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Abstract

Manufacturing flexibility improves a firm’s ability to react in timely manner to customer

demands and to increase production system productivity without incurring excessive costs

and expending an excessive amount of resources. The emerging technologies in the Industry

4.0 era, such as cloud operations or industrial Artificial Intelligence, allow for new flexible

production systems. We develop and test an analytical model for a throughput analysis and

use it to reveal the conditions under which the autonomous mobile robots (AMR)-based flex-

ible production networks are more advantageous as compared to the traditional production

lines. Using a circular loop among workstations and inter-operational buffers, our model

allows congestion to be avoided by utilizing multiple crosses and analyzing both the flow

and the load/unload phases. The sensitivity analysis shows that the cost of the AMRs and the

number of shifts are the key factors in improving flexibility and productivity. The outcomes

of this research promote a deeper understanding of the role of AMRs in Industry 4.0-based

production networks and can be utilized by production planners to determine optimal config-

urations and the associated performance impact of the AMR-based production networks in as

compared to the traditionally balanced lines. This study supports the decision-makers in how

the AMR in production systems in process industry can improve manufacturing performance

in terms of productivity, flexibility, and costs.

Keywords Autonomous mobile robots · Artificial Intelligence · Cloud manufacturing ·

Production network · Production line · Performance · Flexibility · Industry 4.0

1 Introduction

Over the past two decades, flexibility has been considered an important determinant in pro-

duction system design (Das 2001; Dolgui and Proth 2010; Dubey and Ali 2014; Jain et al.
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2013; Dubey et al. 2018; Ivanov et al. 2018a) and particularly Industry 4.0 has also been iden-

tified as a major determinant in improving production flexibility (Cavalcantea et al. 2019;

Dubey et al. 2019; Frank et al. 2019; Ivanov et al. 2016, 2019a, b; Ivanov and Dolgui 2019).

The aspiration of Industry 4.0 is to promote the virtualization, decentralization and network

building to transform the traditional production environment (Brettel et al. 2014). Thereby,

the emerging technologies, such as cloud operations or industrial Artificial Intelligence, allow

for new flexible production systems (Calzavara et al. 2018; Dubey et al. 2018; Panetto et al.

2019; Wamba and Akter 2019; Ivanov and Dolgui 2020). While these developments have

been increasingly promoted in discrete manufacturing (Lin et al. 2019), production systems

in process industries (PI) are behind in applying and exploiting the advantages of innovative

technologies to improve the flexibility and productivity of their processes.

To compete in price and market shares, production lines in PI, such as dairy, ice cream or

baked goods production, pharmaceutics, or detergent, rely on manufacturing systems with

high productivity for a single product or small product family. The PI can be differenti-

ated from discrete manufacturing by virtue of their high volume, low variety, dedicated and

inflexible equipment, fixed routing, long changeover times, and fixed layouts (Abdulmalek

et al. 2006). While discrete manufacturing has evolved from dedicated manufacturing lines

to flexible manufacturing systems and reconfigurable manufacturing systems (Singh et al.

2007; Koren et al. 2018), the production systems in PI mainly rely mainly on single, dedi-

cated production lines (Rekiek et al. 2002; Dolgui et al. 2006). Such a production line often

consists of several workstations connected by conveyors leading to a production system capa-

ble of high production output rates and efficient intralogistics between workstations. These

production lines are usually designed and optimized for low product variety, allowing thus

little flexibility and adaptation to future trends and demands.

One difficulty in designing flexible PI production lines in the age of Industry 4.0 is a

specific constellation of product mix and existing production systems. Market and industry

trends favor a higher product mix and fast responsiveness to demand changes (Xu et al. 2018;

Noroozi and Wikner 2017). In the past, companies in PI sold single products in standard size

and packaging. Today, companies are advertising a higher variety of products and selling

them in different packaging sizes. Increasing the product mix challenges the ability of these

production systems to maintain high productivity. The companies either have to invest in a

new production line and potentially risk low utilization or include the new product mix in

existing production lines and deal with long setup times. Both alternatives inhibit the fulfilling

of the productivity target.

