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Abstract: In the context of global climate change, floods have become one of the major natural
disasters affecting the safety of human life, economic construction, and sustainable development.
Despite significant improvements in flood risk and exposure modeling in some studies, there is still
a lack of evidence on the spatiotemporal distribution patterns associated with flood risk across the
globe. Meanwhile, numerous studies mostly explore flood risk distribution patterns based on specific
spatial scales, ignoring to some extent the fact that flood risk has different distribution patterns on
different scales. Here, on the basis of hazard–vulnerability components quantified using game theory
(GT), we proposed a framework for analyzing the spatiotemporal distribution patterns of global
flood risk and the influencing factors behind them on multiple scales. The results revealed that global
flood risk increased during 2005–2020, with the percentages of high-risk areas being 4.3%, 4.48%,
4.6%, and 5.02%, respectively. There were 11 global risk hotspots, mainly located in areas with high
population concentration, high economic density, abundant precipitation, and low elevation. On
the national scale, high-risk countries were mainly concentrated in East Asia, South Asia, Central
Europe, and Western Europe. In our experiment, developed countries accounted for the majority
of the 20 highest risk countries in the world, with Singapore being the highest risk country and El
Salvador having the highest positive risk growth rate (growing by 19.05% during 2015–2020). The
findings of this study offer much-needed information and reference for academics researching flood
risk under climate change.

Keywords: flood disaster; flood risk assessment; spatiotemporal variations; multiple scales; game theory

1. Introduction

Floods have become a global issue affecting most parts of the world and are one
of the most serious natural disasters worldwide. Over the past 40 years, flood events
are estimated to have caused damages worth more than 1 trillion USD, while in the past
20 years, floods influenced more than 1.65 billion individuals [1]. Studies show that in
recent years, floods occurred more often than other natural hazards, such as earthquakes,
extreme precipitation, and droughts [2,3], and floods have become one of the major disasters
affecting people’s lives and property all over the world [4]. In fact, in the context of
a warming climate and thus the intensifying of the hydrological cycle [5,6], the global
flood risk may increase in the future [7,8]. For instance, studies show that even under an
optimistic climate change scenario, the sea levels is expected to rise by 0.55 m by 2100,
putting coastal cities, particularly large ones, at risk [9]. By 2100, the flood frequency is
likely to increase significantly in Southeast Asia, East and Central Africa, and much of
Latin America [10]. In response to the growing challenge of flooding, a framework from
Sendai Framework for Disaster Risk Reduction 2015–2030 (SFDRR) was presented that
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aims to significantly decrease disaster risk and prevent serious loss of life, livelihood, and
health [11]. Meanwhile, investments in flood management and prevention can reduce
disaster-related mortality and property damage [12,13]. However, only about 13% of
disaster funding is spent on preparedness, mitigation, and adaptation [14].

Recognizing the serious impact of disasters on socio-economic development, many
scholars have explored the distribution patterns of flood risk on different spatial scales.
Especially, since the middle 2000s, there have been extensive attempts to identify the global
flood risk [15], often using the latest data available at the time, such as high-resolution assets
and populations, making risk assessments increasingly accurate [9]. Additionally, previous
studies show that the risk mapping of floods is one of the effective methods and important
tools to mitigate flood hazards [16,17] and is applied in numerous ways in disaster warning,
engineering assessment, emergency response, disaster avoidance planning, and disaster
assessment [18,19]. However, due to the availability of data and the great economic value
of risk, current studies focus on national scales, without a comprehensive analysis of
flood risk mechanisms, especially in high-income countries such as the EU [20] and the
US [21]. In this situation, different strategies and measures have been proposed to cope with
floods. To respond to flooding, some countries implement (sometimes controversial) retreat
plans by acquiring assets situated in floodplain-exposed areas [22,23]. Alternatively, some
countries rely on structural protection measures, such as levees, to reduce the frequency
of flooding [24,25]. However, many measures might have unexpected effects, such as
potentially accelerating the urbanization of flood-exposed areas, thereby reducing the
perception of flood risk [26]. Thus, a more refined flood risk assessment is essential to
improve the understanding of flood risk in various countries and areas and provide a
theoretical and technical foundation for decision makers across the globe to set flood
prevention and mitigation targets and measures in specific areas.

Globally, three approaches to represent flood hazards exist: remote sensing (RS) of
historical flood events, global flood models (GFMs), and the index system approach. The
method that uses historical data is mainly based on disaster data, such as historical flooding
records, and uses one or more mathematical models to statistically analyze the sample data
to obtain statistical patterns of disaster intensity and losses. Typical mathematical analysis
methods include regression models, time series models, cluster analysis, probability density
functions, parameter estimation, and non-parametric estimation methods [16,27]. In relative
terms, GFMs are mainly based on global datasets and use automated approaches and
hydraulic equivalent equations to simulate global flood hazards [28]. Throughout history,
GFMs have primarily been used to respond to disasters [29], inform policy decisions [30],
and assess business risks [28]. However, both historical-data-based methods and GFMs
focus mainly on global flood risk analysis at the national level [31,32] and lack research work
on flooding at a more refined level. In this case, we included the index system approach,
currently the most common method to assess flood risk, in our work. To some extent, the
index system method has the advantages of calculation principles; application ideas are
relatively simple, and it can subjectively respond to the relationship between flooding and
each index. Meanwhile, current research shows that global data are now available at a high
enough resolution to meet our requirements [28]; thus, index systematization was used in
this study to quantify global flood risk.

