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Abstract

Despite the long-term greening trend in global vegetation identified in previous investigations,

changes in the interannual variability (IAV) of vegetation greenness over time is still poorly

understood. UsingGlobal InventoryModeling andMapping Studies normalized difference vegetation

index (NDVI) third generation data and correspondingmeteorological data from1982 to 2015, we

studied the changes and drivers of the IAVof vegetation greenness as indicated by the coefficient of

variation of vegetation greenness at a global scale. Dry and high-latitude areas exhibited highNDVI

variability whereas humid areas exhibited relatively lowNDVI variability.We detected an increase in

the global IAVof vegetation greenness over time using a 15 yearmovingwindow. Spatially, we

observed significant increases in the IAVof vegetation greenness in greater than 45%of vegetated

areas globally and decreases in 21%.Our comparison of ecologicalmodels suggests good performance

in terms of simulating spatial differences in vegetation variability, but relatively poor performance in

terms of capturing changes in the IAVof vegetation greenness. Furthermore, the dominant climate

variables controlling changes in the IAVof vegetation greenness were determined spatially using

principal component regression and partial least squares regression. The twomethods yielded similar

patterns, revealing that temperature exerted the biggest influence on changes in the IAVof vegetation

greenness, followed by solar radiation and precipitation. This study provides insights into global

vegetation variability which should contribute to an understanding of vegetation dynamics in the

context of climate change.

1. Introduction

Terrestrial ecosystems are important global carbon

sinks that can offset a substantial proportion of

anthropogenic CO2 emissions (Beer et al 2010, Pan

et al 2011, Reichstein et al 2013, Ahlström et al 2015a).

Terrestrial vegetation strongly regulates atmospheric

CO2 concentrations in terms of accumulation, season-

ality, and interannual variability (IAV) (Keenan et al

2016, Yuan et al 2018). Hence, monitoring the drivers

of ecosystem dynamics is crucial for forecasting future

climate change.

Satellite observations reveal a greening trend on

Earth’s surface since the 1980s (Zhu et al 2016).

However, this does not necessarily indicate that green-

ing improves ecosystem functioning because long-

term averages ignore IAV which is a critical indicator

of ecosystem vulnerability or resilience to external dis-

turbances (Thornton et al 2014, Smith et al 2014, Ray

et al 2015, Sloat et al 2018). Low IAV in vegetation

greenness indicates that vegetation growth is stable

and not easily disturbed by external factors (Thornton

et al 2014), whereas high IAV indicates unstable vege-

tation growth that has undergone large disturbances

and remains vulnerable to future disturbance. For

example, low IAV of crop yields indicates that food

supplies and farm incomes are stable (Reidsma et al

2010, Ray et al 2013). In ecosystems, indicators of

OPEN ACCESS

RECEIVED

1 February 2019

REVISED

14October 2019

ACCEPTED FOR PUBLICATION

22October 2019

PUBLISHED

19November 2019

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

©2019TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/1748-9326/ab4ffc
https://orcid.org/0000-0002-9088-262X
https://orcid.org/0000-0002-9088-262X
mailto:Hebin@bnu.edu.cn
https://doi.org/10.1088/1748-9326/ab4ffc
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ab4ffc&domain=pdf&date_stamp=2019-11-19
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ab4ffc&domain=pdf&date_stamp=2019-11-19
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


vegetation greenness and ecosystem production have

been used to study IAV (Ahlström et al 2015a, Zhang

et al 2016, Jiang et al 2017, Hu et al 2018), but it is

unclear how IAV changes over the long term. A global

survey of how the IAV of ecosystem productivity

changes over time is critical for deepening our under-

standing of ecosystem resilience to climate change.