Balanced and unbalanced, Just-In-Time (JIT), and theory of constraints have been the main

approaches utilized to plan and control production lines to achieve high productivity and han-

dle downtime and variety (Chakravorty and Atwater 1996). Alongside these approaches, lean

practices, such as alignment of production with demand, elimination of waste, integration of

the supplier, and the involvement of the workforce, have been of great interest to practitioners

and researchers seeking to more efficiently plan and operate production systems in PI (Lyons

et al. 2013). One comparative study showed that JIT lines perform best when variability in

the system is low, while theory of constraints lines can deal with a higher variety of prod-

ucts (Chakravorty and Atwater 1996). However, PIs still lag behind discrete industries in the

implementation of planning and control processes which meet their specific characteristics

and needs (Dennis and Meredith 2000). Some research suggests that emerging technologies,

such as cyber physical systems (Monostori et al. 2016; Panetto et al. 2019), big data (Chen

et al. 2012; Wamba et al. 2015; Ivanov et al. 2019a, b; Wamba et al. 2018, 2017), Artificial

Intelligence (Talbi 2016; Kusiak 2018), embedded systems (Wan et al. 2010), and smart

vehicles (Qin et al. 2016), present a significant contribution to closing this gap.
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Through Industry 4.0 connectivity, automation, fast information exchange and analytics, a

new dimension of flexibility can be reached and new approaches to planning and controlling

production systems designed. Cloud-based manufacturing is a technology which can con-

tribute significantly to the realization of Industry 4.0 advantages (Thames and Schaefer 2016;

Yin et al. 2018; Shukla et al. 2019; Ivanov and Dolgui 2020; Ivanov et al. 2016, 2018b). The

aspiration of cloud manufacturing is to form production networks capable of dynamic recon-

figuration and high flexibility, while intelligent big data analytics can provide global feedback

to achieve high efficiency (Wang et al. 2016; Ahn et al. 2018; De Sousa Jabbour et al. 2018).

Workstations and a material handling system collect and share rich process data within the

cloud in real time. Information about workstation utilization and performance can support

decentralization of the decision point and enable the production system to react dynamically

to demand and supply changes, so that materials can be distributed according to capacity. To

enable cloud manufacturing, current production systems have to be adapted. A few studies

demonstrate ways to achieve these goals, with a strong emphasis on digitalizing machines

and establishing IT infrastructures. Left ignored, however, was the role of material handling

systems. Current literature does not specify how production systems should be adapted from

a material handling perspective to enable cloud manufacturing. As a result, it is not yet clear

how the flexibility and productivity of PI production systems can be increased at the shop-

floor level using smart intralogistics – this is a substantive and distinctive contribution made

by our study.

More specifically, our study uncovers the importance of autonomous mobile robots (AMR)

in redesigning the material handling systems in the context of Industry 4.0 for the first time.

We hypothesize that smart autonomous material handling systems in specific configurations

with the AMR may affect PI flexibility and productivity through intralogistics in production

systems in combination with cloud manufacturing. Traditional material handling equipment

makes the production system rigid to change in layout and process routing. The availability

of technologies using Artificial Intelligence for positioning and navigation (Fuentes-Pacheco

et al. 2015; Patle et al. 2018) can support the improvements in transportation in production

systems making use of intelligent vehicles, such as the AMR in order to obtain feasible

solutions in increasing the flexibility and productivity of the production systems.

The objectives of this study can be formulated as research questions. First, when are the

AMRs more suitable as traditional material handling equipment in PI production systems?

Secondly, how can the AMR in PI production systems improve operations performance in

terms of productivity, flexibility, and costs?