In this study, we presented and used a framework to assess global flood risk and
explore the spatiotemporal pattern at a higher resolution. This framework starts from the
hazard–vulnerability elements and couples with technical tools such as GIS technology,
statistical analysis, and hotspot analysis. Firstly, according to the actual situation of the
study area and the principles of accessibility and scientificity of indexes, 19 indexes were
selected to jointly construct the flood risk index system. Then, a game theory quantification
method based on the triangular fuzzy number-based analytic hierarchy process (TFN-AHP)
and the entropy method (EM) was used to assign weights to flood risk indexes, and the
flood risk was quantified and analyzed from a multi-scale perspective based on the regional
integrated flood risk grade (RIFRG) model. On this basis, the spatial distribution and
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temporal evolution of global flood risk were analyzed in terms of multiple scales (grid
scale, hotspots, national scale, and continental scale). Against the background of growing
international focus on preventing disasters and reducing the associated losses, the results of
our study can provide a theoretical and technical foundation for policy makers in various
countries and regions across the globe to set flood prevention and mitigation targets and
measures in specific areas.

2. Data

In this study, the basic research unit was the grid cell with a 0.15◦ × 0.15◦ resolution
(approximately 18 km × 18 km), and the spatiotemporal distributions of global flood risk
were explored from three perspectives: hotspot regions, national scales, and continental
scales. The data used were, among others, global administrative boundary data, hydro-
meteorological data, topographic and geomorphological data, and socio-economic data.
The global administrative boundary data were collected from Resource Environment
Science and Data Center (https://www.resdc.cn/ accessed on 19 October 2021), while
the other data, divided into hazard data and vulnerability data, are explained in the
sections below.

2.1. Global Flood Hazard Data

After considering the reviews presented by relevant studies [28,33,34] and the avail-
ability of data, we used six kinds of data in this study: precipitation, land use, NDVI, river
density, soil texture, and DEM (Table 1). Precipitation data were obtained from the GPM
project of NASA. In this study, we took 5 years as the time scale to extract the maximum
5-day precipitation (M5DP) of these 5 years. Due to the availability of data, the precipita-
tion index of 2020 could only use the precipitation data of three years, from 2018 to 2020.
The river density data and the soil data were gained from OpenStreetMap (OSM) and
Agriculture Organization (FAO), respectively. The two hazard indexes (elevation and slope)
were extracted from the DEM data, collected from SRTM. Table 1 presents more details.

Table 1. Flood hazard data categories and resources.

Data Category Specific Criterium Resource Time Resolution

Precipitation Maximum 5-day
precipitation (mm) NASA 2003–2020 0.1◦ × 0.1◦

Land use Land use
NASA 2005, 2010, 2015 0.5 km × 0.5 km

GLOBELAND30 2020 30 m × 30 m

NDVI NDVI NASA 2005, 2010,
2015, 2020 0.05◦ × 0.05◦

River River density
(km/km2) OpenStreetMap 2021 1:50,000

Soil Soil texture FAO 2008 1 km × 1 km

DEM
Elevation (m)

SRTM 2010 1 km × 1 km
Slope (◦)

Since, throughout history, hazard factors have been measured on different scales [35],
we needed to unify the indicators into the same dimension. Meanwhile, the results of
several studies show that the quantile breakpoint method has good applications for unifying
the dimensionality of the factors [35,36]. Thus, after literature reviews [35,37], we used the
quantile method to classify the hazard factors on the basis of their contribution to flood
probability into five categories, 1 (very low hazard), 2 (low hazard), 3 (moderate hazard), 4
(high hazard), and 5 (very high hazard), as shown in Table 2.

https://www.resdc.cn/
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Table 2. Classes of flood hazard factors and their ratings.

Number Hazard Index Classes Rating

1
Maximum 5-day

precipitation

0–24.53 1

24.53–40.31 2

40.31–61.33 3

61.33–89.37 4

89.37–446.86 5

2 Land use

Forest 1

Grasslands 2

Farmland 3

Permanent wetlands 4

Build up areas 5

Water bodies 5

3 NDVI

−0.16–0.07 5

0.07–0.13 4

0.13–0.22 3

0.22–0.32 2

0.32–0.72 1

4 River density

0–0.09 1

0.09–0.19 2

0.19–0.28 3

0.28–0.43 4

0.43–4.72 5

5 Soil texture

Silt loam 1

Clay loam 1

Loam sand 1

Silty clay 2

Sandy loam 2

Silty clay loam 2

Sand 2

Loam 3

Clay 3

Sandy clay loam 4

Clay(heavy) 5

6 Slope

0–1.39 5

1.39–4.45 4

4.45–8.90 3

8.90–15.29 2

15.29–70.91 1

7 Elevation

−415–104.94 5

104.94–278.25 4

278.25–520.89 3

520.89–1075.50 2

1075.50–8424 1

2.2. Global Flood Vulnerability Data

In this study, we used six basic flood vulnerability data (population data, economic
data, land use data, infrastructure data, impervious surface data, and road data) and
extracted 12 flood vulnerability indexes on the basis of references and citations in some
studies [25,28], as shown in Table 3. Population data were collected from World Pop, and
four vulnerability indexes (population density, female population density, child population
density, and elderly population density) were extracted from population data. Here,
economic data were obtained from two websites: (1) the 2005–2015 economic data from
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Gridded global datasets for Gross Domestic Product and Human Development Index over
1990–2015 [38] and (2) 2020 economic data from Global dataset of gridded population and
GDP scenarios [39].

Table 3. Flood vulnerability data categories and resources.