Climate change is expected to trigger more fre-

quent climate extremes, including droughts and heat-

waves (IPCC 2013). Such changes in climate variability

can have profound impacts on ecosystem productivity

(Smith et al 2014). Ray et al (2015) analyzed the effects

of climate variability on crop yields and found that

one-third of global crop yield variability could be

explained by climate variability. Le Hourou et al

(1988) found that precipitation variability influences

variability in ecosystem productivity. Sloat et al (2018)

found an increasing influence of precipitation varia-

bility on productivity in grazing lands globally. How-

ever, it is presently unclear how the IAV of ecosystem

productivity responds to climate change.

Here, we used the satellite-based normalized dif-

ference vegetation index (NDVI) (Rouse et al 1973) as

a proxy for ecosystem productivity to examine tem-

poral-spatial patterns in IAV from 1982 to 2015 and

explored the potential climatic drivers of the IAV of

vegetation greenness.

2.Materials andmethods

2.1.Data sets

The NDVI is typically used to detect vegetation green-

ness. Here we used theGlobal InventoryModeling and

Mapping Studies (GIMMS) NDVI third generation

data for the time series 1982–2015, which has a spatial

resolution of 1/12 degree and a temporal resolution of

15 d. The maximum value composite (MVC) method

(Holben 1986) was adopted to aggregate the biweekly

data into monthly intervals. This method can largely

remove the contaminations of cloud and atmospheric

noises (Holben 1986). Barren regions with an annual

mean NDVI less than 0.1 were excluded from the

analysis (Piao et al 2005, Chen et al 2018).

Climate data from the Climatic Research Unit

(CRU) Time Series 4.01 with a 0.5° resolution of

monthly temperature (TMP) and precipitation (PRE)

from 1901 to 2016 were used in this study (Harris et al

2014). Monthly shortwave radiation (SWD) data with

a resolution of 0.5° was obtained from the CRU-

National Centers for Environmental Prediction

(CRU-NCEP) v7 data set.

To evaluate the performance of different Dynamic

Global Vegetation Models (DGVMs) in capturing the

IAV of vegetation growth, we compared gross primary

productivity (GPP) simulations from eight DGVMs

archived in the Trends in Net Land-Atmosphere

Exchange (TRENDY-v6) project from 1982 to 2015

with observations of NDVI variability (Sitch et al

2015).We selected the following eight ecological mod-

els: CABLE, DLEM, ISAM, LPJ-wsl, OCN, ORCHI-

DEE,VEGAS, andVISIT.

In addition, global land cover data with a spatial

resolution of 0.05° was obtained from MODIS Land

Cover Climate Modeling Grid (MCD12C1) Version 6

from 2001 to 2015. We used the International Geo-

sphere and Biosphere Programme land cover classifi-

cations to select nine biomes (figure S1(a) is available

online at stacks.iop.org/ERL/14/124005/mmedia

and table S1), including evergreen needleleaf forests

(ENF), deciduous needleleaf forests (DNF), evergreen

broadleaf forests (EBF), deciduous broadleaf forests

(DBF), mixed forests (MF), savannas, shrublands,

grasslands, and croplands. We used only areas (pixels)

with a constant vegetation type from 2001 to 2015 to

prevent land cover changes from impacting our

results.

Global climate zones were determined based on

Köppen–Geiger classifications (Kottek et al 2006)

obtained from http://koeppen-geiger.vu-wien.ac.at/.

We focused on five major climate zones: equatorial,

arid, warm temperate, snow, and polar, as shown in

figure S1(b) and table S2. Previous investigations have

suggested great difference in vegetation behavior

under different climate zones (Liu et al 2013, Iio et al

2014, Ahlström et al 2015b).

The above data sets comprise different time series,

so we limited our analysis to the time period from

1982–2015 tomatch theNDVI series. Furthermore, all

datasets were further aggregated to 0.5°×0.5° using
nearest neighbor resampling technique to match the

resolution of the climate data sets (Knorn et al 2009,

Zhu et al 2013, Gatti et al 2017).