We contribute to literature by developing and analysing a mathematical model to inves-

tigate conditions under which it is advantageous to implement the AMR-driven flexible

production networks. The sensitivity analysis highlights that the cost of AMRs and the num-

ber of shifts are the key factors in improving flexibility and productivity. The outcomes of

this research can help in understanding the role of AMR in Industry 4.0-based production

networks and can be utilized by decision-makers in manufacturing to determine optimal

configurations and the associated performance impact of autonomous production networks

in PI as compared to traditionally balanced lines. Our findings can guide firms in strategic

decisions from both an economical and technical perspective regarding the installation of a

new production network with an AMR system compared to continued use of existing pro-

duction lines. The new analytical model developed incorporates a variety of considerations,

such as estimation and comparison of the throughput of the AMR and traditional production

lines in PI, their flexibility, and costs. Such a combination is unique in literature, affording

more realistic application and accurate simulation of the complexities of decision-making

realities.
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The rest of this study is organized as follows. Section 2 reviews related literature on plan-

ning and control of production lines and systems. The corresponding models are reviewed

to frame the literature gap. Section 3 is devoted to the principles of AMR. Section 4 intro-

duces and describe s the analytical model for AMR-supported production networks using

a circular loop among workstations and an inter-operational buffer. Section 5 provide s the

system comparison s from an economical and technical perspective using parametrical anal-

ysis. Section 6 provides a series of sensitivity analyses and a discussion on the managerial

implications of the results. The study is concluded in Section 7 with a summary of major

insights and an outline of future avenues of research.

2 Literature review

Driven by the differing market requirements over the last years, manufacturing systems have

faced broad changes (Yin et al. 2018), from the introduction of assembly lines to the cost-

effectiveness requirements of mass production, the introduction and discussions of balanced

and unbalanced lines (Davis 1965), and the establishment of JIT lines based on the “Toyota

Production System” (Ono 1988), which aligns production with demand to eliminate waste.

Thereby, different production line configurations, such as serial, parallel with or without

crossover have been introduced. Freiheit et al. (2004) compared and analyzed the different

constellations at the generic level showing the benefits in different performance dimensions,

i.e., in productivity. A variety of mathematical models has been developed to support prac-

titioners in production system design and workload optimization (Li and Meerkov 2009;

Dolgui and Proth 2010; Smith 2015; Dolgui et al. 2019; Palaniappan and Jawahar 2010;

Zschorn et al. 2017). An extensive review by Lusa (2008) on the complexity of decisions to

be taken in designing single or parallel production lines highlights that the literature mainly

discusses on how to decide upon number of lines or stations that has to be installed and on

how to evaluate the performance of the production lines.

To ensure rapid market responsiveness, automated transportation systems such as convey-

ors, industrial vehicles, monorails, hoists, and cranes (Tompkins 2010) have been introduced

in the design of new manufacturing systems. The choice of the most suitable transportation

system depends on the application and boundary conditions, such as productivity, flow pattern,

and flow path. For this reason, mathematical models are often used to design transportation

systems. Focusing on conveyors, Andriansyah (2011) modeled an order-picking worksta-

tion to generate a certain throughput and avoid possible congestions and material queues.

Concerning Rail Guided Vehicles (RGV), Calzavara et al. (2018) proposed a mathematical

formulation to estimate system throughput and the right number of RGVs to employ in an

automated parts-to-picker system. They report ed that system throughput does not increase

linearly with the number of RGVs due to congestion phenomena. The so-called fleet sizing

problem has also been assessed for Automated Guided Vehicles (AGV) and Laser Guided

Vehicles (LGV). Arifin and Egbelu (2000) proposed an analytical model based on a regres-

sion analysis that provided comparable performances using simulation. Choobineh et al.

(2012) proposed a model which accounts for dynamic factors in the determination of AGV

fleet size. Ferrara et al. (2014) assessed the fleet sizing problem for LGV in automated ware-

houses, proposing an analytical model that takes into consideration stochastic phenomena

and queuing implications. Reviewing the design and operational issues in AGV systems,

Ganesharajah et al. (1998) highlighted that Artificial Intelligence has considerable potential

to improve the state of knowledge in this area.
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In general, Artificial Intelligence is a cognitive science with strong research activities in the

areas of image processing, robotics, machine learning etc. (Lee et al. 2018). The developed

techniques and knowledge have improved mobile robots both at the device and systems

level. Techniques of Artificial Intelligence have pushed the navigation of mobile robots to

autonomous driving and obstacles avoidance (Dias et al. 2018). At the system level, mobile

robots are able to operate in cloud environments that can provide on-demand computing

services (Xu 2012) and support in smart decision-making in the scheduling process with

mobile robots (Liu et al. 2018). However, there has been a paucity of research of how the

AGV technology can support improvements in productivity and flexibility of the production

systems.

