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Abstract. Memory bandwidth is rapidly becoming the performance bottleneck 

in the application of high performance microprocessors to vector-like algo- 

rithms, including the "Grand Challenge" scientific problems. Caching is not the 

sole solution for these applications due to the poor temporal and spatial locality 

of their data accesses. Moreover, the nature of memories themselves has 

changed. Achieving greater bandwidth requires exploiting the characteristics of 

memory components "on the other side of the cache" - -  they should not be 

treated as uniform access-time RAM. This paper describes the use of hardware- 

assisted access ordering, a technique that combines compile-time detection of 

memory access patterns with a memory subsystem that decouples the order of 

requests generated by the processor from that issued to the memory system. This 

decoupling permits the requests to be issued in an order that optimizes use of the 

memory system. Our simulations show significant speedup on important scien- 

tific kernels. 

1 Increasing Vector Memory Bandwidth 

As processor speeds increase, memory bandwidth is becoming the limiting 

performance factor for many applications, particularly scientific computations. 

Although the addition of cache memory is often a sufficient solution to the memory 

latency and bandwidth problems in general-purpose scalar computing, the vectors used 

in scientific computations are normally too large to cache, and many are not reused soon 

enough to derive much benefit from caching. For computations in which vectors are 

reused, iteration space tiling [5, 21, 41] can partition the problem into cache-size blocks, 

but the technique is difficult to automate. Caching non-unit stride vectors may actually 

reduce a computation's effective memory bandwidth by fetching extraneous data. Thus, 

as noted by Lam et al [21], "while data caches have been demonstrated to be effective 

for general-purpose applications .... their effectiveness for numerical code has not been 

established". 
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The traditional scalar processor concern has been to minimize memory latency in 

order to maximize processor performance. For scientific applications, however, the 

processor is not the bottleneck, and as processor speeds continue to increase relative to 

memory speeds, optimal system performance will leave the processor idle at times. 

Bridging this performance gap requires changing the way we think about the problem 

- -  to maximize bandwidth for scientific applications, we need to minimize average 

latency over a coherent set of accesses. 

While many scientific computations are limited by memory bandwidth, they are by 

no means the only such computations. Any computation involving linear traversals of 

vector-like data, where each element is typically visited only once during lengthy 

portions of the computation, can suffer: examples include string processing, image 

processing and other DSP applications, some database queries, some graphics 

applications, and DNA sequence matching. 

After defining access ordering, our technique for improving vector memory 

bandwidth, we describe a hardware Stream Memory Controller (SMC) used to perform 

access ordering dynamically at run time, and discuss how this technique relates to other 

methods for improving memory system performance. We then describe the simulation 

environment used to evaluate SMC systems, and present results demonstrating the 

effectiveness of our technique. For long vectors, an SMC achieves nearly the full 

bandwidth that the memory system can deliver. 

2 RAMIsn't  

The assumptions made by most memory architectures simply don't match the physical 

characteristics of the devices used to build them. Memory components are usually 

presumed to require about the same amount of time to access any random location; it 

was this notion of uniform access time that originally gave rise to the term RAM, for 

Random Access Memory. Many computer architecture textbooks ([2, 14, 15, and 26] 

among them) specifically cultivate this view. Others skirt the issue entirely [25, 38]. 

Somewhat ironically, this assumption no longer applies to modern memory devices: 

most components manufactured in the last ten to fifteen years provide special 

capabilities that make it possible to perform some access sequences faster than others. 

For instance, nearly all current DRAMs implement a form of page-mode operation [32]. 

These devices behave as if implemented with a single on-chip cache line, or page (this 

should not be confused with a virtual memory page). A memory access falling outside 

the address range of the current DRAM page forces a new page to be accessed. The 

overhead time required to set up the new page makes servicing such an access 

significantly slower than one that hits the current page. 

