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1 Introduction

Private provision of public goods plays an important role in the US economy.1 Beyond familiar charities such

as the Red Cross and environmental groups like the Sierra Club, many local associations support orchestras,

zoos, community radio stations, and various other endeavors that can, at least in part, be thought of as public

goods. It is therefore not surprising that the economics literature provides multiple answers to the question

of why people give, including enlightened self-interest and altruism (e.g. Bergstrom et al., 1986), warm-glow

(e.g. Andreoni, 1989, 1990), prestige (Harbaugh, 1998a, 1998b), signaling (Glazer and Konrad, 1996), and

selective incentives (Olson, 1965). The psychology, sociology, and marketing literatures add many other

motivations, including the simple fact of being asked and the “even-a-penny-helps” technique.2 Fundraising

activities may well take into account all these motivations at various stages of a campaign.

We focus on one of the most common practices association managers and fund raisers use: accepting,

recommending, recognizing, or otherwise rewarding donations according to endogenously designed bins or

categories.3 This practice may take the form of a minimum suggested or accepted donation, of some level

that must be reached to publicize a donation, of affixing nicknames to donation categories (e.g., in increasing

order of donation, “member,” “supporter,” “benefactor”), or more generally of offering different combinations

of selective incentives at various levels of contributions (for example, a bumper sticker for a $20 donation, a

bumper sticker and an audio cd for a $50 donation, and so on).

A number of questions naturally arise about this practice. What response does it elicit from donors?

How should levels that trigger benefits be chosen? Are there any observable characteristics of the donor

population that push toward offering a membership scheme with many levels rather than only a few?4 First,

we provide a simple theoretical framework in which to analyze these questions. Then, using data about the

membership schemes offered by National Public Radio stations, we showcase empirical correlations consistent

with our findings.

We choose a “positive” theoretical approach, similar to the one of Harbaugh (1998a), who directly targets

the relationship between categories and prestige.5 Harbaugh (1998a) posits a pure warm-glow motivation

1For example, Andreoni (2006) reports that private giving hovers between 1.5% and 2.1% of personal income in the US.
2Bekkers and Wiepking (2007), in their review of the literature on philanthropy, state that “Many people have developed

cognitive strategies to reject responsibility for the welfare of others. One such strategy is the argument that ‘one cannot afford
a donation.’ Legitimizing paltry contributions by adding the phrase ‘even a penny helps’ in a solicitation for contributions may
neutralize these strategies [citations omitted].”

3In our dataset, almost all NPR stations offer “default” membership categories. For more details, see Table 3.
4See Table 3 for the distribution of “default” membership categories for NPR stations.
5Another theoretical approach to answer these questions is mechanism design. Indeed, Cornelli (1996), albeit tangentially to

her main goal of characterizing the optimal direct mechanism, suggests how implementation can occur through a scheme with
categories. However, extending the results in Cornelli (1996) to answer the questions we are interested in appears complicated.
Moreover, some authors describe the mechanism design approach as too complicated, too abstract, and too organizationally
taxing to provide a realistic account of a situation with very many potential donors (see, e.g., Andreoni, 1998). Others,
like Martimort and Moreira (forthcoming), comment on how a full-fledged mechanism design approach requires a degree of
commitment power that may be excessive in a variety of situations.
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for giving (donors receive a private benefit from their donations) and shows that, generically, creating one

category donations have to fall into to be recognized—and thus rewarded with the additional private good

“prestige”—dominates recognizing donations based on their exact amount. The force behind this result

is “bunching at the low end” of a category, an effect empirically confirmed in Harbaugh (1998b), and

experimentally observed by Andreoni and Petrie (2004) and by Li and Ryanto (2009). Transitioning from

exact to categorical recognition, “bunching” refers to donations that end up being clustered at the cutoff

value that triggers the beginning of a category, rather than falling in a neighborhood on either side of such

cutoff.

Beyond prestige, “bunching at the low end” can be expected for other motivations for giving as well.

Indeed, in a purely material selective benefit example, consider a radio station that rewards donations

with discounts at various merchants. Suppose first that discounts are directly proportional to the donated

amount, a scheme that may be thought of as having very many categories, and consider a donor willing

to give $20. Consider now a different membership scheme where the reward is a fixed discount level, but

only if the donation exceeds $25. The donor may then decide to bump up his contribution to $25, and a

similar behavior would be expected of all donors otherwise willing to donate an amount between, say, $20

and $24.99, thus creating bunching of contributions (in the absence of other strategic considerations). An

effect going in the opposite direction is also possible when the continuous-benefit scheme is replaced by the

discrete one, since donations of $25 and $26 are now rewarded in the same way, thus reinforcing bunching

toward $25.

From a theoretical point of view, the exact nature of the benefit, whether prestige or a more general se-

lective incentive, is not fundamental to create bunching. Moreover, Croson and Marks (2001) experimentally

observe bunching even in the case of simple suggestions of donation levels. Indeed, a very similar effect could

be reached, albeit simplistically, by restricting the agents’ ability to donate to exactly $25 or nothing at all.6

We find this is the easiest way to think about the effects of categories. Thus, our earlier questions can be

rephrased as: When does it pay for an association to restrict agents’ freedom to give? What determines

whether an association should offer a rigid, restrictive membership scheme or a more flexible one with many

categories?

After this reformulation, a natural place to look for an answer is the experimental literature comparing

discrete-level contribution models with those with continuous contributions. There appears to be an expec-

tation that continuous-level contribution schemes perform better. Cadsby and Maynes (1999), Hsu (2003),

6Beyond creating bunching, there are of course other reasons to discourage small but positive donations. For example,
extremely small donations may entail relatively large processing costs. Moreover, one may run the risk of legitimizing too small
a donation. Indeed, in describing the limitation of the “even-a-penny-helps” technique, Bekkers and Wiepking (2007) state
“...the phrase may even decrease the amount donated, exactly because it legitimizes paltry contributions [citation omitted].”
Also see footnote 2 above.
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and Suleiman and Rapoport (1992) report finding in experimental situations that allowing continuous con-

tribution possibilities significantly increases contributions over requiring that contributors either contribute

nothing or their entire endowment. Authors explain this finding by noting that with continuous contribu-

tions there is a symmetric pure strategy equilibrium with provision while no such equilibrium exists when the

contribution options are all or nothing (e.g., Cadsby and Maynes, 1999, p. 57). However, as Andreoni and

Petrie (2004) point out, the theoretical comparison between total contributions when all donation amounts

are possible and when agents’ freedom to give is restricted depends on what contribution levels are available.

No effort in this direction appears in this literature.

Therefore, at least three aspects appear deserving of more study. First, while the warm-glow model

of Harbaugh’s is surely interesting, it is worth investigating the effects of restricting agents’ freedom to

donate in a pure-public-good model, thereby reintroducing strategic considerations and free-riding into the

picture. Second, how is the optimal discrete contribution level chosen in this framework? Third, under

what conditions does the restricted contribution-level membership scheme perform better than one with

unrestricted levels? In particular, is one scheme always better than the other or does the choice reveal a true

trade-off? And in this last case, which observable characteristics of the donor population are important for

the trade-off?

Our basic theoretical model provides answers to these questions. We cast our analysis in a private-values

subscription game framework. As our baseline case, we suppose all donations are welcome, as in Barbieri

and Malueg (2009). Next, we consider the alternative policy in which the fundraisers specify a particular

contribution that they will accept. This policy imposes bunching of types, and, as a representation of actual

membership schemes, it favors simplicity over realism. After characterizing the optimal level for the accepted

contribution, we demonstrate the importance of the shape of the cumulative distribution function describing

players’ private values for the discrete good: if it is convex (concave), the single contribution threshold

(unrestricted contribution campaign) always raises greater contributions. While these cases are important

for identifying the forces that make the continuous or discrete contribution framework preferred, it is more

reasonable to expect the density of these values to be initially increasing and then decreasing if private values

for the public good are correlated with income.

In this last case—that is, when the cumulative distribution of values is first convex and then concave—a

true trade-off emerges. We showcase the basic forces underlying the decision by the fundraisers whether to

restrict the freedom in choosing a contribution level by potential contributors, or to offer a flexible member-

ship scheme in which choices are less constrained. Two such forces are “dispersion of values” and “extent

of crowding-out,” leading to the following predictions. A membership scheme that restricts contributors’

decisions becomes less attractive as
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1. the dispersion of values increases,

2. the number of potential contributors increases, or

3. the amount provided by an external authority increases.

Moreover, we show graphically and by example how these predictions remain valid when our basic model

is enriched to cope with more realistic membership schemes in which agents are free to donate any amount

they desire, but benefits kick in only for donations above a pre-specified amount.

Finally, we turn our attention to the actual behavior of fundraisers and association organizers. Do they

appear to behave in a way consistent with the predictions of the model? We analyze the membership schemes

offered by all National Public Radio stations in the continental US, proxying flexibility with the number of

“default” membership levels offered by a station, and we present empirical relations consistent with the three

predictions of our model.