With recent developments in computational power and Artificial Intelligence, the indoor

positioning and autonomous navigation for mobile robots have been enabled. Unlike AGVs,

these vehicles are not fixed to defined guide path, but instead drive in a predefined area,

allowing greater flexibility. Traditionally, an AGV system operates with a central hierar-

chical structure and is reductive to changes. AMRs operate autonomously, which implies

decentralized decisions, such as dynamic routing and scheduling. The most common AGVs

in industry are often bulky and require frequent human intervention to load and offload

equipment. AMRs are often small and more agile than AGVs. This implies that AMR can

access more areas and be integrated to a higher degree in workspace or workstations, enabling

manufacturing flexibility and meeting the current production demands (Mosallaeipour et al.

2018). One application in the automotive sector indicates that AMRs can also be used as

an assistive system, since they can interact with humans as a robotic co-workers in a wide

variety of ways (Angerer et al. 2012). These advantages mean that AMRs can be introduced

into production networks, increasing the flexibility of the production lines by creating con-

nections between workstations. AMRs are particularly suited for intralogistics operations,

such as transportation and part feeding inside production lines.

The majority of works in this field of research deal with scheduling to determine the

best possible strategies for robot movement (Kats and Levner 2009; Ivanov et al. 2016,

2018b; Sethi et al. 1992) . Nielsen et al. (2017) assessed the implementation of AMRs in

adaptive manufacturing environments, evaluating schedule modification in the mixed-integer

programming (MIP) model proposed by Dang et al. (2014).

To the best of our knowledge, no study suggests methods to compare the flexibility and

performance of production lines and AMR-based flexible production networks, i.e., when

AMRs are a preferable solution compared to conveyors for fulfilling intralogistics tasks in a

production system.

The methodology used to answer the previously introduced research questions is twofold.

First, cost-profit models have been developed to assess, on a strategic level, the conditions

in which AMR-supported production networks are more advantageous as compared to tra-

ditional production lines. Two throughput models for the analyzed production systems, i.e.

production lines and production networks, have been adapted from the study by Freiheit

et al. (2004). Based on these throughput models, a ratio has been calculated between the

additional cost and the additional profit of implementing AMR-based production network

system compared to the traditional production line.

Using a parametrical analysis, several scenarios have been investigated with a variable

number of phases, lines, shifts, productivity, and flexibility. The results are depicted in con-

tour maps which show the different input variables that define the range where production

networks provide higher profits than production lines. Moreover, an increase in productivity

and flexibility following the implementation of AMRs is evidenced.
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Fig. 1 a Traditional AGV with lifting unit, b AMR with conveyor top module

3 AutonomousMobile Robots – AMR in production networks

Material handling is an essential part of material flow within a production system. To enable

more flexibility in these production systems, new transportation and material handling meth-

ods have to be introduced. From a material handling perspective, conveyors, providing

automatic load transfer, moving high number of items, offering high temporary buffers,

and fast material transportation between workstations, have been an adequate solution (Sule

2009). Yet, these systems allow for a low degree of flexibility in routing compared to the

AGVs and AMRs (Fig. 1).

The AMRs in Fig. 1 are not only small and agile, but can also provide additional services,

e.g., feeding with conveyor top module. These essential attributes and capabilities allow

for transportation of small containers and single units, and hence small batches between

workstations. Advances in technology have facilitated the integration of AMR to a higher

degree in the production systems. Traditional conveyor connections between workstations

can be replaced with little effort and supplemented with simple loading and unloading stations

and an AMR system. Thereby, this system is supported by Artificial Intelligence to navigate

through dynamic environments and provide optimized routing. Recently, several applications

of smart intralogistics systems which use such AMRs have been introduced (Scholz et al.

2016).