Other common devices offer similar features (nibble-mode, static column mode, or 

a small amount of SRAM cache on chip) or exhibit novel organizations (such as 

Rambus [33], Ramlink, and the new synchronous DRAM designs [16]). The order of 

requests strongly affects the performance of all these components. For instance, 

Rambus devices provide high bandwidth for large transfers, but offer little performance 

benefit for single-word accesses. 
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For multiple-module memory systems, the order of requests is important on yet 

another level: successive accesses to the same memory bank cannot be performed as 

quickly as accesses to different banks. To get the best performance out of such a system, 

we must take advantage of the architecture's available concurrency. 

Most computers already have memory systems whose peak bandwidth is matched 

to the peak processor bus rate. But the nature of an algorithm, its data sizes, and 

placement all strongly affect memory performance; an architecture that works well on 

one problem may perform quite poorly on another. This was put in sharp focus for the 

authors while attempting to optimize numerical libraries for the iPSC/860. On some 

applications, even with painstakingly handcrafted code, inadequate memory 

bandwidth limited us to 20% of peak processor performance [30]. Our experience is 

not unique; results similar to ours have been reported by Lee [24], for example. 

To illustrate one aspect of the bandwidth problem - -  and how it might be addressed 

at compile time----consider the effect of executing the fifth Livermore Loop (tridiagonal 

elimination) using non-caching accesses to reference a single bank of page-mode 

DRAMs. Figure l(a) represents the natural reference sequence for a straightforward 

translation of the computation: 

Vi xi~--z i  x ( Y i - X i _ l )  

This computation occurs frequently in practice, especially in the solution of partial 

differential equations by finite difference or finite element methods [9]. Since it contains 

a first-order linear recurrence, it cannot be vectorized. Nonetheless, the compiler can 

employ the recurrence detection and optimization algorithm of [6] to generate 

streaming code: each computed value x i is retained in a register so that it will be 

available for use as x i _ 1 on the following iteration. Except in the case of very short 

vectors, elements from x, y, and z are likely to reside in different pages, so that 

accessing each vector in turn incurs the page miss overhead on each access; memory 

references likely to generate page misses are highlighted in the figure. 

loop: loop: 

load z[i] load z[i] 

load y[i] load z[i+l] 

stor x[i] load y[i] 

jump loop load y[i+l] 

stor x[i] 

stor x[i+l] 

jump loop 

(a) (b) 

Figure 1 tridiag Code 

In the loop of Figure 1 (a), a page miss occurs for every reference. Unrolling the loop 

and grouping accesses to the same vector, as in Figure 1 (b), amortizes the page-miss 

cost over a number of accesses; in this case three misses occur for every six references. 

Reducing the page-miss count increases processor-memory bandwidth significantly. 

For example, consider a device for which the time required to service a page miss is 
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four times that for a page hit, a miss/hit cost ratio that is representative of current 

technology. The natural-order loop in Figure l(a) only delivers 25% of the attainable 

bandwidth, whereas the unrolled, reordered loop in Figure l(b) delivers 40%. External 

effects such as bus turnaround delays are ignored for the sake of simplicity. 

Figure 2 illustrates effective memory bandwidth versus depth of unrolling, given a 

page-miss/page-hit cost ratio of four. For the bottom curve, the loop body of Figure l(a) 

is essentially replicated the appropriate number of times, as is standard practice; for the 

middle curve, accesses have been arranged as per Figure 1 (b); the top curve depicts the 

bandwidth attainable if all accesses were to hit the current DRAM page. Reordering the 

accesses realizes a performance gain of almost 130% at an unrolling depth of four, and 

over 190% at a depth of eight. Although in theory we could improve performance 

almost 240% by unrolling to a depth of sixteen, in most cases the size of the register file 

won't permit unrolling that far. 
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Figure 2 tridiag Memory Performance 

A comprehensive, successful solution to the memory bandwidth problem must 

exploit the richness of the full  memory hierarchy, both its architecture and its 

component characteristics. One way to do this is via access ordering, which we define 

as any technique for changing the order of memory requests to increase bandwidth. 

Here we are especially concerned with ordering a set of vector-like "stream" accesses. 