2.2.Methods

2.2.1. Coefficient of variation

Here, we used the coefficient of variation (CV) of

NDVI (NDVI_CV) and the CV of GPP (GPP_CV) to

represent in the IAV of vegetation growth (Fang et al

2001, Schucknecht et al 2013, Sloat et al 2018). CV is

an absolute value that measures the degree of disper-

sion of a variable. Its size is affected not only by the

degree of variable dispersion, but also by the average of

the variable’s value. The formula is generally expressed

as:

= ´( ) ( )/CV SD MN 100%, 1

where, SD represents the standard deviation and MN

represents themean of the studied variables.

Both the annual growing season and annual max-

imumNDVI_cvwere determined here.

To test the sensitivity of CV of studied variable to

SD and MN, a simple linear regression (Yang et al

2016) of CV against SD and MN was performed. The

sensitivity was determined according the slope of CV

to SD and MN, and a larger slope indicates a higher

sensitivity.
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2.2.2. Land surface phenology

Various methods have been developed for retrieving

phenological dates from NDVI data, such as HANTS-

Maximum (Jakubauskas et al 2001), Polyfit-Maximum

(Piao et al 2015), Savitzky–Golay filter (Zhu et al 2016),

double logistic (Julien and Sobrino 2009), and others.

Here, the growing season for land plants was deter-

mined from the GIMMS NDVI3g data set using a

Savitzky–Golay filter that effectively smoothed the

original curve and somewhat reduced the noise in the

time series data (Chen et al 2004, Jönsson and

Eklundh 2004, Cong et al 2012). Figure S2 shows the

global patterns in surface phenology from 1982 to

2015, average start day and length of the growing

season.

2.2.3.Mann–Kendall (MK) statistical test

To study the dynamics of NDVI_CV and GPP_CV, we

applied a 15 yr moving time window to the NDVI/

GPP sequence from 1982 to 2015. A CV value

representing the IAV of vegetation growth over a

specific 15 yr period was calculated and assigned to the

middle year of each window. This approach generated

a series of 20 CV values with the first value represent-

ing the first 15 yr period from 1982 to 1996 and the

20th CV value representing the last 15 yr period from

2001 to 2015. The trend inwindow position values was

detected using the Mann–Kendall (MK) non-para-

metric test method (Mann 1945). The advantage of the

method is that the series does not need to follow a

specific distribution and is seldom disturbed by

abnormal values, so the calculation is straightforward

and convenient (Hamed 2008). We applied the trend-

free pre-whitening technique to the studied time series

(Yue et al 2002, Erasmi et al 2014) before performing

the trend test because the autocorrelation in the time

series has been found to influence the significance of

the Mann–Kendall trend test (Yue et al 2002). The

strength of the time series trend was estimated using

the Theil–Sen method (Fensholt et al 2012, Schuck-

necht et al 2013). This trend estimator calculates the

slope of every single data pair in a time series and uses

the median slope to characterize a trend in the data

(Sen 1968). The significance of the CV trend was

assessed at a p-value less than 0.05. In addition, we also

examined NDVI_CV trends determined from 11, 13,

17, and 19 yr windows to test the potential influence of

window length on our results.

2.2.4. Principal component regression (PCR) and partial

least squares regression (PLSR)

Several factors were selected to explore the drivers of

NDVI_CV, including the mean values of climate

variables (TMP_mean, PRE_mean, and SWD_mean) and

the CVs of climate variables (TMP_CV, PRE_CV, and

SWD_CV) corresponding to each 15 yr window.

Regression analysis between NDVI_CV and the six

potential drivers were performed to determine the

main drivers. To reduce the uncertainty caused by the

analysis method, two regression methods, the princi-

pal component regression (PCR) and the partial least

squares regression (PLSR), were used in this study.