These changes enable the conversion of traditional, efficient production lines into flexible

production networks, which distribute material to different workstations and increase the

flexibility of the entire systems (see Fig. 2). Several production lines are interconnected

automatically and dynamically.

Fig. 2 a Traditional production systems with conveyors, b Production network with AMRs
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AMR systems are often implemented with an inter-operational buffer, where products are

temporarily stocked during changeovers, so that two consecutive production phases can be

decoupled. AMR loading and unloading stations can be installed before and after workstations

where grouping and singularization activities are performed. Advances in equipment can

support these activities through connection to the machine or more directly by installing

small conveyors on the AMRs.

4 Analytical models for the throughput calculation

In this section, we introduce the models for the throughput estimation for two production

systems, i.e. production lines and production networks, based on Freiheit et al. (2004). Since

the application of AMRs in PI is relatively new, the main object of this section is to adapt and

describe the models that can be used at the strategic decision-making level, when aggregated

and general information are available about the products, machines and material handling

system, the unitary costs, and profit.

Notations
N = number of production lines

M = number of production phases

n = 1…N production lines

m = 1…M production phases

k = number of working production lines

As = availability of each machine given setup time

A(s−l) = availability of the entire production line given setup time

q = productivity of each machine (pcs/h)

N s = number of shifts per day

Hs = number of hours per shift per year (2000 h/year)

p = unit profit (C/pc)

L = length of the connecting path between two consecutive machine groups (produc-

tion phase) (m)

v = maximum speed of AMR (1 m/s)

a = acceleration/deceleration of AMRs (1 m/s2)

tL/U = loading/unloading time (5 s)

CV = capacity of a vehicle (10 pcs/vehicle)

cAM R = yearly unit cost of an AMR (C/year)

cL/U = yearly unit cost of an automated loading and unloading station (C/year)

4.1 Total throughput analysis for production lines

Consider a set of N production lines each of which contains M production phases (Fig. 3).

A limited buffer between the machines is assumed, resulting in a synchronous operation

when setup occurs. This means that a typical setup lasts long enough to cause blocking

or starving of the machines. Maintenance breakdowns are considered negligible. Micro-

breakdowns happen in this production system (Zennaro et al. 2018), but they do not impact

blocking or starving of the machines.

Following these assumptions, each line is available when all its machines are available

and this affects the total throughput of the line as shown in Eq. (1):

Ql = q · As−l = q · AM
s (1)

123



132 Annals of Operations Research (2022) 308:125–143

Fig. 3 Total throughput for each production line with conveyors

The total throughput of the production line system can be modeled as a k -out-of- n con-

figuration. Different scenarios occur and are characterized by the number k from 0 to N of

working lines, so that the probability of each scenario is typically calculated using Eq. (2):

P
pl

k =

(

N

k

)

· Ak
s−l · (1 − As−l)

N−k (2)

Based on the number of working lines per scenario, the throughput of the system can be

calculated as shown in Eq. (3):

Q pl =

∑N

k=0
P

pl
k · (Ql · k) (3)

4.2 Total throughput analysis for AMR-based production networks

In the new production network concept, each machine of a single production phase is inter-

connected to the next phase through the AMR system, where the mobile robots follow a

circular loop, with an inter-operational buffer located in the center of this path. In this config-

uration, the AMR system with the inter-operational buffer allows two consecutive production

phases to be decoupled during the setup. The AMR system can also pick up and/or deliver

products to all the other working machines using the buffer, so setup times do not influence

the availability of other groups of machines, but only the availability of the group of machines

of the production phase at which setup is occurring (Fig. 4).

This group of machines can be modeled as a k-out-of-n system, where the probability of

each scenario occurring is limited to the group analyzed (Eq. 4):

P
pn

k =

(

N

k

)

· Ak
s · (1 − As)

N−k (4)

Since the AMR system allows buffering and redistribution of products during setup, the

throughput of the entire production network is identical in each group of machines for the

production phase (Fig. 4). The total throughput can be computed as shown in Eq. (5):

Q pn =

N
∑

k=0

P
pn

k · (q · k) (5)
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Fig. 4 Total throughput for production network with AMR

The design of the AMR system in one loop can be adapted based on a procedure developed by

Calzavara et al. (2018). To calculate the number of AMRs required to move all the products

from one machine to another, it is necessary to know the capacity of the vehicle CV the

length of the loop path L the speed v and acceleration a of the vehicle, and the time to load

and unload (tL/U ) the products.