Data Category Specific Criterium Resource Time Resolution

Population

Population density
(person/km2)

World Pop 2005, 2010,
2015, 2020 1 km × 1 km

Female population density
(person/km2)

Child population density
(person/km2)

Elderly population density
(person/km2)

Economy Economic density
(dollar/km2)

Dryad 2005, 2010, 2015 5′ × 5′

CGER 2020 0.5◦ × 0.5◦

Land use
Building density (%) NASA, 2005, 2010 0.05◦ × 0.05◦

Farmland density (%) GLOBELAND30 2015, 2020 30 m × 30 m

Infrastructure
Shelter density (number/km2)

OpenStreetMap 2021 1:50,000
Hospital density (number/km2)

Impervious surface Impervious surface (%) GHSL 2014 30 m × 30 m

Road Road density (km/km2) OpenStreetMap 2021 1:50,000

2.3. Flood Risk Index System

Flooding is a result of rainfall generated by abnormal atmospheric activity. Many
studies have been conducted on flood risk; however, no unified system has been formed
for the selection of indexes [40]. Here, flood risk assessment indexes were considered in
terms of hazard and vulnerability. The flood risk index system was generated on the basis
of the hazard system theory (three conditions for the formation of floods: disaster-causing
factor, disaster-pregnant environment, and hazard-affected body) [41], the principles of
index selection [42], and the research results of domestic and foreign scholars [25] (Figure 1).
In such a theory, the system only provides a general framework for global flood risk
assessment and has a certain reference value. In actual application, it is essential to take
into account the unique environmental and socioeconomic conditions of the study area and
consider the index system in combination with the resolution and accessibility of data.
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Figure 1. The index system of global flood risk. Note: M5DP, maximum 5-day precipitation; LU, land
use; RD, road density; ST, soil texture; SL, slope; EL, elevation; PD, population density; ED, economic
density; BD, building density; FD, farmland density; FPD, female population density; CPD, child
population density; EPD, elderly population density; IS, impervious surface; RD, road density; SD,
shelter density; HD, hospital density; GPC, GDP per capita.
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3. Methods

After collating sufficient theoretical knowledge related to flooding, the relevant
flowchart was built (Figure 2). Firstly, the basic data were collected and an index system
based on the hazard–vulnerability framework was generated. Then, the index weighting
method to be used in this study was determined, i.e., the game theory weighting method
(a combination of the TFN-AHP and the EM method) was chosen. Finally, based on the
regional integrated flood risk grade (RIFRG) model, the global flood risk assessment and
spatiotemporal difference patterns were conducted from multiple perspectives and scales.
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3.1. The Triangular Fuzzy Number-Based Analytic Hierarchy Process

Traditionally, the AHP is weighting method commonly used to assess flood risk. The
original AHP method uses pairwise comparisons to represent the relative importance of the
assessment factors. However, such pairwise comparisons are somewhat subjective [18]. To
reduce the subjectivity to some extent, we invoked fuzzy theory to replace clear numbers.
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In the TFN-AHP theory, the median value of the triangular fuzzy number represents the
maximum likelihood of the assessment model, while the maximum and minimum values
refer to the fuzziness corresponding to the maximum likelihood [43,44]. More detailed
theoretical presentations and calculation procedures can be found in some studies [43,44].

3.2. Entropy Weight

Throughout history, entropy was first applied to information theory in 1948 by entropy
researcher Shannon as a way to measure the order of a system [45]. Many methods have
evolved from entropy theory, such as the maximum entropy algorithm [46–48] and the
entropy power method [49]. Entropy weighting is an objective, multi-criterium decision-
making method for optimizing decisions under a set of qualitative, quantitative, and
sometimes conflicting factors [49]. As an objective weighting method, based on the in-
formation entropy theory, the entropy weight (EW) is reflective of the content of helpful
information provided by indicators. The specific calculation steps can be found in previous
research studies [50,51].

3.3. Game Theory

Subjective weighting (SW) and objective weighting (OW) are the two main types of
weighting methods involving indexes. Previous studies indicate that SW and OW methods
have their own strengths and weaknesses in different scenarios [52]. In such a theory, the
SW method can reflect the subjective preferences and experiences of decision makers. The
OW method, on the other hand, has a strong mathematical theoretical foundation and is
based on the characteristics of the data themself, avoiding subjectivity to a certain extent.
Therefore, a suitable model is needed to combine the advantages of SW and OW. Game
theory (GT), a mathematical model of strategic interaction between rational and irrational
subjects, specializes in resolving conflicts among two or more participants [53], since it
allows the weight information of subjective or objective weights and the most satisfactory
weight, also known as the combined weight (CW), to be efficiently used. In this study,
the SW method and the OW method were considered as two participants in the flood risk
assessment methodology; more details can be found in the two studies [52,54]. The specific
calculation process was as follows:

(1) We obtain I weights for n indexes according to I categories of weighting methods,
since ωi = [ωi1, ωi2, . . . , ωim, . . . , ωin], i = 1, 2, . . . , I, and m = 1, 2, . . . , n. Therefore,
we can construct a weight vector: W = {[ω1, ω2, . . . , ωI ]};

(2) The possible combined weight, ω∗ =
(
ω∗1 , ω∗2 , . . . , ω∗m, . . . , ω∗n

)
, is achieved by

collecting and combining information on multiple weighting approaches. From this,
we can see that ω* is denoted by W, as shown in Equation (1):

ω∗ =
I

∑
i=1

αiωi,

(
αi > 0 and

I

∑
i=1

αi = 1

)
(1)

(3) Suppose there exists a most appropriate linear combination of coefficients α*, such
that the deviation between ω* and ωi (i = 1, 2, . . . , I) is minimized to achieve a
compromise between the I weights. Thus, the optimization function is to minimize
the deviations between ω* and ωi:

min ‖
I

∑
i=1

αiωi −ωi‖
2

, (i = 1, 2, . . . , I) (2)

Moreover, based on the differential nature of the matrix, the terms for the best first-
order derivatives are obtained using Equation (3):

I

∑
i=1

αiωj·ωT
i = ωj·ωT

j , (j = 1, 2, . . . , I) (3)
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Next, Equation (3) is presented in matrix form:
ω1·ωT

1 ω1·ωT
1 · · · ω1·ωT

I
ω2·ωT

1 ω2·ωT
2 · · · ω2·ωT

I
...