The rest of the paper is organized as follows. Section 2 describes the model. In Section 3 we characterize

the unique symmetric equilibrium for both restricted- and unrestricted-level schemes, and we calculate the

optimal discrete contribution level. Section 4 explores the role of the shape of the distribution of values and

presents the implications of “dispersion of values” and “extent of crowding-out” on the choice of restricting

agents’ flexibility to donate. Section 5 contains the empirical evidence and Section 6 concludes.

2 The Model

We study the problem of n players who simultaneously contribute to the funding of a binary public good.

Player i’s value for the good is vi, i = 1, ..., n. Players’ values are independently and identically distributed

random variables with cumulative distribution functions (cdf) F , which has support [0, 1]. A player’s realized

value is known only to that player. We suppose F is continuous with density function f . The cost of the

public good is c, which we assume is a random variable uniformly distributed over the interval [0, c̄], where

c̄ ≥ n, and c is independent of players’ values.7 The foregoing description is common knowledge.

In the terminology of Admati and Perry (1991), we consider the subscription game: players’ contributions

are refunded if they are insufficient to cover c. If the good is provided, then the payoff to player i is

vi − (player i’s contribution). If the good is not provided, then the payoff to player i is 0.

7Beyond Barbieri and Malueg (2009), uncertainty in the cost appears in Nitzan and Romano (1990) and McBride (2006).
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3 Equilibria

We look for a symmetric equilibrium strategy s. The expected utility of agent i with value vi contributing

x when other players use strategy s(·) is

Ui(x|vi) ≡ (vi − x) Pr


c ≤ x+

∑

j 6=i
s(vj)


 . (1)

Because cost is distributed uniformly and independently of players’ values, if agent i contributes x, then the

probability that the good is provided is

Pr


c ≤ x+

∑

j 6=i
s(vj)


 = E


Pr


c ≤ x+

∑

j 6=i
s(vj)

∣∣∣∣∣∣
vj , j 6= i




 = E

[
x+

∑
j 6=i s(vj)

c̄

]
=
x+ (n− 1)K

c̄
,

where K ≡ E[ s(vj) ] is the expected contribution of agent j using strategy s. Now the expected utility of

agent i, (1), becomes

Ui(x|vi) =
1

c̄
(vi − x)(x+ (n− 1)K). (2)

Note that if each player’s expected contribution isK, then the probability of provision is E[ Pr(c ≤∑ s(vi)) ] =

nK/c̄. Thus, any change in the fundraising mechanism that changes the expected contribution will directly

affect the probability that the good is provided. Moreover, note that the uncertainty in the cost threshold c

makes our framework very close to the more traditional one of Bergstrom et al. (1986) in which the quantity

of the public good is variable and contributions are sunk. Indeed, if agents have a simple multiplicative

utility function over private and public good consumption, if vi is reinterpreted as income so that private

good consumption is vi − x, and if the public good is available at constant marginal cost c̄ (so the total

provided just equals total donations divided by c̄), then the expected utility of agent i with income vi that

makes donation x is given in (2).

3.1 Unrestricted contribution possibilities

Here we characterize the unique equilibrium when any nonnegative contributions are allowed. Since Ui

in (2) is strictly concave in x, the first-derivative ∂Ui(x|vi)/∂x = [vi − (n− 1)K − 2x] /c̄, along with

the non-negativity constraint on x, yields the following “best-response” function for player i: s(vi) =

max {0, [vi − (n− 1)K]/2} . Using this best-response function and the definition of K above, in the sym-
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metric equilibrium the following equation must be satisfied by K:

K = E

[
max

{
0,

1

2
(v − (n− 1)K)

}]
=

1

2

∫ 1

(n−1)K
(v − (n− 1)K)f(v) dv

=
1

2

∫ 1

(n−1)K
(1− F (v)) dv, (3)

where the final inequality follows from integration by parts. The right-hand side of (3) is continuous and

strictly decreasing in K over [0, 1/(n− 1)], with value E[ v ] /2 > 0 at K = 0 and value 0 at K = 1/(n− 1).

Therefore, there is a unique value of K, which we denote by Kc, that solves (3). Consequently, with

unrestricted contributions there is a unique symmetric equilibrium strategy, which is given by

sc(v) =





1
2 (v − (n− 1)Kc) if v ≥ (n− 1)Kc

0 otherwise,

(4)

where Kc solves (3) (it can be shown there are no asymmetric equilibria—see Barbieri and Malueg, 2009).

The following two-player example illustrates equilibrium in the subscription game with threshold uncertainty

when contributions are not restricted.

Example 1 (Values are distributed between 0 and 1 according to a convex cdf).

Consider two players whose values are independently and identically distributed on [0, 1] according to

the cdf F (v) = v2. Then (3) reduces to

K =

∫ 1

K

1

2
(1− v2) dv =

1

3
− K

2
+
K3

6
,

the solution to which is Kc ≈ 0.223462, which is also each player’s expected contribution.

3.2 Binary contribution possibilities

Next we suppose players are restricted to contribution levels of 0 and x, where x ∈ (0, 1). The equilibrium

strategy will be of the form

s(v) =





x if v ≥ v0

0 if v < v0,
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for some value v0. Suppose all players but player 1 use such a strategy. If player 1 has value v, her expected

payoff when not contributing is

Unc(v) = vPr


∑

j 6=1

s(vj) ≥ c


 = v × (n− 1)(1− F (v0))x

c̄
,

and her expected payoff when contributing x is

U c(v) = (v − x) Pr


x+

∑

j 6=1

s(vj) ≥ c


 = (v − x)× x+ (n− 1)(1− F (v0))x

c̄
.

Solving the indifference condition Unc(v) = U c(v) yields the threshold value

v0 = x[1 + (n− 1)(1− F (v0))] = x+ (n− 1)K, (5)

where K = x(1−F (v0)) is a player’s expected contribution. The middle expression in (5) is strictly decreasing

in v0, with value nx when v0 = 0 and value x when v0 = 1, implying that for each x ∈ (0, 1), there is a

unique solution v0 to (5). Hence, there is a unique symmetric equilibrium in the subscription game with

binary contribution possibilities.

The following example applies the above analysis to show the common intuition favoring unrestricted

contributions over discrete contribution possibilities may not be warranted.

Example 2 (The probability of provision: binary or continuous contribution possibilities).

We again suppose there are two players, values are independently and identically distributed on [0, 1]

according to the cdf F (v) = v2, and cost is uniformly distributed over [0, c̄], where c̄ ≥ 2. From Example 1

we know that each player’s expected contribution in the unrestricted-contribution case is Kc ≈ 0.223462.

Next suppose players’ contributions are restricted to be either 0 or x (we may assume x ≤ 1). Equilibrium

has players use a strategy given by

s(v) =





x if v ≥ v0

0 if v < v0,

where solution of the first equality of (5) yields the critical threshold v0(x) =
(√

1 + 8x2 − 1
)
/(2x). Each

player’s expected contribution is then K(x) ≡ xPr
(
v ≥ v0(x)

)
=
(√

1 + 8x2 − 1− 2x2
)
/(2x). This expected

contribution is strictly concave in on [0, 1], reaching its maximum at x∗ =
(√

7−
√

17
)
/4 ≈ 0.424035; the

resulting expected contribution of each player is K(x∗) ≈ 0.238118, which exceeds the expected contribution

in the unrestricted-contribution model by about 6%. Identical conclusions hold as well for the probability
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of provision in the two settings. Obviously, though, for “poor” choices of x, the binary-contribution model

yields strictly lower contributions than does the unrestricted model.

Example 2 clarifies how the choice of level for the restricted contribution scheme is crucial. For the rest

of the analysis, we denote with Kd a player’s equilibrium expected contribution when the only contributions

allowed are {0, xd}, where xd is the level that maximizes the equilibrium expected contribution. Thus,

Kd = [1 − F (v0)]xd, where v0 is the threshold value above which a player contributes, and, by (5), v0 =

xd + (n− 1)Kd. At xd, the first-order condition dKd/dxd = 0 implies

1− F (v0) = xdf(v0). (6)

The following lemma, building on (5) and (6), is useful for the rest of the analysis.

Lemma 1 (Bounding the best binary contribution). Let F be the common distribution of the n players’

independent values.

1. If F is convex on [v0, 1], then xd ≥ [1− (n− 1)Kd]/2, with strict inequality if F is strictly convex on

[v0, 1].

2. If F is concave on [v0, 1], then xd ≤ [1 − (n − 1)Kd]/2, with strict inequality if F is strictly concave

on [v0, 1].

Proof. If F is convex on [v0, 1], then 1 = F (1) ≥ F (v0) + f(v0)(1− v0), so

xd =
1− F (xd + (n− 1)Kd)

f(xd + (n− 1)Kd)
(by (5) and (6))

≥ 1− (xd + (n− 1)Kd), (by convexity of F on [v0, 1]) (7)

implying

xd ≥ 1

2
(1− (n− 1)Kd). (8)

If F is strictly convex on [v0, 1], then the inequality in (7) holds strictly, and so too does (8). If instead F

is concave on [v0, 1], then the inequality in (7) is reversed as is that in (8), with strict inequality holding in

both (7) and (8) if F is strictly concave on [v0, 1].
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4 Continuous or discrete contributions?