Based on these assumptions, the throughput of each vehicle, in terms of products per hour,

can be modeled as shown in Eqs. (6) and (7):

Tc =
L

v
+ 2

v

a
+ 2tL/U (6)

qAM R =
3600

Tc

· CV (7)

Finally, knowing that the total number of loops is (M − 1) and assuming that at least two

vehicles are always available in front of each machine to avoid blocking or starving, the total

number of AMRs required can be computed using Eq. (8):

NAM R = (M − 1) ·

(

N · q

qAM R

+ 4N

)

(8)

The inter-operational buffer between consecutive phases enables the temporary stocking of

products and affects the functionality of the AMR system simply by adding one loading and

one unloading activity, so these can be considered negligible for the calculation of the number

of required vehicles.

5 System comparison: economical and technical perspectives

An evaluation of the comparative suitability of an AMR-based production network from an

economical point of view can be performed by calculating the ratio between the additional cost

of implementing an AMR system and the additional profit to be gained by higher throughput.
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Knowing the annual unit costs of the AMR and the annual unit costs of the loading and

unloading stations needed to group and singularize products to be transported by the vehicles,

the additional cost of implementing the AMR system can be defined with the help of Eq. (9):

△T C = NAM R · cAM R + N · M · cL/U (9)

The additional costs related to the inter-operational buffer, made up of a set of conveyors, is

negligible, even considering those no longer in use in the production network system. The

typical cost of this material handling solution for production systems in PI is a few hundred

euro per linear meter. Considering that production lines can have hundreds of meters of

conveyors with 7 to 10 year s amortization rates, the annual cost of this solution is several

thousand euro. If gravity roller conveyors are used, the additional cost is even more negligible,

since they are not motorized.

Given the average unit profit of the product p and the total number of working hours per

year, based on the number of shifts N s per day and working hours per day Hs additional

profit can be formulated as follows Eq. (10):

△T P =
(

Q pn − Q pl

)

· p · Hs · Ns (10)

The AMR-based production network system is a preferable solution compared to the tradi-

tional production line if the ratio Rpn is lower than 1 according to Eq. (11):

Rpn =
△T C

△T P
=

NAM R · cAM R + N · M · cL/U
(

Q pn − Q pl

)

· p · Hs · Ns

(11)

Further, the additional throughput of the production network, resulting from greater system

availability during setup, can be estimated (Eq. 12):

RQ =
Q pn

Q pl

(12)

Moreover, additional flexibility of the production network system, denoted as ∆FL can be

estimated by setting the throughput equal to that obtained by the production lines. This is

strictly correlated to the unavailability of machines by virtue of setup and changeover times

(Eq. 13):

△F L =
(1 − As

pn)

(1 − As−l)
(13)

where As
pn satisfies the Qpn = Qpl (Eqs. 13, 14), where:

Q pn =

∑N

k=1

[(

N

k

)

·
(

A
pn

s

)k
·
(

1 − A
pn

s

)N−k
]

· (q · k)

Q pl =

∑N

k=1

(

N

k

)

·

(

A M
s

)k

·

(

1 − A M
s

)N−k

·

(

q · A M
s · k

)

(14)

6 Parametrical analysis and decisional maps

The two systems under consideration were compared using a parametrical analysis in order

to reveal the impact of each parameter on the ratio Rpn Table 1 shows the values for each

parameter. A total of 21,870 different scenarios were created comparing the two systems.

The other parameters are considered fixed, with the values reported in the notations. The
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Table 1 Parameters and values of analysis

Parameter Unit of measurement Values

N - 3; 4; 5;

As – 0.90; 0.92; 0.94; 0.96; 0.98;

M – 2; 3;

q pcs/h 1000; 5000; 10,000;

Ns – 1; 2; 3;

L m 50; 100; 200;

cAM R C/year 500; 1000; 5000;

cL/U C/year 1000; 2500; 5000;

p C/pc 0.01; 0.1; 1;

parameters related to the vehicles (capacity, speed, acceleration/deceleration, loading and

unloading times) are fixed, but the machine throughput q has been varied, providing in the

same effect.