As our example illustrates, the performance benefits of doing such static access 

ordering can be quite dramatic. Unfortunately, without the kinds of address alignment 

information that are usually only available at run time, the compiler can't generate the 

optimal access sequence. As pointed out above, the extent to which a compiler can 

perform this optimization is further constrained by such things as the size of the 

processor register file [31]. The beneficial impact of access ordering on effective 

memory bandwidth along with the limitations inherent in implementing the technique 

statically motivate us to consider an implementation that reorders accesses 

dynamically at run time. 
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There are a number of hardware and software techniques that can help manage the 

imbalance between processor and memory speeds. These include altering the placement 

of data to exploit concurrency [ 11], reordering the computation to increase locality (as 

in "blocking" [21]) address transformations for conflict-flee access to interleaved 

memory [13, 34, 39], software prefetching data to the cache [4, 20, 37], and hardware 

prefetching vector data to cache [1, 8, 18, 35]. The main difference between these 

techniques and the complementary one we propose here is that we reorder stream 

accesses to exploit the architectural and component features that make memory systems 

sensitive to the sequence of requests. 

3 A Taxonomy of Access Ordering Techniques 

There are a number of options for when and how access ordering can be done, so first 

we provide a brief taxonomy of the design space. Access ordering systems can be 

classified by three key components: 

stream detection (SD), the recognition of streams accessed within a loop, 

along with their parameters (base address, stride, etc.), 

access ordering (AO), the determination of that interleaving of stream 

references that most efficiently utilizes the memory system, and 

access issuing (A/), the determination of when the load/store operations 

will be issued. 

Each of these functions may be addressed at compile time, CT, or by hardware at run 

time, RT. This taxonomy classifies access ordering systems by a tuple (SD, AO, AI) 
indicating the time at which each function is performed. 

Davidson [6] detects streams at compile time, and Moyer [31] has derived access- 

ordering algorithms relative to a precise analytic model of memory systems. Moyer's 

approach unrolls loops and orders memory operations to exploit architectural and 

device features of the target memory system. As our tridiag example illustrates, 

this (CT, CT, CT) system can improve bandwidth significantly, but is limited by the 

size of the processor register file and lack of vector alignment information available at 

compile time. 

The purely compile-time approach can be augmented with an enhanced memory 

controller that provides buffer space and that automates vector prefetching, producing 

a (CT, CT, RT)system. Doing this relieves register pressure and decouples the 

sequence of accesses generated by the processor from the sequence observed by the 

memory components: the compiler determines a sequence of vector references to be 

issued and buffered, but the actual access issue is executed by the memory controller. 

Both of these solutions are static in the sense that the order of references seen by the 

memory is determined at compile time; static techniques are inherently limited by the 

lack of alignment information. Dynamic access ordering systems introduce logic into 

the memory controller to determine the interleaving of a set of references. 

For a dynamic (CT, RT, RT) system, stream descriptors are developed at compile 

time and sent to the memory controller at run time, where the order of memory 

references is determined dynamically and independently. Determining access order 
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dynamically allows the controller to optimize behavior based on run-time interactions. 

Our results illustrate the dramatic impact this has on bandwidth. 

Fully dynamic (RT, RT, RT) systems implement access ordering without compiler 

support by augmenting the previous controller with logic to induce stream parameters. 

Whether or not such a scheme is superior to a (CT, RT, RT) system depends on the 

relative quality of the compile-time and run-time algorithms for stream detection and 

relative hardware costs. Proposals for (RT, RT, RT) "vector prefetch units" have 

recently appeared [1, 35], but these do not order accesses to fully exploit the 

underlying memory architecture. 

4 The Stream Memory Controller 

Based on our analysis and simulations, we believe that the best engineering choice is to 

detect streams at compile time, but to defer access ordering and issue to run time - -  

(CT, RT, RT) in our notation. Choosing this scheme over an (RT, RT, RT) system 

follows a philosophy that has guided the design of RISC processors: move work to 

compile time whenever possible. This speeds processing and helps minimize hardware. 

Here we describe in general terms how such a scheme might be incorporated into an 

overall system architecture. 