If instead of allowing all contribution levels, the fundraisers restrict contributions to a finite set, then they

face a tradeoff. On the one hand, some who might have preferred to give a positive amount now find

themselves unwilling to give the minimum acceptable amount, which may reduce overall contributions. On

the other hand, some who had planned to give an “intermediate” amount might now prefer to bump up their

contributions to the minimum acceptable level, causing them to contribute more than they might otherwise

have done, and this tends to raise contributions. Overall, the effect of setting a target contribution will

balance these two effects, causing some potential contributors to drop out while encouraging others to give

slightly more.

4.1 The cases of convex or concave F

Our first proposition shows that, when the density of players’ values is either increasing or decreasing,

fundraisers have a clear preference for either the continuous or the binary contribution scheme.

Proposition 1 (Continuous versus binary contributions). Let the common distribution of players’ indepen-

dent values be F .

1. If F is convex, then Kd ≥ Kc, with strict inequality if F is strictly convex.

2. If F is concave, then Kd ≤ Kc, with strict inequality if F is strictly concave.

Proof. First suppose F is convex. The equilibrium contribution function in the continuous game is sc(v) =

max{0, [v−(n−1)Kc]/2}. Define x∗ = sc(1) = [1−(n−1)Kc]/2; in the equilibrium of the binary contribution

game with {0, x∗} denote by K∗ a player’s expected contribution. Because xd maximizes a player’s expected

contribution, it must be that Kd ≥ K∗. We will show K∗ ≥ Kc, with strict inequality if F is strictly convex,

thereby proving part 1. Let ϕ denote a uniform probability distribution on the interval [(n − 1)Kc, 1] (the

use of this distribution will become clear below). The proof is by contradiction, so suppose the proposition

is false, that is, K∗ < Kc. Then

K∗ = x∗[1− F (x∗ + (n− 1)K∗)]

> x∗[1− F (x∗ + (n− 1)Kc)] (9)

=
1

2
[1− (n− 1)Kc]

[
1− F

(
1

2
[1 + (n− 1)Kc]

)]

=
1

2
[1− (n− 1)Kc][1− F (E[ v |ϕ ])]

≥ 1

2
[1− (n− 1)Kc][1− E[F (v) |ϕ ]] (10)
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=
1

2
[1− (n− 1)Kc]

[
1− 1

1− (n− 1)Kc

∫ 1

(n−1)Kc

F (v) dv

]

=
1

2

[
[1− (n− 1)Kc]−

∫ 1

(n−1)Kc

F (v) dv

]

=
1

2

∫ 1

(n−1)Kc

(1− F (v)) dv

= Kc,

contradicting the assumption that K∗ < Kc. (The last equality follows from (3).) If, further, F is strictly

convex, then the contradiction hypothesis becomes K∗ ≤ Kc and the inequality in (9) becomes weak while

that in (10) becomes strict, again yielding a contradiction. This establishes part 1.

Next suppose F is concave, and suppose contrary to part 2 that Kd > Kc. Then Lemma 1 implies that

xd < (1 − (n − 1)Kc)/2 = sc(1). We will show that the binary game with positive contribution xd yields

expected revenue less than Kc, contradicting the initial assumption that Kd > Kc.

xd

sc(v)

0
v

(n− 1)Kc v0 v∗ 1

Figure 1: Comparison of binary and continuous expected contributions when F is concave.

Figure 1 shows the comparison being made, where v∗ solves sc(v) = xd. It is readily checked that

v∗ = (n − 1)Kc + 2xd. By (5), the associated binary-contribution game equilibrium has threshold value

v0 = (n − 1)Kd + xd. Let ϕ denote a uniform probability distribution on the interval [(n − 1)Kc, v∗]. A

player’s expected contribution in the continuous game is

Kc =

∫ v∗

(n−1)Kc

sc(v)f(v) dv +

∫ 1

v∗
sc(v)f(v) dv

>

∫ v∗

(n−1)Kc

sc(v)f(v) dv + sc(v∗)[1− F (v∗)] (by v∗ < 1) (11)

10



= sc(v)F (v)

∣∣∣∣
v∗

(n−1)Kc

− 1

2

∫ v∗

(n−1)Kc

F (v) dv + sc(v∗)[1− F (v∗)]

= sc(v∗)− 1

2

∫ v∗

(n−1)Kc

F (v) dv (by sc((n− 1)Kc) = 0)

= xd

[
1− 1

2xd

∫ (n−1)Kc+2xd

(n−1)Kc

F (v) dv

]
(by sc(v∗) = xd) (12)

= xd [1− E[F (v) |ϕ ]]

≥ xd [1− F (E[ v |ϕ ])] (by F concave) (13)

= xd
[
1− F ((n− 1)Kc + xd)

]

≥ xd
[
1− F ((n− 1)Kd + xd)

]
(by contradiction)

= xd[1− F (v0)] (by (5))

= Kd,

contradicting the assumption that Kd > Kc. If, further, F is strictly concave, then the contradiction

hypothesis becomes Kd ≥ Kc and the inequality in (11) becomes weak while that in (13) becomes strict,

again yielding a contradiction. This establishes part 2.

Example 2 illustrates the first parts of Lemma 1 and Proposition 1. The intuition for Proposition 1

can be understood with reference to Figure 2, which depicts equilibrium strategies when players’ values are

uniformly distributed over [0, 1]. In this case, xd = sc(1) and Kc = Kd. The restriction to contributing

either 0 or xd leads types above v0 to contribute more than in the continuous case, a benefit represented

by region B. But this restriction causes types below v0 to contribute nothing, and this cost is represented

by region A. For the uniform distribution, v0 is midway between (n − 1)Kc and 1, so the areas of regions

A and B are equal. And because the distribution of v is uniform, the weighted benefit of region B equals

the weighted cost of region A. Now suppose the distribution of values deviates from uniform by becoming

slightly convex (i.e., the density is slightly increasing). Then, ignoring the induced change in strategies

as a first-approximation, the weight on region B becomes larger than that on region A, so the binary-

contribution setting yields greater contributions than the unrestricted setting. The comparison is reversed

if the distribution becomes slightly concave, as then region A receives greater weight than region B. This

accords with the general finding in Proposition 1.

11



xd

sc(v)

0
v

(n− 1)Kc
v0 = 1+(n−1)Kc

2

A

B

1

Figure 2: Comparison of binary and continuous strategies when F is concave: Kc = Kd.

4.2 The role of heterogeneity and crowding-out

When the cdf of players’ values is neither concave nor convex, Proposition 1 does not yield a definitive

comparison. It is however possible to obtain insights for the case of a symmetric distribution F that is first

convex and then concave. We provide an instance of such distribution in our leading example for this section.

Example 3 (Triangular distribution). Consider the density of v given by f(v; a) = (1 − (1/4)a) + av for

v ∈ [0, 1/2] and f(v; a) = (1 − (1/4)a) + a(1 − v) for v ∈ (1/2, 1], where a ∈ [0, 4] parameterizes the

“peakedeness” of the distribution, as defined in Proschan (1965). When a is zero, we have the usual uniform

distribution on [0, 1]. As a increases, the weight on the tails of the distribution decreases and concentrates

around the mean/median of 1
2 .

A first result, very useful for the rest of our analysis, is the following necessary condition for binary

contributions to dominate continuous contributions.8

Proposition 2 (Comparison of binary and continuous contributions). Suppose the distribution F of players’

values is symmetric with mean and median µ. Furthermore, assume F is strictly convex for v < µ and F is

strictly concave for v > µ. If Kd ≥ Kc, then v0 < µ.

By Proposition 2 (a proof of which is in the Appendix), setting a fixed donation level such that v0 > µ is

counterproductive for the fundraiser. This result is intuitive, given the discussion preceding Proposition 1.

There is a tradeoff in restricting agents’ freedom to give. On the one hand, some who might have preferred

to give a positive amount find themselves unwilling to give the minimum acceptable amount. On the other

hand, some who had planned to give an “intermediate” amount now prefer to bump up their contributions.

8Symmetry is not essential for the result. For example, the proof and figure (in the Appendix) are easily adapted to a
positively skewed distribution F̃ that coincides with F for values less than the median µ, but F̃ first-order stochastically
dominates F for v > µ.
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The cutoff between these two different responses to a restriction is v0: types immediately below v0 become

non-contributors. If the fundraiser’s choice puts v0 in the concave part of the distribution, then types

immediately below v0—those who reduce their contribution—outnumber types immediately above v0. We

illustrate this reasoning for the all-important case Kc = Kd.