6.1 Ratio Rpn Analysis

As can be observed from the plot analysis (Fig. 5), the most relevant parameters for the Rpn

are As , q, N s , and cAM R . The average unit profit p has a scale factor on the ratio. This means

that if p is 0.1 the ratio Rpn is 10 times as high as when p is 0.01.

Based on these results, several decisional maps were created to understand when the

application of production network system is suitable. Some parameters have been fixed, such

as p = 0.01 C/pc, M = 2, L = 100 m, and cL/U = 2500 C/year. Following the reasoning of that

profit has a direct relation to the Rpn and that it is simple to adapt the analysis for different

values of profit, it has been included as a constant. Further, the length of a given layout is

Fig. 5 Results of the main effects plot of Rpn
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often difficult to change and can be therefore neglected, like the cL/U and M, since their

main effect on is Rpn low. These graphs depict the threshold curve where Rpn = 1, varying

As (x-axis) and q (y-axis), for different N s and cAM R (500, 1000 and 5000 C/year), such that

when the size of the area to their left is greater than that on the right a production network

system is more suitable and vice versa (Fig. 6).

It is interesting to observe that the production network system can be considered more

suitable when the flexibility (lower availability values) and throughput required are high. The

impact of the AMR cost is a relevant factor. In these analyses, it appears that the production

network is suitable only when the AMR cost is 1000 C/year or less. While when it costs

5000 C/year, the production network is not suitable at all. When the AMR cost is low (cAM R

= 500 C/year), there is a small difference between the thresholds when the number of shifts

are 2 and 3.

Fig. 6 Threshold curves corresponding to Rpm = 1 at different cAM R values: a 500 C /year, b 1000 C /year,

c 5000 C/year

Fig. 7 Level curves for various Rpm
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To extend the analysis to a wider range of applications, Fig. 7 depicts the level curves at

different Rpn values, i.e., 0.25, 0.5, 0.75, 1 (red line), 1.25, 1.5, 1.75, 2, 5, 10, 20, and 30. The

different level curves are calculated with profit value equal to 0.01 C/pc, and considering its

linear relation with Rpn , they can be used to analyze cases when p has different values. For

example, the level curve for Rpn = 5 when p = 0.01 C/pc corresponds to the level curve for

Rpn = 1 when p = 0.05 C/pc.

Moreover, t his can be also of interest for decision-makers who need to assess the sensitivity

of the production line and the production network to parameters As and p. Considering the area

where production lines are more suitable, i.e., the right side of the red curve characterized

by Rpm values greater than 1, it is evident that the production lines are very sensitive to

small changes in As and q, since the curves are very close to each other. On the other hand,

considering the area to the left of the threshold curve (red curve) where a production network

is the preferable choice, it is clear that the production network is highly robust in terms of

changes in As and q, since the level curves are further apart.

Visualizing the different level curves, the relation and impact of the different variables

of N s , cAM R and p on each other can be recognized. The graphs support to indicate which

variables are beneficial to adjust to reach or increase profitability. The practitioners can use

the previous graphs and equations to understand which actions to take on which factor in order

to make the production network suitable, such as increase the number of shifts, or installing

a cheaper AMR system, or just consider this solution for products with higher profit.

6.2 Impact of productivity and flexibility

Based on Eqs. (12) and (13), the analysis of additional throughput and flexibility depends on

few parameters: the availability As and the number of phases M. Figures 8 and 9 show an

increase in throughput RQ and flexibility ∆FL due to the introduction of a production network

and AMR system. While the increment of the throughput is higher when initial machine

Fig. 8 Additional productivity of production network
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Fig. 9 Additional flexibility of production network

availability is low, the additional flexibility gained through use of the production network

system is quite constant. It is between 1.7 and 2 times more flexible than the production line.

The impact of the number of phases on this increment is low.