The approach we suggest is generally applicable to any uniprocessor computing 

system, but will be described based on the simplified architecture of Figure 3. Memory 

is interfaced to the processor through a controller labeled "MSU" for Memory 

Scheduling Unit. The MSU includes logic to issue memory requests as well as logic to 

determine the order of requests during streaming computations. For non-stream 

accesses, the MSU provides the same functionality and performance as a traditional 

memory controller. This is crucial - -  the access-ordering circuitry of the MSU is not in 

the critical path to memory and doesn't affect scalar processing. 

The MSU has full knowledge of all streams currently needed by the processor: given 

the base address, vector stride, and vector length, it can generate the addresses of all 

elements in a stream. The scheduling unit also knows the details of the memory 

architecture, including interleaving and device characteristics. The access-ordering 

circuitry uses this information to issue requests for individual stream elements in an 

order that attempts to optimize memory system performance. 

A separate Stream Buffer Unit (SBU) provides high-speed buffers for stream 

operands and control registers that the processor uses to specify stream parameters 

(base address, stride, length, and data size). As with the stream-specific parts of the 

MSU, the SBU is not on the critical path to memory, and the speed of non-vector 

accesses is not adversely affected by its presence. Together, the MSU and SBU 

comprise a Stream Memory Controller (SMC) system. 

There are a number of options for the internal architecture of the SBU: here we 

describe one feasible organization. A set of memory-mapped registers provides a 

processor-independent means of specifying stream parameters. Setting these registers 

allows the processor to initiate an asynchronous stream of memory access operations 

for a set of string operands. Data retrieval from the streams (loads) and insertion into 

streams (stores) may be done in any of several ways; for instance, the SBU could appear 
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to be a traditional cache, or the model could include a set of FIFOs, as illustrated in 

Figure 3. Each stream is assigned to one FIFO, which is asynchronously filled from (or 

drained to) memory by the access/issue logic. The "head" of the FIFO is another 

memory-mapped register, and load instructions from or store instructions to a particular 

stream reference the FIFO head via this register, dequeueing or enqueueing data as is 

appropriate. 

scalar  accesses  

-mmo_  

ra~ 

O 

O 

Figure 3 Stream Memory Controller 

This organization is both simple and practical from an implementation standpoint: 

similar designs have been built. In fact, the organization is almost identical to the 

"stream units" of the WM architecture [42], or may be thought of as a special case of a 

decoupled access-execute architecture [10, 36]. Another advantage is that this 

combined hardware/software scheme doesn't require heroic compiler technology - - the  

compiler need only detect the presence of streams, and Davidson's streaming algorithm 

[6] can be used to do this. 

Continuing the tridiag algorithm and memory system example introduced earlier, 

the performance effect of such an SMC is illustrated by Figure 4. The details of this and 

other results are discussed later, but the gestalt is simple - -  performance on very short 

vectors is about 2.5 times that of a system without an SMC; performance on moderate 

length vectors is about triple that of the non-SMC system; for long vectors and deep 

FIFOs, bandwidth reaches 98.5% of peak. 
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Figure 4 Bandwidth for the tridiag Illustration 

5 Complementary Technologies 

As mentioned above, there are a number of hardware and software techniques that can 

help manage the imbalance between processor and memory speeds. Most of these are 

complementary to access ordering. 

Traditional Caching: Traditional caches retain their importance for code and non- 

vector data in a system equipped with an SMC. Furthermore, if algorithms can be 

blocked [5, 41] and data aligned to eliminate significant conflicts [21], the cache and 

SMC can be used in a complementary fashion for vector access. Under these conditions 

multiple-visit vector data can be cached, with the SMC used to reference single-visit 

vectors. 

To illustrate this, consider implementing the matrix-vector multiply operation: 

y = (A+B)~c 

where A and B are n x m matrices and ; and ~ are vectors. Figure 5(a) depicts code for 

a straightforward implementation using matrices stored in column-major order; the 

code in Figure 5(b) strip-mines the computation to reuse elements of Y. Partition size 

depends on cache size and structure [21]. Elements of ~ are preloaded into cache 

memory at the appropriate loop level, and the SMC is then used to access elements of 

A and B, since each element is accessed only once. The reference to ~ is a constant 

within the inner loop, and is therefore preloaded into a processor register. 