Figure 3 depicts the same comparison between the equilibrium contribution functions as in Figure 1, and

we have superimposed a symmetric density function, labeled f(v), for values. In Figure 3, because of the

assumption Kc = Kd, triangles A and B are congruent since v0 − (n − 1)Kc = v0 − (n − 1)Kd = xd. The

continuous contribution scheme dominates in area C. Therefore, according to the density f , area B must

be weighted more heavily than A to assure Kc = Kd, and that would be impossible if v0 > µ.

xd

xd/2

sc(v)

0
v

(n− 1)Kc

A

B

C

v0 v0 + xd 1µ

f(v)

Figure 3: If f is symmetric and single-peaked and if Kc = Kd, then v0 < µ.

We now establish comparative statics for the binary contribution possibilities. The following proposition

applies to all symmetric distributions F (v; a) that are strictly convex for v that goes from zero to the

mean/median µ, strictly concave thereafter, and where the parameter a captures peakedness as in Example 3.

Proposition 3 (Comparative statics for binary contributions). If v0 > µ, then Kd decreases in a. If v0 < µ,

then Kd increases in a.

Proof. Adapting the definition in Proschan (1965), for a1 > a0, the distribution F (v; a1) is more peaked

than F (v; a0) if, for any t ∫ µ+t

µ−t
f(v; a1) dv ≥

∫ µ+t

µ−t
f(v; a0) dv,

which, in our symmetric distribution environment, implies F (v; a0) ≥ F (v; a1) if v ≤ µ, and F (v; a0) ≤

13



F (v; a1) if v ≥ µ. Therefore, thinking of a marginal change in a, we have

(v − µ)
∂F (v; a)

∂a
≥ 0. (14)

Applying the implicit function theorem with respect to a to the system composed of equation (5), of equation

(6), and of the definition of Kd yields, after rearrangement

(
1 + (n− 1)[1− F (v0(a); a)]

) dKd

da
= −xd ∂F

(
v0(a); a

)

∂a
.

Therefore, using (14), dKd

da has the opposite sign of (v − µ), thus establishing the proposition.

Proposition 3 is especially interesting in comparison with the continuous-contribution case. From Barbieri

and Malueg (2009) we know that Kc is always decreasing in a (essentially this follows from the convexity of

the contribution strategy in the continuous case). In contrast, the relationship for the binary contribution

possibilities case depends on the position of the threshold type v0 relative to µ. This dependence is intuitive.

If v0 < µ and peakedness increases, then, even leaving xd unchanged, the types above µ continue to contribute

xd and among those types below µ the number who are contributors increases, so overall contributions

increase. Allowing for optimal adjustment of the contribution level xd can further raise donations at the

more peaked distribution. When v0 > µ, an analogous effect shows that a small increase in peakedness will

decrease expected donations in the binary-contribution case.

A consequence of Propositions 2 and 3 is a ranking of total contributions Kd and Kc that depends on

the peakedness of the distribution.

Proposition 4 (Peakedness-induced ordering). As peakedness of the distribution F (v; a) increases, at most

one intersection between Kd and Kc can occur, at which Kd becomes larger than Kc.

Proof. Assume first, by contradiction, that an intersection between Kd and Kc occurs at which Kc becomes

larger thanKd. Then there exists a point at whichKd = Kc, but dKc/da ≥ dKd/da. However, Proposition 2

implies v0 < µ, and Proposition 3 further implies dKd/da > 0, thus yielding dKc/da > 0, which contradicts

the fact that dKc/da < 0, as established in Barbieri and Malueg (2009, Proposition 5).

Using the family of distributions in Example 3, Table 1 illustrates Propositions 2–4. In accord with

Proposition 3, for a = 0, 1, 2, we have v0 ≥ µ and increases in peakedness reduce Kd; but for a = 2, 3, 4,

we have v0 ≤ µ and increases in a increase Kd. The data also reflect Proposition 4’s conclusion that as the

distribution becomes more peaked, the binary scheme may come to dominate the continuous-contribution

scheme (here the ranking switches for a value of a lying between 3 and 4). Note too that Kd > Kc when

14



Table 1: Results for optimal continuous or binary contribution schemes, depending on peakedness, n = 2

a Kc Kd xd v0

0 0.17157 0.17157 0.41421 0.58578
1 0.17058 0.16779 0.37242 0.54021
2 0.16961 0.16667 0.33333 0.5
3 0.16865 0.16718 0.31415 0.48133
4 0.16772 0.16837 0.29984 0.46821

a = 4, so Proposition 2 implies v0 < µ, which is indeed the case here (v0 = 0.46821 < .5 = µ). More

generally, whether the graphs of Kd and Kc intersect depends on the available range for the peakedness.

One may show that if the distribution F (v, a) goes, in order of increasing peakedness, from uniform on [0, v̄],

to a degenerate distribution on µ = v̄/2, then the intersection will happen.9

The relationship between the binary vs. continuous comparison and peakedness, as just discussed, is intu-

itive. Offering only a limited number of alternative contribution levels—the binary contribution possibilities

is an extreme case—is a way to target a subset of types (those in a right neighborhood of v0) and induce

them to contribute more than they otherwise would. Clearly, this effect obtains because agents have fewer

contribution options. The down side of this restriction of contribution possibilities is that some types may

choose to contribute less than they otherwise would. Types smaller than the target may decide to contribute

nothing at all while they would have contributed a smaller, but positive amount, if given the opportunity.

Similarly, types larger than the target may be constrained to contribute less than they would have done if

given more alternatives. The situation is illustrated in Figure 3 for Kc = Kd. Now increase peakedness

slightly, and, as a first-approximation, suppose in the two scenarios players continue using the strategies

depicted. An increase in peakedness of the distribution of values tends to reduce the significance of regions

A and C while increasing that of region B, so that the equivalence of donations under the two contribution

schemes breaks in favor of Kd as F becomes more peaked.

We now hold peakedness constant and consider how changes in the number of potential contributors

affect the relationship between Kd and Kc.

Proposition 5 (Number-of-player-induced ordering). As the number of players n increases, at most one

intersection between Kd and Kc can occur, at which Kc becomes larger than Kd. Moreover, for n sufficiently

large, Kc > Kd.

Proof. It is immediate to verify that both Kc and Kd are decreasing in n. Therefore, the first part of the

9When F is a degenerate distribution at µ, players contribute some common fixed amount s0 in the Nash equilibrium with
unrestricted contributions. In the best discrete contribution scheme, the fundraiser will generally choose a level xd 6= s0; for
this reason, Kd > Kc when F is a degenerate distribution.
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proof is complete after we establish that if Kd ≥ Kc, then
∣∣∣dKd

dn

∣∣∣ >
∣∣dKc

dn

∣∣. From equations (3)–(6) and the

definition of Kd we obtain

∣∣∣∣
dKd

dn

∣∣∣∣−
∣∣∣∣
dKc

dn

∣∣∣∣ =
1− F (v0)

1 + (n− 1)(1− F (v0))
Kd − 1− F ((n− 1)Kc)

2 + (n− 1)(1− F ((n− 1)Kc))
Kc

≥ 1− F (v0)

1 + (n− 1)(1− F (v0))
Kc − 1− F ((n− 1)Kc)

2 + (n− 1)(1− F ((n− 1)Kc))
Kc (Kd ≥ Kc is assumed)

=

(
1− 2F (v0) + F ((n− 1)Kc)

[1 + (n− 1)(1− F (v0))] [2 + (n− 1)(1− F ((n− 1)Kc))]

)
Kc

> 0,

where the final inequality follows because v0 < µ (which follows from Proposition 2) implies F (v0) < 1/2.

To show that for n sufficiently large Kd < Kc, proceed by contradiction; that is, suppose that there

exists some N ′ such that for all n > N ′, Kd ≥ Kc (the possibility of multiple intersections is excluded

by the analysis of the previous paragraph). By Proposition 2, it must be that v0 < µ, for all n > N ′.

From the definition of Kd we have Kd ≥ xd/2, and by equation (6) xd ≥ 1/(2f(v0)) ≥ 1/(2f(µ)), which

together imply limn→∞ Kd ≥ 1/(4f(µ)) > 0; therefore limn→∞ v0 = limn→∞ (n− 1)Kd + xd = +∞, which

contradicts v0 < µ.

The following example illustrates Proposition 5.

Example 4 (Triangular distribution continued). Consider three players and the same distribution the density

f(v; a) in Example 3. For a = 4 we have Kc = 0.12778 and Kd = 0.125. A comparison with the previous

calculations for the two-player case in Table 1 reveals that in moving from 2 to 3 players, the ranking of Kc

and Kd switches, fixing peakedness at a = 4, in accordance with Proposition 5.

