harvard.edu/cgi-bin/bib_query?1994PhRvD..49..748L
http://dx.doi.org/10.1016/j.newar.2006.09.018
http://adsabs.harvard.edu/cgi-bin/bib_query?2006NewAR..50..875M
http://adsabs.harvard.edu/cgi-bin/bib_query?2006NewAR..50..875M
http://dx.doi.org/10.1111/j.1365-2966.2008.13406.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.388..659M
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.388..659M
http://adsabs.harvard.edu/cgi-bin/bib_query?1981PZETF..33..549M
http://adsabs.harvard.edu/cgi-bin/bib_query?1981PZETF..33..549M
http://dx.doi.org/10.1086/501068
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...638L..51M
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...638L..51M
http://dx.doi.org/10.1103/PhysRevD.76.103529
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvD..76j3529P
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvD..76j3529P
http://dx.doi.org/10.1111/j.1365-2966.2007.12113.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.380..466R
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.380..466R
http://dx.doi.org/10.1086/379345
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...599..786R
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...599..786R
http://dx.doi.org/10.1086/379099
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJS..149..265R
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJS..149..265R
http://dx.doi.org/10.1046/j.1365-8711.2003.06354.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.341.1076S
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.341.1076S
http://adsabs.harvard.edu/cgi-bin/bib_query?2004AIPC..735..395S
http://dx.doi.org/10.1086/186504
http://adsabs.harvard.edu/cgi-bin/bib_query?1992ApJ...396L...1S
http://adsabs.harvard.edu/cgi-bin/bib_query?1992ApJ...396L...1S
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://adsabs.harvard.edu/cgi-bin/bib_query?1980PhLB...91...99S
http://adsabs.harvard.edu/cgi-bin/bib_query?1980PhLB...91...99S
http://dx.doi.org/10.1016/0370-2693(82)90541-X
http://adsabs.harvard.edu/cgi-bin/bib_query?1982PhLB..117..175S
http://adsabs.harvard.edu/cgi-bin/bib_query?1982PhLB..117..175S
http://dx.doi.org/10.1086/421007
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...609...22V
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...609...22V
http://www.arxiv.org/abs/0902.2833
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvL.100R1301Y
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvL.100R1301Y

	1. INTRODUCTION
	2. OVERVIEW OF MODEL AND ALGORITHMS
	2.1. Data Model and Likelihood
	2.2. The Posterior Distribution and Bayesian Evidence

	3. DATA
	4. RESULTS
	5. CONCLUSIONS
	REFERENCES