Compared with traditional multivariate linear regres-

sion, these two methods can effectively overcome the

multicollinearity problem existing among two ormore

explanatory variables. PCR is based on principal

component analysis (Jolliffe 1982), which decomposes

explanatory variables into several principal compo-

nents. Instead of regressing the original dependent

variable on the explanatory variables directly, the

principal components of the explanatory variables are

used for regression analysis (Jolliffe 1982). The PLSR is

similar to PCR in that it integrates the basic functions

of multiple linear regression analysis, canonical corre-

lation analysis, and principal component analysis

(Chun and Keleş 2010, Mehmood et al 2012). Variable

importance in the projection (VIP) is the PLSR

standard for judging the importance of independent

variables in modeling. When VIP is greater than or

equal to 1, its corresponding independent variables

have strong explanatory significance to the dependent

variables (Chong and Jun 2005). All variables were

standardized before calculation.

We noted that data processing was performed in

MATLAB 2014a environment, and global maps were

drawn usingArcGIS 10.3.

3. Results

3.1. Global pattern of variability of vegetation

greenness

Figure 1(a) shows the spatial distribution of the IAV of

NDVI (NDVI_CV) from 1982 to 2015. NDVI_CV
demonstrates high spatial heterogeneity. We observed

relatively low IAV of vegetation greenness in the

equatorial and snow climate zones (figures 1(b), S1),

including tropical rainforests near the equator and

boreal forests between 50° and 60 °N latitude. In

contrast, we observed high CV values in the vegetated

lands of arid and polar climates zones, including

western and southwestern Asia, Australia, northern

and southern Africa, southwestern North America,

and areas above 60 °N. At the biomes scale

(figure 1(c)), evergreen broadleaf forests exhibited the

lowest IAV of vegetation greenness, whereas grass-

lands demonstrated the highest IAV.

3.2.Dynamics of variability of vegetation greenness

The trend of NDVI_CV sequences generated from the

15 yr moving window from 1982 to 2015 was detected

for each grid cell, as shown in figure 2. Significant

vegetation IAV, indicated by annual maximum NDVI

(figure 2(a)) decreases, were observed in more than

21% of vegetated lands scattered across Europe, the

Indian peninsula, the sahel region, the southwest of

America and the north of Asia. This indicates increas-

ing stability of local ecosystems. Simultaneously,
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significant increases in vegetation variability occurred

in northeastern China, western Asia, the southwestern

United States, much of Australia, and central Africa,

accounting for more than 45% of vegetated areas

globally. The trend in growing season NDVI_CV
(figure 2(b)) roughly agreed with that of annual

maximumNDVI_CV. We observed decreases in grow-

ing season NDVI_CV in 30% of vegetated areas and

increases in 40% of vegetated areas globally.

Figure 2(c) shows the probability density function of

the trends in annualmaximumNDVI_CV and growing

season NDVI_CV. We observed a higher proportion of

increases than decreases. In addition, growing season

NDVI_CV demonstrated more increasing trends than

did annual maximum NDVI_CV. Note that the

NDVI_CV trends determined using different moving

timewindows present a similar pattern with that of the

15 yr window (figure S3), suggesting a basic reliability

ofNDVI_CV change built here.

NDVI_CV changes can be caused by variations in

standard deviation or the mean value of NDVI, so we

examined trends in these two values and tested the

sensitivity of NDVI_CV to them (figure S4). The mean

values of annual maximum NDVI displayed increas-

ing trends inmost regions (figure S4(a)), with decreas-

ing trends in northeast China, the northern of North

America, and the Congo rainforest. Trends in NDVI

standard deviation were similar to those of NDVI_CV
(figure S4(b)). Sensitivity tests suggest that NDVI_CV

was more sensitive to the standard deviation of NDVI

than to the mean value of NDVI in nearly all con-

tinents (figure S4(c)), suggesting that standard devia-

tion exerted a dominant influence over NDVI_CV
trends.

We further explored trends in regional mean

annual maximum NDVI_CV by dividing global vege-

tated lands into different regions (figure 3). Global

mean NDVI_CV demonstrated a significant increasing

trend and the slope of NDVI_CV in the Southern

Hemisphere (SH)was larger than that in the Northern

Hemisphere (NH). For different climate zones, the lar-

gest increase in NDVI_CV was observed in the vege-

tated lands of polar and arid climate zones. In contrast,

vegetation in humid and warm temperate climate

zones presented the lowest increase in variability. At

the biome scale, significant increases in NDVI_CV
were found for the majority of vegetation types,

including shrublands, grasslands, evergreen broadleaf

forests, deciduous needleleaf forests, and savannas.