It turns out that the main force underlying our result on the number of agents is the same we identify

in the next proposition about crowding-out. Let y denote the level of contributions that are exogenously

provided by an external authority, and consider how players’ contributions change as y increases. Replicating

the steps leading to (3), we obtain that, in equilibrium, the expected contribution amount with unrestricted

contribution solves

Kc =
1

2

∫ 1

(n−1)Kc+y

(1− F (v)) dv. (15)

Similarly, when contributions are restricted, the indifferent type v0, the optimally chosen level xd, and the
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expected contribution amount Kd solve

v0 = xd + (n− 1)Kd + y, xd =
1− F (v0)

f(v0)
, and Kd = xd(1− F (v0)). (16)

We now hold constant all other parameters and consider how changes in the amount y, exogenously given

by an external authority, affect the relationship between Kd and Kc. (The proof of Proposition 6, which is

similar to that for Proposition 5, is given in the Appendix.)

Proposition 6 (Crowding-out-induced ordering). As the amount y increases, at most one intersection

between Kd and Kc can occur, at which Kc becomes larger than Kd.

The following example illustrates Proposition 6.

Example 5 (Triangular distribution continued). Consider two players and the same distribution the density

f(v; a) in Example 3. For a = 4 and y = 0, as derived in our previous calculations in Table 1, Kc = 0.16772

and Kd = 0.16837. For a = 4 and y = 0.1 we have Kc = 0.13626 and Kd = 0.13341. Thus, the ranking of

Kc and Kd switches as we increase y, in accordance with Proposition 6.

Propositions 5 and 6 are two manifestations of the same main force. Contributions from a membership

scheme that restricts contributors’ decisions are more responsive to changes in the environment (e.g., an

increase in the number of potential contributors or an increase in external donations) than contributions

from a more flexible scheme, conditional on the fundraiser being indifferent between the two, that is for

Kc = Kd. The intuition for the result is that a flexible mechanism allows agents wishing to reduce their

contributions to do so in a smooth, measured manner that is largely independent of their value. Indeed, in

equilibrium, a given change in the expected donation of one player is achieved because (almost) all types who

were contributing a positive amount end up reducing their donation by a common quantity. The adjustment

is very different in a rigid membership scheme. The only possibility to reduce one’s donation is to stop

contributing at all. True to its characterization, a rigid membership scheme “breaks but does not bend” and

forces a jerky response from agent types: types sufficiently far from v0 do not change their behavior at all,

while types sufficiently close to v0 precipitously drop their contribution from x to nothing.10 Which of the

the smooth or the jerky adjustments ends up being larger then depends on the relative importance of types

near v0. As discussed earlier and as depicted in Figure 3, when the fundraiser is indifferent between the

flexible or the rigid scheme, that is for Kd = Kc, it must be the case that types near v0 are very important,

and the jerky adjustment ends up being larger in expectation. Therefore, the larger the number of potential

10In the words of Bergstrom et al. (1986), the jerky response happens only at the “extensive” margin, while the smooth
response happens mostly at the “intensive” margin.
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contributors or the amount provided by external sources, the larger the crowding-out for a rigid contribution

scheme, relative to a flexible one, up to the point in which flexibility becomes preferred by the fundraisers.

4.3 Benefit-induced restrictions

The main objective of this section is showing that our earlier results, in particular Propositions 4, 5, and 6,

survive when we consider a more realistic membership scheme in which agents are free to donate any amount

they desire. “Restrictions” in donations arise from the package of selective benefits. With respect to the

model in Section 2, nothing changes about the way in which agents benefit from the public good. However,

we now assume that contributors also enjoy a selective benefit b(x), distributed by the association in exchange

for a donation level x. We maintain the assumption, typical of the subscription game, that if the public good

cannot be produced, then agents receive their contributions back and obtain a payoff of zero. When the

public good is produced, for simplicity, we assume b(x) enters additively in the utility function, so that the

expected utility of agent i in (2) now becomes

Ui(x|vi) =
1

c̄
(vi + b(x)− x)(x+ (n− 1)K + y).

We consider two ways in which fundraisers allocate selective benefits. In the first, b equals an exogenously

specified amount q > 0, but only if the donation x exceeds an endogenously chosen level xdb . Otherwise,

b = 0. We label this the “discrete-benefit” scheme. In the second, b is a simple linear function of donations:

b(x) = αx, with α > 0. This formulation resembles Harbaugh’s (1998a) introduction of “prestige” that results

from contributions. If contributions are reported exactly, more prestige is “bought” with larger contributions,

and we specify a proportional representation of this. If categories are introduced, as in Harbaugh, then

after a donor contributes, the receiver simply reports publicly in which category that donor’s contribution

fell.11 Alternatively, we introduce a single category, where anyone contributing at least xd is reported to

be a member of this category and thereby receives prestige benefit of q when the good is also provided.

An important difference with Harbaugh’s setup remains: A contributors’ utility depends on other agents’

donations; thus, strategic considerations remain paramount.

For the “continuous-benefit” scheme it is easy to retrace our steps leading to (4) and to show that in the

11For example, the New Orleans Preservation Resource Center identifies major donors by their membership in categories des-
ignated as Italianate ($25,000 and above), Greek Revival ($15,000–$24,999), Romanesque Revival ($10,000–$14,999), Steamboat
Gothic ($5,000–$9,999), Queen Anne ($2,500–$4,999), Landmark ($1,000-$2,499), and Conservator ($500–$999).
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only symmetric equilibrium donations are

scb(v) =





1
2

(
v

1−α − (n− 1)Kc
b − y

)
if v ≥ ((n− 1)Kc

b + y)(1− α)

0 otherwise,

where Kc
b solves Kc

b = E[ scb(v) ] , and y is the amount exogenously provided by an external authority—as in

Proposition 6.

For the discrete-benefit scheme, types donating amounts smaller than xdb , that is, types for which b(x) = 0,

either do not contribute, or if they do, they donate 1
2 (v−(n−1)Kd

b −y), where Kd
b is the equilibrium expected

contribution. Proceeding in a similar fashion, types that donate more than xdb (they receive benefit b(x) = q)

contribute 1
2 (v+ q− (n−1)Kd

b −y). The previously mentioned agents have very low or very high values. For

intermediate values, the possibility of capturing the benefit b(x) = q, through an upwards departure from

x = 1
2 (v − (n− 1)Kd

b − y) to x = xdb , may prove attractive. Indeed, after comparing the appropriate utility

levels, we find equilibrium donations are

sdb(v) =





0 if v ≤ (n− 1)Kd
b + y

1
2 (v − (n− 1)Kd

b − y) if (n− 1)Kd
b + y < v ≤ v0b ,

xdb if v0b < v ≤ (n− 1)Kd
b + y + 2xdb − q,

1
2 (v + q − (n− 1)Kd

b − y) if (n− 1)Kd
b + y + 2xdb − q < v ≤ 1,

where v0b , the type indifferent between donating
(
v − (n− 1)Kd

b − y
)
/2 and xdb , is

v0b = (n− 1)Kd
b + y + 2xdb − 2

√
q((n− 1)Kd

b + y + xdb).

(Note also that types larger than (n− 1)Kd
b + y + 2xdb − q contribute more than xdb .)

The following figure depicts scb(v) and sdb(v) and, for ease of notation, we indicate with vcb (vdb) the

value at which the continuous-benefit (discrete-benefit) equilibrium strategy becomes positive. By the above

descriptions, vcb = ((n− 1)Kc
b + y)(1− α) and vdb = (n− 1)Kd

b + y.

Figure 4 shows that the comparison of discrete-benefit vs. continuous-benefit schemes is very similar to

the comparison of discrete-level vs. continuous-level schemes in Figure 3: if Kc
b = Kd

b , then discrete does

better in area B while continuous is superior in areas A and C. All earlier graphical intuitions about the

advantages and pitfalls restricting agents’ freedom to donate carry over to a scheme that restricts agents’

rewards for a donation, because the relative position of areas A, B, and C is the same. Therefore, we may
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Figure 4: Comparison of discrete-benefit and continuous-benefit expected contributions.

Table 2: Continuous-benefit vs. discrete-benefit equilibria, q = 0.01

Parameter Configuration Kc
b α Kd

b xdb
(1) n = 2, y = 0, a = 1 0.17607 0.03119 0.17526 0.20759
(2) n = 2, y = 0, a = 4 0.17361 0.03393 0.17383 0.20826
(3) n = 3, y = 0, a = 4 0.13348 0.04271 0.13307 0.16482
(4) n = 2, y = 0.1, a = 4 0.14325 0.04014 0.14294 0.17575

expect the comparative statics about Kd and Kc in Propositions 4–6 to remain valid for their respective

analogues Kd
b and Kc

b , as confirmed by the next example.

Example 6 (Triangular distribution continued). Consider the same distribution the density f(v; a) in Ex-

ample 3. Let the value of selective benefits for the discrete-benefit scheme, q, be 0.01. The marginal value

of selective benefits for the continuous-benefit scheme, α, is endogenously determined so that the equilibrium

average expected benefit is identical for the two schemes. Table 2 summarizes the relevant quantities.

From Table 2 we see the switches in the order of Kc
b and Kd

b are all in accordance with Propositions 4–6.