...
...

...
ωI ·ωT

1 ωI ·ωT
2 · · · ωI ·ωT

I




α1
α2
...

αI

 =


ω1·ωT

1
ω2·ωT

2
...

ωI ·ωT
I

 (4)

(4) The weight coefficients are calculated and then normalized to obtain α*:

α∗i = αi/
I

∑
i=1

αi (5)

Eventually, ω* can be obtained as:

ω∗ =
I

∑
i=1

α∗i · ωi (6)

3.4. Flood Risk Calculation and Gradation

In this study, we quantified the flood hazards using Equation (7). As shown in Table 4,
the index weights for 2005, 2010, 2015, and 2020 were obtained using three methods:
TFN-AHP, EW, and GT. The equation used is as follows:

H =
n

∑
i=1

Ai ×ωi (7)

where H is the flood hazard, Ai is the degree of affiliation of each indicator, and ωi is the
weight value of each index.

Table 4. Hazard index weights obtained via the three methods.

Year Method
Hazard Index

M5DP LU NDVI RD ST SL EL

2005
TFN-AHP 0.258 0.165 0.116 0.197 0.149 0.040 0.075

EM 0.127 0.204 0.125 0.202 0.115 0.106 0.121
GT 0.246 0.169 0.116 0.198 0.146 0.046 0.079

2010
TFN-AHP 0.258 0.165 0.116 0.197 0.149 0.040 0.075

EM 0.126 0.202 0.128 0.203 0.115 0.105 0.121
GT 0.246 0.169 0.117 0.197 0.146 0.046 0.079

2015
TFN-AHP 0.258 0.165 0.116 0.197 0.149 0.040 0.075

EM 0.126 0.199 0.127 0.204 0.116 0.105 0.123
GT 0.247 0.168 0.117 0.198 0.146 0.045 0.079

2020
TFN-AHP 0.258 0.165 0.116 0.197 0.149 0.040 0.075

EM 0.123 0.212 0.126 0.201 0.114 0.104 0.120
GT 0.239 0.172 0.117 0.198 0.144 0.049 0.081

Vulnerability, as defined in the IPCC report [55], is the degree to which a system
is susceptible to and unable to cope with adverse effects (climate change). In such a
theory, the key parameters of vulnerability are exposure, sensitivity, adaptability, and
coping capacity. Additionally, the index weights of vulnerability for 2005, 2010, 2015, and
2020 were obtained, as shown in Table 5. The specific equation of flood vulnerability is
as follows:

V =

√
E× S
1 + C

(8)

where V is flood vulnerability, E is exposure, S is sensitivity, and C is coping capacity.
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Table 5. Vulnerability index weights obtained via the three methods.

Year Method
Exposure Sensitivity Coping Capacity

PD ED BD FD FP CP OP IS RD SD HD GPC

2005
TFN-AHP 0.337 0.263 0.215 0.185 0.252 0.183 0.231 0.334 0.373 0.250 0.170 0.207

EM 0.224 0.288 0.297 0.191 0.218 0.216 0.223 0.343 0.079 0.491 0.246 0.184
GT 0.295 0.273 0.245 0.187 0.237 0.197 0.228 0.338 0.173 0.414 0.222 0.191

2010
TFN-AHP 0.337 0.263 0.215 0.185 0.252 0.183 0.231 0.334 0.373 0.250 0.170 0.207

EM 0.226 0.284 0.298 0.192 0.219 0.217 0.219 0.345 0.080 0.497 0.250 0.173
GT 0.297 0.271 0.245 0.187 0.235 0.201 0.224 0.340 0.173 0.419 0.224 0.184

2015
TFN-AHP 0.337 0.263 0.215 0.185 0.252 0.183 0.231 0.334 0.373 0.251 0.170 0.206

EM 0.227 0.283 0.299 0.191 0.220 0.214 0.220 0.346 0.080 0.497 0.249 0.174
GT 0.298 0.270 0.245 0.187 0.234 0.200 0.225 0.341 0.173 0.418 0.224 0.185

2020
TFN-AHP 0.337 0.263 0.215 0.185 0.252 0.183 0.231 0.334 0.373 0.250 0.170 0.207

EM 0.278 0.313 0.223 0.186 0.218 0.213 0.230 0.339 0.067 0.420 0.211 0.302
GT 0.307 0.290 0.233 0.170 0.245 0.189 0.231 0.335 0.180 0.357 0.196 0.267

Flood risk is a comprehensive result of the interaction between the flood (hazard) and
the disaster-bearing body (in terms of its vulnerability in relation to its socio-economic
conditions, resilience, and mitigation capacity against the flood). Considering this point,
the specific definition of flood risk is as follows:

R = H ×V (9)

where R is the flood risk, H is the flood hazard, and V is the vulnerability to the flood.
Referring to some ecological approaches, a risk index that reflects the combined degree

of sub-regional flood risk was used. The index was compiled by reclassifying the risk level
of each grid into a quantitative value: very low risk = 1, low risk = 2, medium risk = 3, high
risk = 4, and very high risk = 5. Specifically, the definitions of the regional integrated flood
risk grades (RIFRGs) were calculated using Equation (10):

RIFRGi =
n

∑
j=1

Gj ×
Aj

Sj
, j = 1, 2, . . . , n (10)

where RIFRGi is the regional integrated flood risk grade for region i, Gj is the risk value for
grade j, Aj is the area of flood risk grade for j in region i, and Sj is the entire area of region j.