Simultaneously, NDVI_CV exhibited decreasing

trends in mixed forests and croplands, but the trends

were not statistically significant.

3.3. Performance of ecosystemmodels in simulating

vegetation variability

To examine whether the observed IAV of vegetation

growth can be captured by ecological models, we

studied theGPP_CV simulated fromTRENDY-models

Figure 1. (a) Spatial pattern of theNDVI coefficients of variation (CV) for the period 1982–2015. The box plots indicate theCVof
NDVI for the period 1982–2015 for (b) different climatic zones and (c) different vegetation types. Fivemajor climate groups were
determined based onKöppen–Geiger climate classification: equatorial, arid, warm temperate, snow, and polar. Nine vegetation types
were determined using theMODIS LandCover ClimateModelingGrid (MCD12C1)Version 6: evergreen needleleaf forests (ENF),
deciduous needleleaf forests (DNF), evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), mixed forests (MF),
savannas, shrublands, grasslands, and croplands.
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(figure 4). The spatial pattern of modeled GPP_CV
from 1982 to 2015 (figure 4(a)) agreed well with the

distribution of NDVI_CV (figure 1(a)), producing high

CV values in drier regions and low values in humid

and high-latitude regions. We further examined the

patterns of GPP_CV determined using a 15 yr moving

widow, as shown in figure 4(b). The models only

partially reproduced the spatial patterns of NDVI_CV
trend (figures 2(a) and (b)), including the increasing

CV in northeastern China, western Asia, southern

North America, and the Congo. However, opposite

trends were observed in northern Asia, eastern Eur-

ope, and northern Australia, suggesting that the

performance of current ecosystem models in model-

ling the IAV of vegetation growth still needs to be

improved.

3.4.Drivers of variability of vegetation greenness

To explore the drivers of NDVI_CV, we first examined

the partial correlations betweenNDVI_CV and climate

variability and mean state over different periods

(figure S5). There was a strong positive correlation

between TMP_CV and NDVI_CV in Europe and

Australia, and a large continuous negative correlation

in southern North America, central South America,

and southwestern and northeastern Asia. TMP_mean

presented more extensive positive impacts on

NDVI_CV (22% of global vegetated lands) than did

TMP_CV (16% of global vegetated lands), mainly

concentrating in relatively humid regions such as the

eastern South America, southern China, and the

Congo rainforest. Negative impacts between

TMP_mean and NDVI_CV were also observed over

Figure 2. Spatial pattern of significant trends (Mann–Kendall test, p<0.05) in (a) annualmaximumNDVI_CV and (b) growing
seasonNDVI_CV estimated using a 15 yrmovingwindow from 1982 to 2015. (c)The probability density function ofNDVI_CV trends
for annualmaximumvalue and growing season value.
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17.3% of global vegetated areas, such as Europe and

theAmazon rainforest.We found that PRE_CV exerted

a strong positive influence on NDVI_CV for 20.5% of

global vegetated lands, whereas PRE_mean exerted a

strong negative influence for 19.1%of global vegetated

lands. The influences from precipitation were scat-

tered over both arid and humid regions. SWD_CV
exerted a comparable negative influence on NDVI_CV
(18.8% of global vegetated lands) with a positive

influence (17.8% of global vegetated lands); but the

SWD_mean had more positive impacts on NDVI_CV
than negative impacts. Generally speaking, climate

mean states had more extensive impacts on NDVI_CV
than did climate variability. In addition, all factors

except PRE_mean and SWD_CV exerted more positive

than negative impacts onNDVI_CV.