Software Prefetching: Some architectures include instructions to prefetch data from 

main memory into cache. Using these instructions to load data for a future iteration of 

a loop [4, 20, 37] can improve processor performance by overlapping memory latency 

with computation, but prefetching does nothing to actually improve memory 

performance. Note that prefetching can be used in conjunction with an SMC to help 

hide latency in FIFO references. 

Software Access Ordering: Software techniques such as reordering [30] and 

"vectorization" via library routines [24, 29] can improve bandwidth by reordering 
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do 20 j = l,m 

do i0 i = l,n 

y(i) = y(i) 

i0 continue 

20 continue 

+ (A(i,j) + B(i,j)) * x(j) 

(a) straightforward implementation 

do 30 IT = l,n, IS 

load y(IT) through y(min(n,IT+IS-l)) 

do 20 j = l,m 

load x(j) into processor register 

do i0 i = IT,min(n, IT+IS-l) 

y(i) = y(i) + (A(i,j) + B(i,j)) 

i0 continue 

20 continue 

30 continue 

into cache 

* x(j 

(b) strip-mined implementation 

Figure 5 Combining Caching and Non-Caching Accesses: y = (A + B) 

requests at compile time. Such techniques cannot exploit run-time information and are 

limited by processor register resources, hence they cannot outperform hardware- 

assisted techniques such as the SMC. 

Data Placement: An SMC can provide near-optimal bandwidth for a given memory 

architecture, algorithm, and data placement, but cannot compensate for an unfortunate 

placement of operands - -  a vector stride that results in all elements placed in a single 

bank of a multi-bank memory, for example. An SMC and data placement are 

complementary; the SMC will perform better given a good placement. 

New DRAM interfaces: Rambus [33] is a new, high-speed DRAM interface that 

provides both higher bandwidth for sequential accesses and true caching of two DRAM 

pages on the chip. Other sophisticated memory interfaces, such as RamLink and the 

JEDEC synchronous DRAM, provide similar benefits [16]. The more sophisticated 

such interfaces become, the more important it is to exploit them intelligently with 

controllers such as the SMC. 

Alternative Storage Schemes: Skewed storage [3, 12] and dynamic address 

transformations [13, 34] have been proposed as methods for increasing concurrency, 

and hence bandwidth, in parallel memory systems. Unfortunately, these techniques do 

not work for interspersed multiple streams, and they do not exploit memory component 

features. 
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6 Simulation Environment 

We have simulated a wide range of SMC configurations and benchmarks, varying 

FIFO depth, 

dynamic order/issue policy, 

number of memory banks, 

DRAM speed, 

benchmark algorithm, and 

vector length, stride, and alignment with respect to memory banks. 

Only samples of our results are given here; complete results can be found in [28]. In 

particular, the results given below involve the following restrictions. 

The simulations here use stride-one vectors aligned to have no DRAM pages in 

common, but starting in the same bank unless otherwise specified. The SMC is very 

robust in its ability to optimize memory bandwidth regardless of stride and alignment, 

so this restriction does not materially affect the results. 

We model the processor as a generator of load and store requests only - -  arithmetic 

and control are assumed never to be a computational bottleneck. This places the 

maximum stress on the memory system by assuming a computation rate that out-paces 

the memory's ability to transfer data. Scalar and instruction accesses are assumed to hit 

in the cache for the same reason. 

All memories modeled here consist of interleaved banks of page-mode DRAMs, 

where each page is 2K double words. 

The only order/issue policy considered is exceedingly simple. The SMC looks at 

each FIFO in round-robin order, issuing accesses for the same FIFO stream while: 

1) not all elements of the stream have been accessed, and 

2) there is room in the FIFO for another read operand, or another write 

operand is present in the FIFO. 

Results reported here are for the four kernels described in Figure 6. Daxpy and swap 

are from the BLAS (Basic Linear Algebra Subroutines) [22, 7], tridiag is the fifth 

Livermore Loop from our earlier example[27], and vaxpy is a vector axpy I computation 

that occurs in matrix-vector multiplication by diagonals. These benchmarks were 

selected because they are representative of the access patterns found in real scientific 

codes, including the inner loops of blocked algorithms. Nonetheless, our results show 

that the actual reference sequence has little effect on SMC performance. 