4. Results and Discussion
4.1. Spatiotemporal Variations in Global Risk on the Grid Scale

With respect to the three major drivers of floods (disaster-causing factor, disaster-
pregnant environment, and hazard-affected body), we selected 19 indexes to build the
index system on the basis of the hazard–vulnerability framework. Then, combined with the
quality and availability of data and other comprehensive considerations, we generated the
global flood risk distribution map (2005–2020). Based on the natural breakpoint method,
we classified the global flood risk during 2005–2020 into five levels, namely, very low,
low, medium, high, and very high (Figure 3). To verify the accuracy of the proposed
model and flood risk results in this study, we performed ROC curve validation based
on the global flood location dataset, which we downloaded from the Dartmouth Flood
Observatory website (http://floodobservatory.colorado.edu/ accessed on 19 October 2021).
The relationship between model performance and the AUC could be classified into four
levels [56]: poor (<0.6), moderate (0.6–0.7), good (0.7–0.8), and very good (0.8–1). The
validation results showed that the GT model and the flood risk results had a high accuracy,
with AUC values of 0.871 (Figure 4).

http://floodobservatory.colorado.edu/
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Since the differences in the spatial distribution of flood risk during 2005–2020 are not
obvious, the distribution of flood risk in 2005 was taken as an instance to demonstrate
the spatial distribution pattern of global flood risk. In accordance with the results of
Fang et al. [16], the global flood risk distribution is closely related to population, economy,
and precipitation. As shown in Figure 3, the regions at higher flood risk were primarily lo-
cated in regions that had high population concentrations, high economic density, abundant
precipitation, and low elevation, for example, North China Plain in China, the northern
part of India, the Indus River Basin in Bangladesh, the central cities in Indonesia, and Nile
River Basin in Egypt.

With respect to the temporal variations in global flood risk, the RIFRG was used for
the statistics. As shown in Table 6, the global flood risk showed a gradual upward trend.
From a more refined perspective, low-risk areas were the most widely distributed in 2005,
2010, 2015, and 2020, at 50.02%, 49.99%, 47.28%, and 49.07%, respectively. In addition to
low-risk areas, areas at very low risk accounted for the largest share, at 36.81%, 34.64%,
35.97%, and 31.99%, respectively. Meanwhile, areas at low and very low risk tended to
decrease in the period of 2005–2020, while areas at medium, high, and very high risk tended
to increase. On this basis, the RIFRG model showed an increasing trend of global flood
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risk during 2005–2020, at 1.819 (2005), 1.865 (2010), 1.867 (2015), and 1.935 (2020), which
indicated that the risk of global flood increased. A study from World Resources Institute
shows that by 2030, as many as 750 million people worldwide are expected to be in 100-year
flood zones [14]. In addition, some studies using climate models for future global flood
risk projections indicate that global economic losses from floods grow more rapidly than
the global economy (as indicated by the proportion of losses to GDP) and that on a global
scale, absolute damage could increase 20-fold by 2100 if no action is taken [57].

Table 6. Statistics of global flood risk grades for 2005, 2010, 2015, and 2020.

Risk Grade
2005 2010

GN AP RIFRG GN AP RIFRG

Very low 265,777 36.81

1.819

250,110 34.64

1.865
Low 361,158 50.02 360,941 49.99

Medium 64,044 8.87 78,629 10.89
High 22,094 3.06 22,960 3.18

Very high 8953 1.24 9387 1.30

Risk grade
2015 2020

GN AP RIFRG GN AP RIFRG

Very low 259,713 35.97

1.867

230,976 31.99

1.935
Low 341,374 47.28 354,299 49.07

Medium 87,726 12.15 100,506 13.92
High 23,682 3.28 25,488 3.53

Very high 9532 1.32 10,758 1.49

Note: GN stands for the number of grids, and AP stands for the areal percentage.

4.2. Spatiotemporal Variations in Global Risk Hotspots

In this study, on the basis of the global flood risk assessment results on the grid scale,
11 global risk hotspot regions were identified using the hotspot analysis tool of ArcGIS.
Assuming that each grid had one element, the condition for this grid to be a hotspot was
that it had a high value itself and was surrounded by other elements that also had a high
value [58]. In other words, for a statistically significant z-score, the higher the z-score was,
the tighter the clustering of high values (hotspots) was. In this study, taking the distribution
map of risk hotspot regions in 2005 as an example (Figure 5), there were 11 risk hotspot
regions in the world, namely, (1) Japan Sea coast, (2) North China Plain, (3) the Jakarta
region in Indonesia, (4) Ganges River Basin, (5) Eastern Mediterranean countries, (6) both
sides of the English Channel, (7) Nile River Basin in Egypt, (8) countries around the Gulf of
Guinea, (9) Ethiopia region, (10) Mid-Atlantic–Great Lakes region in the United States, and
(11) the Rio de Janeiro region in Brazil.