Next, PLSR and PCR were used to determine

which climate factors had the strongest effects on the

Figure 3.Trends inNDVI_CV over time (a) in theNorthernHemispheric (NH), SouthernHemisphere (SH), and the globalmean after
applying 15 yrmovingwindows; (b) trends inmeanNDVI_CV in different climate zones; (c) trends inmeanNDVI_CV in different
land cover types. ‘*’ indicates statistical significance (Mann–Kendall test; p<0.05).
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IAV of vegetation greenness. The two regression

methods generated comparable results and similar

spatial patterns, as shown in figures 5 and S6. Temper-

ature states exerted the most extensive influence on

NDVI_CV, accounting for 36.5% (indicated by PLSR)

and 35.5% (indicated by PCR) of global vegetated

areas with a stronger influence from TMP_mean than

from TMP_CV. Dominant temperature impacts were

observed in southern Asia, eastern and northern

North America, northern and central South America,

and central Africa. Solar radiation states presented the

second largest influence on NDVI_CV variations,

accounting for 34% (by PLSR) and 34.3% (by PCR) of

global vegetated lands. These regions were scattered

across western Asia, western North America, southern

South America, and western Australia. Slightly more

regions were controlled by SWD_mean than by

SWD_CV. PRE states dominating NDVI_CV were

identified in 29.5% (by PLSR) and 30.2% (by PCR) of

global vegetated lands, including northwest Asia,

northern and western Europe, northern North Amer-

ica, and southern Africa. We also determined the cli-

matic factors that most influenced NDVI_CV

variations in each climate zone, as shown in figure S7.

We observed large divergences in the factors control-

ling NDVI_CV changes in different climate zones.

TMP_mean displayed a dominant positive correlation

with NDVI_CV changes in the equatorial climate zone,

but a negative relationship in the snow climate zone.

NDVI_CV changes in the arid climate zonewere driven

by PRE_mean, by SWD_CV in the warm temperate

zone, and by SWD_mean in the polar climate zone.

4.Discussion

Vegetation variability greatly impacts ecosystem pro-

visioning services and the global carbon cycle (Nemani

et al 2003, Wu et al 2016, Yuan et al 2018). This study

examined changes in the IAV of vegetation greenness

and explored corresponding climatic drivers on a

global scale. Spatially, we observed a clear distribution

of the IAV of vegetation greenness associated with

patterns of climate zones. Low IAV of vegetation

greenness occurred in the equatorial and snow climate

zones, whereas high IAV occurred in the vegetated

Figure 4.Pattern of GPP_cv averaged fromoutputs of TRENDY-models. (a)Global pattern of theCVofGPP simulated from
TRENDY-models for the period 1982–2015; (b)Pattern of significant trends of theCVofGPP simulated fromTRENDY-models after
pre-whitening (Mann–Kendall test; p<0.05).WeusedmeanGPP averaged from simulations by eight ecologicalmodels from
TRENDY-models: CABLE,DLEM, ISAM, LPJ-wsl, OCN,ORCHIDEE,VEGAS, andVISIT. The trendswere determined using a 15 yr
movingwindow.
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lands of the arid and polar climate zones. This pattern