Indeed, increasing peakedness, a, favors the discrete-benefit scheme, as the comparison of configurations (1)

and (2) shows. Moreover, the continuous-benefit scheme is favored by an increase in the number of players,

n, as configurations (2) and (3) show, and by an increase in the amount y exogenously provided by an

external authority, as configurations (2) and (4) show.12

The intuitive reason for why the relative position of areas A, B, and C is the one depicted in Figure 4

is straightforward. The position of area A is determined by the larger likelihoood of positive contributions

12We have also performed numerical comparisons between a scheme with one benefit level and a two-level scheme, and we find
the same patterns as in Table 2. Indeed, the relatively more flexible two-level scheme generates larger expected contributions
than the rigid one-level scheme when there are increases i) in the dispersion of values, ii) in the number of players, and iii) in
the amount exogenously provided by an external authority. Full details are available upon request.
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under the flexible scheme, which arises because even very small contributions are rewarded with selective

benefits, in contrast with the rigid scheme. Area C reflects the fact that, under the flexible scheme, the

marginal selective benefit is positive, while it is almost always zero under the rigid scheme. Thus, the

incentive to contribute more than xdb in the rigid scheme comes only from the increase in the probability

of provision. In contrast, under the flexible scheme, there arises the additional prize of a larger selective

incentive. Therefore, it is not surprising that contributions larger than xdb are more frequent in the flexible

scheme, as depicted in area C. Finally, since the flexible mechanism dominates for small and large values

and since Figure 4 is drawn under the assumption Kc
b = Kd

b , it must be the case that the rigid mechanism

dominates for intermediate values, as described by area B.

5 Empirical evidence: default membership levels for NPR stations

Before entering into details, it is worth highlighting our objective for this section. In no way are we considering

the model in Section 2 and “bringing it to the data.” Our theoretical model is, by design, very stylized. Its

purpose is to showcase the basic forces underlying the decision by the fundraisers whether to restrict the

freedom in choosing a contribution level by potential contributors, or to offer a flexible membership scheme

in which agents’ choices are less constrained. Two such forces we identified are “dispersion of values” and

“extent of crowding-out,” leading to these three predictions:

P1. The larger the dispersion of values, the less attractive becomes a membership scheme that restricts

contributors’ decisions (Proposition 4).

P2. The larger the number of potential contributors, the less attractive becomes a membership scheme that

restricts contributors’ decisions (Proposition 5).

P3. The larger the amount provided by an external authority, the less attractive becomes a membership

scheme that restricts contributors’ decisions (Proposition 6).

While the proofs of the respective propositions depend on the details of our model, we believe the intuitions

we provided transcend them. In this section we explore the basic consistency of the membership schemes we

see actually used with the three predictions described above.

The main data for this section are information on number of different membership levels offered by

National Public Radio (NPR) stations, geographic and socio-economic information about the populations

they serve, and funding amounts provided to NPR stations by the Corporation for Public Broadcasting

(CPB). While the empirical literature that treats NPR stations as producers of public goods is vast (see, for

example, Berry and Waldfogel, 1999; Kingma, 1989; and Manzoor and Straub, 2005), we believe our analysis
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is the first to investigate the relationship between the demographics of a station’s audience and the structure

of the fundraising scheme offered by that station. In our quest to document basic relationships consistent

with P1–P3, we proxy flexibility of the membership scheme with the number of different membership levels

offered by a station, dispersion of values with income inequality, number of agents with adult population

served, and contributions by an external authority with CPB funding.

5.1 Data

Data are drawn from a variety of sources. We began with a list of all NPR stations operating in the

continental United States, available at http://www.npr.org/stations/pdf/nprstations.pdf. This list

provides a first geographical indication of the coverage area in addition to call letters—e.g. KDAQ for the

NPR station in Shreveport, LA—that, in combination with the FM or AM frequency, uniquely identify

NPR stations. Our information on geographic coverage is integrated with maps from Radio-Locator. From

the website http://www.radio-locator.com we obtained descriptions of the predicted coverage area of

each NPR station. We organized geographic information as follows. First, we included all metropolitan or

micropolitan statistical areas falling within the predicted coverage pattern.13 In the few cases in which there

are no metropolitan or micropolitan areas within the coverage pattern, we chose to assign as geographic area

the counties falling within the coverage pattern. Radio-Locator also provides the website of each station.

In many cases, a few different NPR stations all link to the same website. These stations are effectively

operating, as far as membership campaigns are concerned, as a single entity, namely, a network of NPR

stations (e.g., KDAQ in Shreveport, LA; KLSA in Alexandria, LA; KBSA in El Dorado, AK; and KLDN in

Lufkin, TX, all constitute the “Red River Radio” network, with website www.redriverradio.org).

Our information on default membership levels comes from the websites of stand-alone NPR stations and

the NPR station networks. In particular, we first followed links such as “donate now” or “support” or

“pledge now” and counted the number of different options offered.14 Finally, we searched the websites for

“leadership circles,” “producers’ clubs,” or other similar monikers for large donations. If a specific level (or

levels) were explicitly identified on the website, but not in the regular “pledge now” page, we included it as

a separate contribution level.15 We accessed these websites between May 22, 2009, and June 7, 2009. At

those times, no scheduled membership campaigns were ongoing.

13We use Table 2a available at http://www.census.gov/population/www/cen2000/briefs/phc-t29/index.html for our defi-
nitions of metropolitan and micropolitan statistical areas.

14Often, two kinds of membership are offered, one without gift and one with gifts. In case the levels with gift did not
correspond to the level without gift, we considered the level with gift as an additional level, as long as it did not fall within five
dollars of any level without gift. To deal with different payment plans, e.g. monthly or once for the whole year, we annualized
all amounts without discounting.

15We did not include donations in kind, donations of stocks, charitable gift annuities and donations of other financial in-
struments. Whenever the website belongs to an organization operating jointly a TV station and a NPR station, we excluded
TV-related gifts from our calculations.
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We then collected aggregate economic and demographic characteristic of each geographic area, including

population, income, education, racial makeup, voting percentage, population density and commuting time.16

We chose population as a straightforward approximation to the number of potential donors to the public

good. We chose income as a proxy for willingness to pay for the public good. We added the other variables

in the attempt to control for other factors that may affect the willingness to pay for the public good. In our

choices we are guided by our own experience that much radio listening happens in the car, and by what various

NPR stations websites say about their listeners in their “Underwriting” or “Business Sponsorship” pages.

In particular, beyond high income and high education, civic activism is often mentioned as a distinguishing

characteristic of NPR listeners, and we proxy this with voting behavior.

Finally, we collected information on CPB funding from their most recent annual report available on their

website, http://www.cpb.org/aboutcpb/reports. We use the information to create a cross section with the

following information for each network of NPR stations (we consider a stand-alone NPR station as a network

of one): (1) number of different default membership levels; (2) adult population; (3) income inequality and

median income; (4) CPB support; and (5) other economic, demographic, and political controls.

Before presenting our basic estimations, we describe the variables of greater interest in more detail,

beginning with the number of suggested contribution levels. Their distribution is reported in Table 3, which

shows a fair amount of dispersion and where the largest number of levels suggested is 21. A small percentage

of the sample (3.8%) offered no pre-specified levels. In our estimations, we excluded these few observations

for two reasons. The first is theoretical: we believe there is a marked discontinuity between offering only

one membership level, and simply leaving any contributor free to donate as much as he wants without any

suggestion, guidance, or inducement level. If we were to include the observation where no suggested level

appears, we believe we should include them at the other extreme; that is we feel that a membership scheme

with no suggested levels is much closer in the flexibility it allows the contributor to a scheme with 21 possible

levels, rather than to one with only one possible membership level. The second reason is that a large fraction

of the stations offering no specified membership level appear to be very tightly connected to a higher-level

institution, such as a university. This connection is so tight that, sometimes, following the “pledge now”

link, one is sent to the university donation webpage. It is not entirely clear to us how to view such strict

linkage and the effects it may have on the membership policy of the NPR station.