It can be discovered from Figure 5 that global flood risk hotspots were mainly con-
centrated in Asia, as 5 of these 11 hotspots were in Asia, especially in East and South Asia.
The remaining hotspots were scattered across other continents, while Oceania was the
only continent without any hotspots. To some extent, precipitation is the main cause of
high-risk aggregation, especially in East, Southeast, and South Asia [33,59]. For instance,
the Japan Sea coast is located in the western Pacific Ocean and is affected by typhoons all
year round, and the probability of flooding due to typhoons and heavy rainfall is much
higher here than in other parts of Asia. Both sides of the English Channel are located in the
westerly wind belt. According to incomplete statistics, there are more than 200 rainy days
throughout the year. Thus, precipitation is abundant. Additionally, the coastal countries
are highly developed capitalist countries, so the probability of flooding in the region and
the resulting damage are higher than in other parts of Europe. In addition to precipitation,
the disaster-pregnant environment and the hazard-affected body itself are also constraints
on flood risk. As with most basins, the Nile River Basin is the economic and population
concentration of Egypt. As expected, the risk of flooding and erosion is higher in the highly
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built-up and urbanized coastal areas, with the Nile Delta region being the most flood-prone
area along the Egyptian coast [60].
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To explore the changing pattern of global flood risk hotspot regions in a time series,
we presented statistics at the different levels of risk and the change in RIFRG values in
each hotspot region (Figure 6). Generally, the pattern of risk change in hotspot regions
was consistent with the pattern of global risk change, with a gradual increase in the trend.
Especially, the most obvious trends of increasing risk were concentrated along the Japan Sea
coast (Figure 6a), the eastern Mediterranean countries (Figure 6e), both sides of the English
Channel (Figure 6f), the Nile Basin in Egypt (Figure 6g), and the Mid-Atlantic–Great Lakes
region in the United States (Figure 6j). Undoubtedly, these hotspots are the most urbanized
regions. A study by Cao et al. [61] on the exposure of global cities to flood risk from 1985
to 2018 noted that global urban flood risk increased from 0.2% in 1985 to 1.2% in 2018.
Specially, Thames Basin in southern England, Seine River in France, Rhine River Basin in
Western Europe, Qiantang and Yongding River Basins in eastern China, Han River Basin
in Korea, and the northeastern United States were hotspots of increased risk, which was
consistent with the findings of this study.
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In relative terms, the countries around the Gulf of Guinea (Figure 6h), the Ethiopian
region (Figure 6i), and the Rio de Janeiro region in Brazil (Figure 6k), all showed varying
degrees of increasing and then decreasing flood risk. In particular, the Ethiopian region
had the highest increase in risk among these three hotspot regions. Throughout history,
floods have been among the most prominent disasters in Africa. However, few studies have
been conducted in recent years on the flood risk in Ethiopia [62]. Additionally, the RIFRG
values of the hotspots in the Jakarta region in Indonesia (Figure 6c) and Ganges River Basin
(Figure 6d) were the highest among the 11 hotspots, which meant that these two hotspots
were at higher flood risk. Meanwhile, the distribution of the different levels of flood risk
in these two hotspots was also even, with the other hotspots being mainly dominated by
areas at very low risk (i.e., the Japan Sea coast, Eastern Mediterranean countries, and Nile
River Basin in Egypt) (Figure 6).

It is challenging for global government agencies to mitigate the risk from increasing
instances of flooding. The current rapid expansion of urban flood risk suggests that
previous urban designs have not given sufficient attention to the management of flood
risk, particularly in the Asian region [61]. Thus, future policies should prioritize land use
planning in flood-exposed areas to minimize construction in flood-prone areas; mitigate
damage from unavoidable flooding; and encourage urban growth and expansion, including
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migration and redevelopment, in flood-safe areas. Some initiatives may contribute to
these goals, for instance, the government could take additional measures to strengthen
flood prevention and mitigation to safeguard crucial urban infrastructure, such as shelters,
hospitals, and railroads. Even in times of no flooding, the government should take measures
to raise awareness of flood risk among residents [63]. Additionally, implementing flood
insurance may be an effective means of controlling economic losses from floods [64].

4.3. Spatiotemporal Distribution of Flood Risk on the National Scale

Using the RIFRG model, the global flood risk on the national scale was calculated and
then classified into five levels with reference to the natural breakpoint method (Figure 7). As
shown in Figure 7, most countries were at low and very low risk, with high-risk countries
(RIFRG values greater than 2.5) being concentrated in East and South Asia and Central and
Western Europe. Specifically, Japan, North Korea, South Korea, Vietnam, the Philippines,
India, Bangladesh, Pakistan, Italy, Germany, and the Netherlands had higher RIFRG values.
In addition, five countries (India, Bangladesh, Pakistan, the Netherlands, and Madagascar)
were at very high risk for the period 2005–2020, indicating that these five countries were
among the countries with the highest risk of flooding during this 15-year period globally.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 23 
 

 

It is challenging for global government agencies to mitigate the risk from increasing 
instances of flooding. The current rapid expansion of urban flood risk suggests that pre-
vious urban designs have not given sufficient attention to the management of flood risk, 
particularly in the Asian region [61]. Thus, future policies should prioritize land use plan-
ning in flood-exposed areas to minimize construction in flood-prone areas; mitigate dam-
age from unavoidable flooding; and encourage urban growth and expansion, including 
migration and redevelopment, in flood-safe areas. Some initiatives may contribute to 
these goals, for instance, the government could take additional measures to strengthen 
flood prevention and mitigation to safeguard crucial urban infrastructure, such as shel-
ters, hospitals, and railroads. Even in times of no flooding, the government should take 
measures to raise awareness of flood risk among residents [63]. Additionally, implement-
ing flood insurance may be an effective means of controlling economic losses from floods 
[64]. 

4.3. Spatiotemporal Distribution of Flood Risk on the National Scale 
Using the RIFRG model, the global flood risk on the national scale was calculated 

and then classified into five levels with reference to the natural breakpoint method (Figure 
7). As shown in Figure 7, most countries were at low and very low risk, with high-risk 
countries (RIFRG values greater than 2.5) being concentrated in East and South Asia and 
Central and Western Europe. Specifically, Japan, North Korea, South Korea, Vietnam, the 
Philippines, India, Bangladesh, Pakistan, Italy, Germany, and the Netherlands had higher 
RIFRG values. In addition, five countries (India, Bangladesh, Pakistan, the Netherlands, 
and Madagascar) were at very high risk for the period 2005–2020, indicating that these 
five countries were among the countries with the highest risk of flooding during this 15-
year period globally. 

 
Figure 7. Spatial distributions of the national RIFRGs in (a) 2005, (b) 2010, (c) 2015, and (d) 2020. 