of IAV of vegetation greenness is roughly consistent

with previous studies (Zhao et al 2018). At the biome

scale, the IAV of vegetation greenness in grasslands

was highest, whereas variability in evergreen broadleaf

forests was lowest. Furthermore, nearly all forests

displayed relatively low variability, which agrees with

previous research (Fang et al 2001, Knapp and

Smith 2001). The primary reason for this low varia-

bility is that forests are more resistant to climate

anomalies than other vegetation types (Hirota et al

2011).Without considering disturbances from human

activities, vegetation variability should be determined

primarily by climate conditions (Wu et al 2015). In the

current study, we also calculated the spatial distribu-

tions of climate factor variability (PRE, TMP, and

SWD), as shown in figure S8. Temperature variability

presents a clear latitudinal distribution, gradually

decreasing with decreasing latitude. The distribution

of solar radiation variability has great spatial hetero-

geneity, with high variability in Europe, southern

South America, and western Australia, and lowest in

the equatorial regions. The distribution of precipita-

tion variability is highly consistent with the pattern of

vegetation variability, with high variability in drier

regions and low variability in humid regions, suggest-

ing that precipitation variability is a strong determi-

nant of vegetation variability distribution. Previous

Figure 5.Partial least squares regression (a) of six climatic variables (temperature variability, precipitation variability, solar radiation
variability, mean temperature,mean precipitation, andmean solar radiation)withNDVI variability for the period from 1982 to 2015.
Six key regions are highlighted: (b)westernAlaska, (c)China, (d) a part of Siberia, (e)Amazonia, (f)west Africa and (g) central
Australia.
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studies have suggested a heavy influence of precipita-

tion variability on ecosystem productivity in global

pastures (Sloat et al 2018). In addition, precipitation

extremes were found to determine the distribution of

global vegetation extremes (Liu et al 2013, Ahlström

et al 2015a).

In addition to determining the spatial patterns of

the IAV of vegetation greenness trends from 1982 to

2015, we also analyzed the dynamics of vegetation

variability over the long term. We found increasing

variability in global vegetation greenness, suggesting

that the IAV of vegetation growth is increasing. This

increase in variability of vegetation greenness was

found to be mainly due to the increase in the standard

deviation other than the mean value of NDVI, imply-

ing that the increase variability should not be attrib-

uted to the long-term greening over continents (Zhu

et al 2016). The increasing of IAV essentially indicates

a decrease in stability of vegetation growth to external

disturbances. According the measures of vegetation

stability proposed by earlier studies (Hoover et al 2014,

De Keersmaecker et al 2015, Seddon et al 2016), the

decrease of stability seems to suggest the decrease in

resistance or resilience, or increase in sensitivity of

vegetation growth to environment changes. Increases

of vegetation variability were mainly observed in the

vegetated lands of arid and polar regions. Despite the

small proportions of the vegetated lands in arid zones,

the arid and semiarid ecosystems have been suggested

to heavily influence the IAV of global ecosystem sinks

(Poulter et al 2014, Ahlström et al 2015a, Huang et al

2016). Therefore, the observed increase of vegetation

variability would be expected to have profound

impacts on global carbon cycle. As previous studies

have found, vegetation in arid zones and polar regions

were more susceptible to disturbances from the exter-

nal environment (IPCC 2007, Lioubimtseva and

Henebry 2009). This also explains the increase in

extreme events such as droughts and heat waves in

recent years (Perkins et al 2012). Propastin et al (2010)

found that the vegetation classes ‘grassland’ and

‘closed shrubland’ exhibited the largest proportion of

land area containing both moderate and high vulner-

ability to the external environment. Similarly, our

study demonstrates that grassland and shrub varia-

bility increased most severely. Propastin et al (2010)

also suggested that forest areas were significantly less

affected by climate than the other land cover types.

The current study confirms these findings by showing

that changes in the IAV of growth of evergreen broad-

leaf forests and deciduous broadleaf forests were the

most stable of the vegetation types. Furthermore,

despite large uncertainties, satellite NDVI measure-

ments and multi-model estimates of GPP demon-

strated a consistent spatial distribution of vegetation

variability over the last 34 years. However, we also

noted that these TRENDY models did not fully cap-

ture the change trend of vegetation variability as NDVI

from 1982 to 2015, suggesting a need for improved

ecological models. A recent study also suggested that

current ecological models underestimate the IAV of

global ecosystem production associated with water

availability conditions (Humphrey et al 2018).