The adult population (persons over 18) for each geographic area served by a network are reported in

Table 4. Here, too, there is fair dispersion in the data, with the largest population in excess of 13 million for

stations covering the New York metropolitan area and a small percentage of stations (5.8% of the sample)

covering a population less than 50,000. In our estimations we excluded the 15 NPR networks serving a

16These are derived from from “USA Counties” data files, available at http://www.census.gov/support/DataDownload.htm.
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Table 3: The distribution of the number of suggested contribution levels

Number of default contribution levels
suggested by NPR network Frequency Percent Cumulative

None 10 3.86 3.86
1 4 1.54 5.41
2 1 0.39 5.79
3 5 1.93 7.72
4 4 1.54 9.27
5 8 3.09 12.36
6 31 11.97 24.32
7 19 7.34 31.66
8 28 10.81 42.47
9 30 11.58 54.05
10 26 10.04 64.09
11 25 9.65 73.75
12 23 8.88 82.63
13 19 7.34 89.96
14 7 2.70 92.66
15 5 1.93 94.59
16 4 1.54 96.14
17 3 1.16 97.30
18 1 0.39 97.68
19 3 1.16 98.84
20 1 0.39 99.23
21 2 0.77 100.00

Total 259

population less than 50,000. They cover remote parts of the country, with no metropolitan or micropolitan

areas, or very small ones. Moreover, they tend to be very tightly connected to institutions like Native

American Nations or Reservations. In our estimations we also excluded “statewide” NPR networks (e.g.,

Georgia Public Broadcasting). We have 15 statewide networks in our sample. We are especially concerned

about the influence of state legislatures or state boards of education in their creation and operation.17

The figures for the amount of CPB support, excluding the “statewide” NPR networks, are reported in

Table 5. We have only included the total of “Radio Community Service Grants” and “Radio Programming

Grants,” leaving out other forms of grants—for example, “Digital Support Grants”—that appear much less

common and permanent. The notable feature in the data is that the overwhelming majority of stations

receive some funding but less than $800,000. Of the 9 NPR networks out of 244 we could not find an amount

for, three offer no membership levels and one has population smaller than than 50,000; therefore they are

excluded based on earlier considerations. We feel it is better to eliminate also the remaining five rather than

17It is also somewhat problematic to obtain reliable and complete geographical coverage data. For example, Georgia Public
Broadcasting does not have a station in Atlanta, but its radio programming can be heard on the second audio program of its
TV station. To avoid such complications, we exclude these observations.
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Table 4: Adult populations of NPR networks’ audiences

Total adult population served
by an NPR network Frequency Percent Cumulative

less than 50,000 15 5.79 5.79
between 50,000 and 100,000 10 3.86 9.65

between 100,000 and 200,000 26 10.04 19.69
between 200,000 and 300,000 23 8.88 28.57
between 300,000 and 400,000 26 10.04 38.61
between 400,000 and 500,000 23 8.88 47.49
between 500,000 and 600,000 10 3.86 51.35
between 600,000 and 700,000 9 3.47 54.83
between 700,000 and 800,000 6 2.32 57.14
between 800,000 and 900,000 7 2.70 59.85

between 900,000 and 1000,000 13 5.02 64.86
between 1,000,000 and 1,500,000 24 9.27 74.13
between 1,500,000 and 2,000,000 12 4.63 78.76
between 2,000,000 and 3,000,000 16 6.18 84.94
between 3,000,000 and 4,000,000 22 8.49 93.44
between 4,000,000 and 8,000,000 10 3.86 97.30

more than 8,000,000 7 2.70 100.00

Total 259

assigning them a value of zero.18

We constructed our income variables as follows. The census data provides number of households with

income falling in different intervals (e.g., $15,000 to $20,000) by county or by metropolitan or micropolitan

area. Because our geographic unit of interest is the area covered by an NPR network, which may be

a combination of all three—county, metropolitan area, and micropolitan area—we first aggregated these

numbers. We then calculated the percentage of households in the area covered by the NPR network with

incomes below $15,000 and with incomes above $150,000. Finally, as our measure of median income we

used the mid-point of the median income interval in the network coverage area.19 After all the eliminations

described above, we are left with 216 out of 259 observations.20

The unconditioned relation between number of default contribution levels and adult population turns

out to be non-linear, nicely accommodated with a logarithmic transformation of population as depicted

in Figure 6. (This and the following figures are in the Appendix.) The unconditioned relation between

contribution levels and proportion of households with income above $150,000 is depicted in Figure 7, while

the relation for households with income below $15,000 is depicted in Figure 8. While Figures 6 and 7 display

18The six “super” NPR networks that receive more than $800,000 deserve a special advance mention as well (see Fig-
ures 9a and 9b).

19Brush (2007) uses similar measures of income when analyzing income inequality and crime.
20Our results are not qualitatively affected by marginally different inclusion rules, with the caveat described above for stations

that do not offer pre-specified membership levels, in the sense that the variables of interest remain statistically significant, albeit
sometimes less precisely estimated.
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Table 5: NPR network support from the Corporation for Public Broadcasting

CPB support in dollars for
non-statewide NPR networks Frequency Percent Cumulative

nothing 9 3.69 3.69
less than 50,000 5 2.05 5.74

between 50,000 and 100,000 27 11.07 16.80
between 100,000 and 150,000 57 23.36 40.16
between 150,000 and 200,000 49 20.08 60.25
between 200,000 and 250,000 28 11.48 71.72
between 250,000 and 300,000 22 9.02 80.74
between 300,000 and 400,000 14 5.74 86.48
between 400,000 and 500,000 14 5.74 92.21
between 500,000 and 600,000 8 3.28 95.49
between 600,000 and 700,000 4 1.64 97.13
between 700,000 and 800,000 1 0.41 97.54
between 800,000 and 900,000 0 0.00 97.54

between 900,000 and 1000,000 0 0.00 97.54
between 1,000,000 and 1,500,000 4 1.64 99.18
between 1,500,000 and 2,000,000 1 0.41 99.59
between 2,000,000 and 3,000,000 1 0.41 100.00

Total 244

patterns that conform to our theoretical intuitions, the relation for poorer households is far less obvious—a

linear specification is not statistically significant—without conditioning on the other variables of interest.

Finally, the unconditioned relation between contribution levels and CPB support is depicted in Figure 9a.

Our theoretical intuitions about crowding out are consistent with the pattern displayed for all observations

but the six “super” NPR networks with CPB support larger than $800,000, as Figure 9b, which excludes

them, clearly shows.

5.2 Results

We present in Table 6 the results of the multivariate OLS regressions. We estimate 4 different equations.

On the left-hand side they have the number of default membership levels. On the right-hand side of each

equation, we place

F1. Weights for the upper and the lower tails of the income distribution conditional on median income,

F2. Natural logarithm of adult population,

F3. The amount provided by the CPB;

along with the control variables described in Table 6. For item F1, income, we investigate a “restrictive”

definition of income tails, that is $150,000 and $15,000, and a more “expansive” definition, namely, $125,000
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Table 6: Dependent variable: number of default contribution levels proposed by an NPR network

F1 restrictive F1 expansive F1 restrictive F1 expansive
Estimation specification F3 expansive F3 expansive F3 restrictive F3 restrictive

F1 Logarithm of median income Coef. 2.7848 2.4107 3.2802 3.2168
Robust std. err. 4.1431 4.4980 4.0947 4.4587

Proportion of households with Coef. 46.8526∗∗ 51.8445∗∗
income less than $15,000 Robust std. err. 15.6873 15.7803

Proportion of households with Coef. 68.8656∗ 88.5262∗
income more than $150,000 Robust std. err. 32.9170 32.4355

Proportion of households with Coef. 38.9495∗∗ 45.0427∗∗
income less than $20,000 Robust std. err. 14.5569 14.7979

Proportion of households with Coef. 52.0413∗ 67.2287∗∗
income more than $125,000 Robust std. err. 24.4330 24.2793

F2 Logarithm of population Coef. 1.3231∗∗ 1.3131∗∗ 1.3898∗∗ 1.3930∗∗
over 18 years of age Robust std. err. 0.3251 0.3245 0.3333 0.3331

F3 CPB support in 100,000’s Coef. 0.5361∗ 0.5452∗ 0.5546∗∗ 0.5691∗∗
Robust std. err. 0.2475 0.2471 0.2122 0.2118

CPB support in 100,000’s squared Coef. −0.0285∗ −0.0284∗
Robust std. err. 0.011 0.011

other Votes cast in 2000 presidential election Coef. −2.3998 −2.4038 −3.1181 −3.1138
controls over adult population Robust std. err. 4.8363 4.8777 4.8824 4.9169

Average commute time for workers Coef. −0.1635 −0.1595 −0.2134 −0.2123
not working at home Robust std. err. 0.1210 0.1222 0.1228 0.1239

Proportion of population with health Coef. 21.0397∗ 21.4529∗ 23.0523∗ 23.4594∗
insurance coverage Robust std. err. 10.0115 10.1768 10.1031 10.2708

Proportion of population that is white Coef. −3.0556 −3.8503 −3.2176 −4.1451
Robust std. err. 2.9532 3.0500 2.9025 3.0123

Prop. of population 25 years and over with Coef. −9.0871 −8.9310 −11.6717 −12.0193
bachelor’s, graduate, or professional degree Robust std. err. 6.3997 6.7988 6.5042 6.9367

Employed civilian labor force over Coef. 48.7552 50.0920 49.2265 53.0112
total labor force Robust std. err. 28.0912 28.1032 28.1096 28.1763
Population density as population over Coef. −0.0007 −0.0006 −0.0014 −0.0013
land in square miles Robust std. err. 0.0013 0.0013 0.0014 0.0014
Male-to-Female ratio for population Coef. 18.1423∗∗ 17.5514∗∗ 18.3103∗∗ 18.0205∗∗
over 16 years of age Robust std. err. 6.5709 6.6412 6.5568 6.6327

Constant Coef. −120.0880∗ −118.3760 −127.8379∗ −132.6367∗
Robust std. err. 56.9801 61.8886 56.3268 61.6387

R squared 0.2589 0.2515 0.2806 0.2735

Number of observations 216 216 210 210

* Significant at the 5% level.
** Significant at the 1% level.
Note: All independent variables are for the year 2000 with the exception of income variables, which are for the year 1999, and
CPB support, which is for the year 2007.
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and $20,000. For item F3, CPB support, we investigate a “restrictive” linear estimate that excludes the six

observations with CPB support larger than $800,000, and an “expansive” quadratic estimate that includes

these observations. The different combinations give rise to the 4 columns in Table 6.