To explore more deeply the changes in the risk values over the time series for indi-
vidual countries, the RIFRG values on the national scale were reclassified into five cate-
gories, with changes greater than or equal to one level being considered significant. Figure 
8 indicates that flood risk showed the following trend: significantly increasing, leveling 
off, and then significantly increasing again. From 2005 to 2010 (Figure 8a), more than 10 
countries were at significantly increased risk (Kazakhstan, Tajikistan, Ukraine, Sweden, 
Norway, Angola, South Africa, Ecuador, etc.), while a few countries were at significantly 

Figure 7. Spatial distributions of the national RIFRGs in (a) 2005, (b) 2010, (c) 2015, and (d) 2020.

To explore more deeply the changes in the risk values over the time series for individual
countries, the RIFRG values on the national scale were reclassified into five categories, with
changes greater than or equal to one level being considered significant. Figure 8 indicates
that flood risk showed the following trend: significantly increasing, leveling off, and then
significantly increasing again. From 2005 to 2010 (Figure 8a), more than 10 countries were
at significantly increased risk (Kazakhstan, Tajikistan, Ukraine, Sweden, Norway, Angola,
South Africa, Ecuador, etc.), while a few countries were at significantly decreased risk,
namely, Ireland, Denmark, and Turkmenistan. Subsequently, in 2010–2015, the number of
countries at a significantly increased risk was about the same as the number of countries at
a decreased risk (Figure 8b). However, the trend in risk change for the period of 2015–2020
returned to an increasing trend (Figure 8c), and the increasing trend was even greater than
that for the period of 2005–2010 (Figure 8a). Specifically, these countries at significantly
increased risk were mainly located in Asia and Europe, while countries at significantly
decreased risk were mainly located in Africa (Figure 8c).
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From the above elaboration, there were significant differences among countries af-
fected by floods at the global level. Therefore, we investigated the relationship between
RIFRG values and national income levels for each country from 2005 to 2020. According to
the World Bank classification, countries are classified into four income levels: low income,
lower-middle income, upper-middle income, and high income. The results presented in
Figure 9 showed two trends in global flood risk on the national scale. Firstly, these results
indicated that overall flood risk increased for all the countries in the world between 2005
and 2020, with the most pronounced increase in the period of 2015–2020 in particular.
Secondly, a country’s flood risk was positively correlated with the country’s income level;
in short, the flood risk of high-income countries was much higher than that of low-income
countries, and the gap between the two tended to increase over time. Meanwhile, some
studies suggest that globally, absolute damage from flooding could increase 20-fold by
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2100 if no action is taken [57]. Thus, regardless of the income level, more efforts should be
invested in future flood prevention and management, especially in high-income countries.
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In this study, the top 20 countries with the highest RIFRG values were counted in order
to assess the distribution of countries at the highest global flood risk. As shown in Table 7,
the country at the highest risk of flooding was Singapore, with RIFRG values of 4.987,
4.987, 4.993, and 4.993 for 2005, 2010, 2015, and 2020, respectively. According to statistics,
among these 20 countries, 11 were developed countries, namely, Singapore, Mauritius,
Netherlands, Bahrain, Belgium, Liechtenstein, Trinidad and Tobago, Japan, South Korea,
Germany, and Israel. This showed that the risk of flooding was closely correlated with
the distribution of population and the economy of each country, and generally speaking,
the more densely populated and economically developed countries were at a higher risk
of flooding.

Table 7. RIFRG values and changes for the 20 countries at the highest global flood risk (2005–2020).

Country
RIFRG Rate of Change (%)

2005 2010 2015 2020 2005–2010 2010–2015 2015–2020

Singapore 4.987 4.987 4.993 4.993 0 0.12% 0
Madagascar 4.534 4.591 4.239 4.323 1.26% −7.67% 1.98%
Bangladesh 4.399 4.397 4.485 4.571 −0.05% 2.00% 1.92%
Mauritius 3.776 3.888 3.776 4.060 2.97% −2.88% 7.52%

Netherlands 3.658 3.567 3.453 3.918 −2.49% −3.20% 13.47%
Bahrain 3.632 4.031 4.031 4.017 10.99% 0 −0.35%
Belgium 3.478 3.350 3.376 3.872 −3.68% 0.78% 14.69%

India 3.388 3.438 3.475 3.470 1.48% 1.08% −0.14%
Haiti 3.096 3.232 3.375 2.920 4.39% 4.42% −13.48%

Liechtenstein 3.041 2.776 2.888 2.888 −8.71% 4.03% 0
Trinidad and Tobago 2.994 3.110 2.840 3.087 3.87% −8.68% 8.70%

Japan 2.972 2.864 2.828 3.260 −3.63% −1.26% 15.28%
South Korea 2.944 2.975 2.961 3.380 1.05% −0.47% 14.15%

Rwanda 2.944 2.928 3.302 3.215 −0.54% 12.77% −2.63%
Germany 2.900 2.876 2.857 3.264 −0.83% −0.66% 14.25%

El Salvador 2.884 2.774 2.787 3.318 −3.81% 0.47% 19.05%
Philippines 2.845 2.901 3.014 2.952 1.97% 3.90% −2.06%
Sri Lanka 2.840 2.846 2.836 3.059 0.21% −0.35% 7.86%

Israel 2.826 2.862 2.850 3.110 1.27% −0.42% 9.12%
Vietnam 2.815 2.818 2.872 2.955 0.11% 1.92% 2.89%
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In terms of changes in the time series, the flood risk for these 20 countries showed an
increasing trend over the period of 2005–2020, consistent with the trend on the grid scale.
The two countries with the highest rate of change in risk in 2015–2020 were Haiti and El
Salvador, with Haiti having the highest negative growth rate of −13.48% (2015–2020) and
El Salvador having the highest positive growth rate of 19.05% from 2015–2020 (Table 7).
Meanwhile, some studies point out that between 1986 and 2013, El Salvador experienced
increased flood risk in many areas due to urbanization, and in the 2030 scenario, urban
coverage would be more than double the urban coverage in 2013 [65]. Critically, due to the
existing level of urbanization in El Salvador, current flood protection measures and plans
may not be sufficient to mitigate future flood risks [65]. In addition, Vietnam was the only
one of these 20 countries where the flood risk continued to grow in all three phases, and the
growth trend kept rising, increasing from 0.11% in 2005–2010 to 1.92% in 2010–2015 and to
2.89% in 2015–2020. This is due, in large part, to Vietnam’s rapid population expansion,
accelerated urbanization, and industrial growth in recent years [66].