Non-SMC results are for the "natural" reference sequence for each benchmark, 

using non-caching loads and stores. 

SMC initialization requires two writes to memory-mapped registers for each stream; 

this small overhead has no significant effect on results, and is not included here. 

The DRAM page-miss cycle time is four times that of a DRAM page hit, unless 

otherwise noted. 

1. Here "axpy" refers to a computation involving some entity a times a vector x plus a 

vector y: for daxpy, a is a double; for vaxpy, a is a vector. 
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daxpy: Vi Yi +- axi  + Yi 

tridiag: Vi xi ~-- zi • (Yi - xi  - 1 ) 

swap: 'v'i trap ~-- Yi Yi ~-- xi 

vaxpy: Vi Yi +-" aixi  + Yi 

Figure 6 Benchmark Algorithms 

x i ~-- trap 

7 Results 

Figure 7 through Figure 10 illustrate the relative performance of the four kernels for a 

variety of memory systems using an SMC. The SMC's ability to optimize bandwidth is 

relatively insensitive to vector access patterns, hence the shape of the performance 

curves is similar for all benchmarks - -  asymptotic behavior approaches 100%. 

Figure 7 shows SMC performance for long vectors (length 10,000) as a function of 

FIFO depth and number of memory banks (available concurrency) compared to the 

analogous non-SMC systems. On the daxpy benchmark, for example, an SMC system 

with two memory banks achieves 98.2% of peak bandwidth, compared to 18.8% for a 

non-SMC system. In general, SMC systems with deep FIFOs achieve in excess of 92% 

of peak bandwidth for all benchmarks and memory configurations. Even with FIFOs 

that are only sixteen double-words deep, the SMC systems consistently deliver over 

75% of peak bandwidth. 

Note that increasing the number of banks reduces relative performance, a somewhat 

counter-intuitive and deceptive effect. This is due in part to our keeping both the peak 

memory system bandwidth and the DRAM page-miss/hit delay ratio constant. Thus, the 

eight-bank system has four times the DRAM page-miss latency of the two-bank system. 

If, alternatively, we hold the performance of the memory banks constant and assume a 

faster bus, the peak bandwidth of the total system increases proportionally to the 

number of banks. Although the percentage of bandwidth delivered is still smaller in this 

case, the total bandwidth is much larger. The other reason for this effect is that 

increasing the number of banks decreases the number of accesses to each bank, thus 

page-miss cost is amortized over fewer accesses. 

Figure8 represents SMC results for medium-length (100 element) vectors 

compared with non-SMC performance. These SMC results depict the net effect of two 

competing performance factors. With deeper FIFOs, DRAM page misses are amortized 

over a larger number of total accesses, which can increase performance. At the same 

time, the processor has to wait longer to complete its first loop iteration while the SMC 

prefetches numerous operands to be used in the following loop iterations. This can 

decrease performance, as evidenced by the tail-off beyond length-32 FIFOs. Optimum 

FIFO depth could, and probably should, be run-time selectable in the SMC, since it is 

so closely related to stream length. 

Note that performance of non-SMC systems depicted in Figure 7 and Figure 8 is 

independent of vector length. Since these systems employ no dynamic access ordering, 
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Figure 7 Long Vector Performance 

the number of requests issued and the resulting percentage of total bandwidth obtained 

are constant for each loop iteration. This is true of any system in which access issue is 

determined at compile time, including those that use prefetching. 

Lack of dynamic ordering renders the performance of non-SMC systems 

particularly sensitive to vector placement. In Figure 7 and Figure 8, the vectors are 

aligned so that they both compete for the same bank on each iteration; this has little 

effect on SMC performance (because it reorders requests), but it prevents the non-SMC 

systems from taking advantage of the potential concurrency. 