The basic relationships reported in Table 6 are in broad agreement with our theoretical hypotheses. For

income, item F1, both the coefficient for the upper tail and the coefficient for the lower tail of the income

distribution are positive and statistically significant, in accordance with prediction P1. The coefficient on

the natural logarithm of adult population is positive and significant, so F2 is in accordance with P2. The

coefficients on the amount provided by the CPB, item F3, imply a positive relationship between number of

default level and CPB support for all but the six “super” networks with CPB support larger than $800,000.21

This broad pattern is confirmed as well using a quadratic specification for population, especially if one

excludes the six “super” networks. Therefore, we feel justified in claiming that empirical patterns are

consistent with our theoretical intuitions.22

6 Conclusion

Fundraisers may profit from restricting donors’ possible levels of contribution because such restrictions can

induce some people to contribute more than they otherwise would. But this benefit must be weighed against

the cost that these restrictions can also induce some people to give less than they otherwise would. The

relative importance of these two effects determines whether such restrictions are indeed profitable.

Using a subscription game framework to study the private provision of a discrete public good, we have

identified several factors militating in favor of greater flexibility for contributors. If the distribution of

players’ values is concave, then the flexible (continuous) contribution framework yields greater revenue. For

symmetric distributions of players’ values having a density that is first increasing and then decreasing, the

flexible scheme is again preferred as i) the dispersion of donors’ taste for the public good increases, ii) the

number of potential donors increases, and iii) there is greater funding by an external authority. These

predictions of the model are supported by fundraising practices of NPR stations in the US. We found that

these stations offer a larger number of suggested contribution levels as i) the incomes of the population

served become more diverse, ii) the population of the coverage area increases, and iii) there is greater

external support from the Corporation for Public Broadcasting.

21The estimated maximum for the quadratic is about $950,000.
22Among control variables, the male-to-female ratio is deserving of mention. The regressions indicate that the larger the

percentage of males, the more flexible the membership contract offered. Andreoni and Vesterlund (2001) provide evidence
from dictator games that “. . . men are more likely to be either perfectly selfish or perfectly selfless, whereas women tend
to be ‘equalitarians’ who prefer to share evenly.” Should the larger heterogeneity in men’s preferences extend to the public
good “NPR,” then the positive coefficient in our regressions for male-to-female ratio would be consistent with the theoretical
prediction in Proposition 4.
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The more direct implications of our results concern fund raising: We identify easily obtainable char-

acteristic of the target donor population that should be taken into account in the practical design of a

campaign. Moreover, the forces behind our results appear to be relevant for more widely defined collective

effort problems, such as team production. Our most general message is that the design of a campaign af-

fects the responses of contributors in ways that at times are predictable. Exploiting such responses may

prove valuable for further research. For instance, our model suggests that, when faced with a rigid donation

scheme, contributions from very high or very low value donors are less easily crowded-out than those from

donors with intermediate values. This observation may be of help to the large literature on crowding out.23

Finally, it is worth pointing out that the value of our empirical exercise lies in the novelty of the data

about membership levels and in the simultaneous match of various empirical correlations with theoretical

predictions. More empirical research is needed in the directions that our model points out. Our results on

the determination of the best discrete-contribution levels may also offer guidance to experimental analysis,

making it possible to design experiments that have the potential to actually test whether offering membership

categories can raise total contributions.

23See, e.g., Manzoor and Straub (2005) and references therein.
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Appendix

Proof of Proposition 2. The proof is by contradiction: given Kd ≥ Kc we assume v0 ≥ µ and show this leads

to the contradictory conclusion that Kd < Kc. Now suppose Kd ≥ Kc and v0 ≥ µ. Because v0 ≥ µ and F

is strictly concave ∀v > v0, part 2 of Lemma 1 implies xd < [1 − (n − 1)Kd]/2 ≤ [1 − (n − 1)Kc]/2, where

the second inequality follows from the assumption Kd ≥ Kc. Proceeding as in the proof of Proposition 1

part 2, we obtain (11) and reach (12′):

Kc > xd

[
1− 1

2xd

∫ (n−1)Kc+2xd

(n−1)Kc

F (v) dv

]
= xd(1− E[F (v) |ϕ ]), (12′)

where ϕ denotes a uniform probability distribution on the interval [(n− 1)Kc, (n− 1)Kc + 2xd].

We now separate the parameter space into three exhaustive regions and show that, in all three, (12′)

implies Kc > Kd. In the first region µ ≤ (n − 1)Kc, so that F is strictly concave for the relevant range of

the integral in (12′), so that

Kc > xd(1− F (E[ v |ϕ ]) = xd[1− F ((n− 1)Kc + xd)]

≥ xd[1− F ((n− 1)Kd + xd)]

= Kd.

In the second region µ ≥ (n− 1)Kc + 2xd, so from (12′) we obtain

Kc > xd(1− E[F (v) |ϕ ])

≥ xd[1− F (v0)]

= Kd,

where the second inequality follows because F (v) ≤ F (v0) for every v in the support of ϕ by the assumption

v0 ≥ µ.

We proceed to the analysis of the third and final region, (n − 1)Kc < µ < (n − 1)Kc + 2xd, with the

help of Figure 5. We first define a new distribution function H that agrees with F for v < (n − 1)Kc and

v > 2µ − (n − 1)Kc, but, for (n − 1)Kc ≤ v ≤ 2µ − (n − 1)Kc, H is equal to the straight line connecting

points A and B:

H(v) =
F (2µ− (n− 1)Kc)− F ((n− 1)Kc)

2(µ− (n− 1)Kc)
(v − (n− 1)Kc) + F ((n− 1)Kc).
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One can easily verify that H inherits symmetry around µ from F , using H(µ+z)+H(µ−z) = 1,∀z ∈ [0, µ].

Moreover, the curvature properties of F imply H(µ) = F (µ), H(v) ≥ F (v) if v < µ, and H(v) ≤ F (v) if

v > µ. In other words, F second-order stochastically dominates H, so

∫ (n−1)Kc+2xd

(n−1)Kc

F (v) dv ≤
∫ (n−1)Kc+2xd

(n−1)Kc

H(v) dv, (17)

because F and H agree for v < (n−1)Kc. Finally, note that by construction H is concave for v ≥ (n−1)Kc.

0

v

H(v)

F (v)

(n− 1)Kc µ 2µ− (n− 1)Kc 1

1/2

F ((n− 1)Kc)

F (2µ− (n− 1)Kc)

1

A

B

Figure 5: Linearization of F about its mean/median.

Using (12′), (17), and concavity of H on [(n− 1)Kc, 1], we now have

Kc > xd

[
1− 1

2xd

∫ (n−1)Kc+2xd

(n−1)Kc

H(v) dv

]

= xd [1− E[H(v) |ϕ ]]

≥ xd [1−H(E[ v|ϕ ])] . (18)

If E[ v |ϕ ] < µ, then (18) implies Kc > xd/2 ≥ xd(1 − F (v0)) = Kd. If E[ v |ϕ ] ≥ µ, then, because
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F (v) ≥ H(v) ∀v ≥ µ, (18) implies

Kc > xd [1− F (E[ v |ϕ ])] = xd[1− F ((n− 1)Kc + xd)] ≥ xd[1− F ((n− 1)Kd + xd)] = Kd.

Thus, in all cases, if Kd ≥ Kc, then v0 ≥ µ is impossible, so it must be that v0 < µ.

Proof of Proposition 6. Making explicit our focus on the amount y, we denote with Kc(y) the solution to

(15) and with Kd(y) the solution for Kd of (16). It is immediate to verify that both Kc(y) and Kd(y)

are decreasing in y. Therefore, as in the proof of Proposition 5, the proof is complete if Kd ≥ Kc implies
∣∣∣dKd

dy

∣∣∣ >
∣∣∣dKc

dy

∣∣∣. From equation (15) we obtain

∣∣∣∣
dKc

dy

∣∣∣∣ =
1− F ((n− 1)Kc) + y

2 + (n− 1)(1− F ((n− 1)Kc + y))
, (19)

while from (16) we have ∣∣∣∣
dKd

dn

∣∣∣∣ =
1− F (v0)

1 + (n− 1)(1− F (v0))
. (20)

Moreover, we can replicate the same steps leading to Proposition 2 for the case y > 0 and reach the same

conclusion: Kd ≥ Kc implies v0 < µ. Simple algebra on equations (19) and (20) shows that the result

follows if

1− 2F (v0) + F ((n− 1)Kc + y) > 0,

which is ensured by v0 < µ.
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