4.4. Temporal Evolution of Flood Risk at the Continental Scale

Table 8 indicates the RIFRG values for the six global continents (except Antarctica),
showing that, although there was a risk reduction in some years for individual continents,
the global flood risk still showed an increasing trend. The statistical results of the global
flood risk by continent showed that the continent at the highest global risk was Asia, with
RIFRG values of 1.989, 2.027, 2.072, and 2.181 for 2005, 2010, 2015, and 2020, respectively.
In relative terms, the flood risk in Asia increased, which meant that Asia is expected to be
one of the continents most prone to and most affected by floods in the future. Compared
to Asia, North America was the continent at the lowest risk (with RIFRG values of 1.717,
1.735, 1.760, and 1.837 for 2005, 2010, 2015, and 2020, respectively). Meanwhile, Europe
was the continent with the second lowest flood risk, in the sense that the flood prevention
infrastructure could be strengthened through a booming economy and advanced technol-
ogy, greatly improving human response to floods and thus reducing human casualties and
economic losses due to floods [31]. Among these six continents, Africa was at low risk due
to its low flood hazard [67], with the most significant reduction in risk from 2010 to 2015
(RIFRG reduction of 0.051, Table 8).

Table 8. Statistics of continental RIFRG values for 2005, 2010, 2015, and 2020.

Continent
RIFRG Interannual Variation

2005 2010 2015 2020 2005–2010 2010–2015 2015–2020

Africa 1.770 1.817 1.766 1.777 0.047 −0.051 0.011
Asia 1.989 2.027 2.072 2.181 0.038 0.045 0.109

Oceania 1.796 1.806 1.813 1.836 0.010 0.0073 0.0233
Europe 1.775 1.854 1.852 1.995 0.079 −0.002 0.143

North America 1.717 1.735 1.760 1.837 0.018 0.025 0.077
South America 1.911 1.983 1.963 1.977 0.072 −0.020 0.014

4.5. Implications and Limitations

To the best of our knowledge, current global flood risk studies mainly take into account
population mortality and economic loss rates [31]. This method ignores to some extent
the interactions between the intrinsic factors of hazard and vulnerability, and the results
present only a crude spatial distribution of the global flood risk on the national scale. On the
basis of the studies on flood risk, in this study, we constructed a framework for analyzing
the multi-scale spatiotemporal patterns of global floods. In this framework, we tried to start
from the conditions of flood risk generation (disaster-causing factors, disaster-pregnant
environment, and hazard-affected body) based on the grid scale and also integrated the
components and interactions of the factors within hazard and vulnerability. Subsequently,
we comprehensively considered the spatial and temporal distribution patterns of global
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flood risk, the underlying patterns and causes from multiple perspectives based on the
RIFRG model. In relative terms, our results had high precision, validated using ROC curves
(AUC value of 0.871 for risk results), EM-DAT data comparison, literature comparison,
and other methods. The findings demonstrated that global flood risk was still on the rise
under the current disaster prevention measures. From these results, patterns in the spatial
distribution and temporal evolution of global flood risk highlighted the variations between
disasters and natural hazards defined by human behavior, providing a much-needed
perspective on the risk of human influence on climate [68,69]. The framework presented
here can provide a reference and basis for other scholars to investigate the spatiotemporal
distribution patterns of large-scale flood risk.

Although progresses and findings were obtained, here, some limitations still remained.
Firstly, due to the difficulty in data collection, some of the data were sourced differently
between 2005–2015 and 2020. Despite the fact that the data used in this study had a high
degree of accuracy in previous studies, they may have also resulted in incomprehensiveness
and loss of some accuracy in flood risk assessment. Then, to some extent, we may have
somehow overlooked spatial heterogeneity due to the large size of the study area, and
some common flood indexes were not taken into account (i.e., aspect, extreme precipitation
data, and some normalized difference water indexes). Additionally, the simulation and
prediction of future global flooding based on the CMIP6 model is a current hot topic, and
relevant research can be conducted in the future.

5. Conclusions

Based on the hazard–vulnerability framework, this study explored the spatiotemporal
patterns of the global flood risk on four scales for 2005–2020: the grid scale, hotspots,
the national scale, and the continental scale. As per the results, the global flood risk
increased during 2005–2020, and the high-risk areas were mainly located in areas with a high
population density, a high economic density, abundant precipitation, and low elevation.
The hotspot analysis showed that there were 11 risk hotspot areas globally, mainly located
in the capital city areas where the population is concentrated and economically developed
and around several major basins in the world. Specifically, East Asia, Southeast Asia, and
South Asia were among the regions at the highest flood risk, with four risk hotspots in
these regions. From the national-scale perspective, the high-risk countries (RIFRG values
greater than 2.5) were concentrated in East Asia, South Asia, and Central and Western
Europe. Generally, the flood risk of a country was positively proportional to the country’s
income level, with the risk in low-income countries being much lower than the risk in high-
income countries, and the gap between the two tended to increase over time. Additionally,
developed countries accounted for most of the 20 countries of the world at the highest
flood risk. The countries with the highest rate of change in risk from 2005 to 2020 were
Haiti and El Salvador, with Haiti having the highest negative growth rate of (−13.48% in
2015–2020) and El Salvador having the highest positive growth rate (19.05% in 2015–2020).
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