Numerous factors can influence the IAV of vegeta-

tion greenness, including fire, deforestation, and land

use changes but large scale changes are driven by cli-

matic factors (Osborne andWheeler 2013). This study

reveals the complex influence of climatic factors on

the IAV of vegetation greenness dynamics. The most

influential impacts on the IAV of vegetation greenness

were from temperature, followed by solar radiation

and precipitation. Vegetation growth in the northern

high latitudes is usually limited by temperature

(Nemani et al 2003, Seddon et al 2016). Interestingly,

we observed strong impacts from precipitation and

solar radiation on changes in the IAV of vegetation

greenness. Piao et al (2014) reported a weakening

influence of vegetation change on the IAV of vegeta-

tion growth in high latitudes due to disturbances from

drought and heatwaves. In addition, warming has

caused spring to come early in these regions, which

may result in increased water demand by plants during

the summer months (Buermann et al 2013). Hence,

precipitation would be expected to exert a stronger

influence on the IAV of annual maximum NDVI. We

also observed a dominant influence of temperature on

changes in the IAVof vegetation growth in areas where

radiation is traditionally thought to control vegetation

growth such as tropical regions. Previous studies have

found a strong coupling between tropical temperature

changes and changes in the IAV of atmospheric CO2

growth rate, and that this coupling was primarily regu-

lated by the influences of temperature changes on tro-

pical ecosystem productivity (Wang et al 2013, Wang

et al 2014). High temperature tends to promote the

vapor pressure deficits, which will induce the closure

of plant stomata and thereby the reduction of photo-

synthesis rate and productivity (McDowell and

Allen 2015, Sulman et al 2016). In addition, some stu-

dies have revealed the strong impacts of drought on

rainforest productivity (Phillips et al 2009, Samanta

et al 2010, Xu et al 2011, Liu et al 2018). High tempera-

tures can trigger drought conditions by increasing

vapor pressure deficits and increasing evapotranspira-

tion even in normal rainfall conditions (Corlett 2011,

Silva et al 2013). In some arid regions, such as southern

South America, southern Africa, and Australia, pre-

cipitation and solar radiation exert a blended influence

on changes in the IAV of vegetation greenness. It is

easy to understand the large impact of precipitation on

changes in the IAV of vegetation growth because water

is the main limiting factor for vegetation growth in

these regions (Nemani et al 2003). A possible explana-

tion for the observed impact of solar radiation on

changes in the IAV of vegetation growth in these

regions may be that radiation is a primary energy

component that influences soil water conditions by

changing atmospheric water demand (Dai 2011).
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Despite the long-term greening of Earth’s surface,

the IAV of vegetation greenness is also increasing,

which suggests that the stability of ecosystems is

decreasing. This change in the IAV of vegetation

greenness should have profound impacts on the

dynamics of ecosystem carbon sinks. Considering the

strong coupling between ecosystem productivity and

atmospheric CO2 concentrations, the atmospheric

CO2 growth rate would also likely be affected

(Richardson et al 2010, Graven et al 2013, Piao et al

2017). It should be noted that there are some limita-

tions to this study. First, the uncertainties associated

with remote sensing data cannot be ignored. For

example, the NDVI has been suggested to suffer from

saturation problem in areas with dense vegetation

(Morton et al 2014). In addition, it may also contain

errors produced by the shift or degradation of sensors

and by the noise signals from atmosphere and ground

(Atzberger et al 2013, Jiang et al 2013, Zeng et al 2013).

Second, this study provides only a preliminary invest-

igation of the climatic drivers of changes in the IAV of

vegetation greenness, but themechanisms of these dri-

vers is still unclear. Although this study focused on the

role of climate, other factors that influence the IAV of

vegetation growth such as fires, land use andCO2 ferti-

lization, are also important. Therefore, further analy-

sis involving these factors is needed to fully understand

themechanisms behind the IAVof vegetation growth.

5. Conclusions

This study provides insights into global vegetation

variability using satellite-based estimates of vegetation

greenness for the period 1982–2015. On a global scale,

we observed a high correlation between the spatial

patterns for precipitation variability and vegetation

variability, with high precipitation variability corresp-

onding to high vegetation variability. In addition, this

study reveals increasing IAV in annual maximum

vegetation in more than 45% of vegetated areas

globally, whereas only 21% exhibited decreasing IAV.

Regression analysis suggests that temperature changes

explain the largest proportion of changes in the IAV of

vegetation greenness, followed by solar radiation and

precipitation.
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