Figure 9 represents the performance of non-SMC and SMC systems on medium- 

length vectors with better alignment. In these experiments the vectors are staggered 

such that the i th vector in the pattern begins in bank (i rood n), where n is the number of 

banks. In spite of the more favorable alignment, non-SMC daxpy performance is limited 
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Figure 8 Medium Vector Performance 

to 30.0% of total bandwidth for a two-bank memory; tridiag, swap, and vaxpy are 

limited to 18.8%, 40.0%, and 25.0%, respectively. SMC performance remains 

essentially the same as in Figure 8. 

Figure 10 illustrates SMC performance on very short (10-element) vectors. 

Performance improvements are not as dramatic as for longer vectors, since there are 

even fewer accesses over which to amortize page-miss costs. Nonetheless, short vector 

computations benefit significantly from an SMC: daxpy run on a two-bank architecture 

with an SMC achieves 53.6% of the attainable bandwidth, whereas the same benchmark 

run on a similar non-SMC system is limited to 18.8%. The other kernels enjoy similar 

increases in bandwidth. Non-SMC performance is as in Figure 8 or Figure 9, depending 

on vector alignment; those lines are omitted here for clarity. 
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Figure 9 Medium Vector Performance for Better Vector Alignment 

Figure 11(a) shows SMC performance for daxpy using long vectors (10,000 

elements) as the page-miss to page-hit cost ratio increases�9 This figure may be a bit 

misleading: the miss/hit ratio is likely to increase primarily as the result of a reduction 

of the page-hit time, rather than an increase in the page-miss time. Thus, at a ratio of 

sixteen the SMC is delivering a somewhat smaller percentage of a much larger available 

bandwidth - -  resulting in a significant net increase�9 

If we hold the number of modules fixed and increase component performance, 

deeper FIFOs are required in order to amortize the page-miss costs�9 As evidenced by 

the slope of the curves in Figure 1 l(b), relative performance is approximately constant 

if we scale FIFO depth linearly with miss/hit cost. Note that the faster systems still 

require only modest amounts of buffer storage�9 
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Figure 10 Very Short Vector Performance 

8 C o n c l u s i o n s  

Memory bandwidth is rapidly becoming the performance bottleneck in the application 

of high performance microprocessors to vector-like algorithms, including many of the 

"grand challenge" scientific problems. Caching is not the sole solution for these 

applications due to their poor temporal and spatial locality. 

Achieving greater bandwidth requires exploiting the characteristics of the entire 

memory hierarchy; it cannot be treated as though it were uniform access-time RAM. 

Moreover, exploiting the memory's properties will have to be done dynamically - -  

essential information (such as alignment) will generally not be available at compile 

time. 



102 

lOO- 

" 80- 

," 6 0 -  

40- 

~ 2o- 

- -  miss/hit cost ratio = 2 
. . . . .  3 
. . . .  4 

. . . . . .  8 

. . . . .  12 
16 

�9 - j , - - f  

. , � 9  ~ 1 4 9  
/ 

�9 / / 
,~ i 

/ 

100- 

80- 

60- 

t 4 0 -  

~ . 

2 0 -  

~ i ,~176 �9 l 

, . '11 ,�9 S" i 
i ' /  ." i .~  I 

." �9149 f 

, "  , , , ' j  
~ 1 4 9  

SS ..I 

' i  i i i 0 
16 32 64 128 256 8 

fifo depth 

(a) I bank (b) 8 banks 

I I I 

1'6 A 64 128 256 

fifo depth 

Figure 11 daxpy Performance for Various Page-miss/Page-hit Cost Ratios 

Reordering can optimize accesses to exploit the underlying memory architecture. 

By combining compile-time detection of streams with execution-time selection of the 

access order and issue, we achieve near-optimal bandwidth for vector-like accesses 

relatively inexpensively. This complements more traditional cache-based schemes, so 

that overall effective memory performance need not be a bottleneck. 

Here we have reported the basic design of a Stream Memory Controller (SMC) and 

have demonstrated its performance for a variety of FIFO depths, memory 

configurations, etc. Using current memory parts and only a few hundred words of buffer 

storage, an SMC system can deliver nearly the full memory system bandwidth. 

Moreover, it does so with naive code, and performance is independent of the alignment 

and stride of the operands. 
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