Both the increases in throughput and the higher flexibility resulting from the introduction

of the AMR system are considerable, allowing for interconnection among all the machines

of the production system.

7 Conclusion

Industry 4.0 highlights the importance of building networks and decentralizing to transform

the manufacturing and production landscape in to a collaborative network that balances and

combine s resources (Brettel et al. 2014). To have a reactive production system, material flow

has to be digitized to enable dynamic change following real-time decisions. In this study,

we focused on deciphering the possibilities of an increased responsiveness in production by

considering a material handling system that can adapt quickly to changes through AMR.

While these developments have been increasingly promoted in discrete manufacturing in

recent years, production systems in process industries are still considered behind in applying

and exploiting the advantages of innovative technologies to improve process flexibility and

productivity. The availability of technologies using Artificial Intelligence for positioning and

navigation can support a variety of further developments in the production systems, e.g.,

making use of the intelligent vehicles, such as AMR to obtain feasible solution s in increas-

ing the flexibility and productivity of the production systems. Since AMR is an emerging

technology, it is necessary for practitioners and academics to investigate how it can improve

performance in terms of productivity and flexibility, the costs of the production system, and

how this innovative material handling system could affect intralogistics in the era of Industry

4.0.
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Our study conceptualizes and models a comprehensive and unique set of parameters,

which are vital to companies wishing to compare existing and Industry 4.0-based production

line designs in PI. AMRs offer a suitable alternative in decentralizing material flow because

of their strong on-board computational power. Decentralizing material flow can provide

more flexibility for production systems. In this research, the application of an emerging

technology was studied in comparison to a very traditional production system. AMRs have

been introduced to dedicated production lines, which are characteristic of PI, to transform to

production networks and enable high product mix capabilities and flexibility.

The main research implication of our study is the introduction of new analytical models

for estimating when the AMRs are more suitable as traditional material handling equip-

ment in PI production systems and how they improve operations performance in terms of

productivity, flexibility, and costs. This study demonstrated that production networks with

AMRs are suitable for meeting the increased demand for high products mixes in PI. This

statement is based on the results of an analytical model and parametrical analysis. The model

developed shows the latent potential to increase flexibility and productivity in industries with

higher demands for product individualization and existing dedicated equipment for mass

production.

For the practitioners, it is relevant to note that the increased flexibility can be achieved

with the help of AMR without a complete re-design of the production lines. In particular, the

introduction of the contour maps can support the practitioners in their decision-making pro-

cess when AMR-based production network and traditional production systems are compared.

These production lines can evolve into autonomous production networks. AMR is a suitable

approach for adapting material handling systems in PI while avoiding two major inconve-

niences, namely high investments in new flexible production line equipment and missing

product mix flexibility. AMRs can react, move, and guide the materials to the appropriate

processing workstations. Productivity can therefore be kept high due to gains in flexibility.

Then, the practitioners can use the models developed in this paper and the contour maps

to obtain the knowledge about which factors can make the production network profitable.

Key factors relevant to the realization of the production network are the cost of AMRs

and the number of shifts. The decreasing price of AMRs makes it a feasible solution for

increasing flexibility and ensuring productivity. The competitive advantage of PI depends on

production networks that both provide high productivity and increased flexibility for high

mix production.

Several assumptions and decisions concerning the design and analysis of the model limited

some aspects of the study. Predetermined AMR path s were used for simplification and only

a set of balanced production lines were considered. However, the model can be extended

in future studies to include different production lines, such as unbalanced ones. In such

research, the required number of workstations for each production phase could be analyzed.

Different constellations might also reduce the required buffer between workstations, and how

different buffer sizes impact the performance of production networks could be investigated

as well.

Future research can focus on how the variables previously highlighted would influence

production network performance compared that of production lines in terms of productivity

and flexibility at the strategic decision-making level. At the tactical and operational level,

the AMR-based production network introduced can instigate new streams of research on

production planning and control of AMR s and using big data analytics to achieve high

er efficiency. New planning and control models are needed for production networks and

decision-support systems in order to control material flows in the era of Industry 4.0.
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