
Increasing Memory Bandwidth for Vector Computations

Sally A. McKee, Steven A. Moyer t, Wm. A. Wulf

Department of Computer Science, Thornton Hall

University of Virginia, Charlottesville, VA 22903

Charles Hitchcock 2

Thayer School of Engineering

Dartmouth College, Hanover NH 03755

Abstract. Memory bandwidth is rapidly becoming the performance bottleneck

in the application of high performance microprocessors to vector-like algo-

rithms, including the "Grand Challenge" scientific problems. Caching is not the

sole solution for these applications due to the poor temporal and spatial locality

of their data accesses. Moreover, the nature of memories themselves has

changed. Achieving greater bandwidth requires exploiting the characteristics of

memory components "on the other side of the cache" - - they should not be

treated as uniform access-time RAM. This paper describes the use of hardware-

assisted access ordering, a technique that combines compile-time detection of

memory access patterns with a memory subsystem that decouples the order of

requests generated by the processor from that issued to the memory system. This

decoupling permits the requests to be issued in an order that optimizes use of the

memory system. Our simulations show significant speedup on important scien-

tific kernels.

1 Increasing Vector Memory Bandwidth

As processor speeds increase, memory bandwidth is becoming the limiting

performance factor for many applications, particularly scientific computations.

Although the addition of cache memory is often a sufficient solution to the memory

latency and bandwidth problems in general-purpose scalar computing, the vectors used

in scientific computations are normally too large to cache, and many are not reused soon

enough to derive much benefit from caching. For computations in which vectors are

reused, iteration space tiling [5, 21, 41] can partition the problem into cache-size blocks,

but the technique is difficult to automate. Caching non-unit stride vectors may actually

reduce a computation's effective memory bandwidth by fetching extraneous data. Thus,

as noted by Lam et al [21], "while data caches have been demonstrated to be effective

for general-purpose applications their effectiveness for numerical code has not been

established".

1. Current address: Department of Mathematics and Computer Science, Emory Uni-

versity, Atlanta, GA 30322.

2. Current address: Fostex R&D, 2 Buck Rd., Suite 2, Hanover, NH 03755.

88

The traditional scalar processor concern has been to minimize memory latency in

order to maximize processor performance. For scientific applications, however, the

processor is not the bottleneck, and as processor speeds continue to increase relative to

memory speeds, optimal system performance will leave the processor idle at times.

Bridging this performance gap requires changing the way we think about the problem

- - to maximize bandwidth for scientific applications, we need to minimize average

latency over a coherent set of accesses.

While many scientific computations are limited by memory bandwidth, they are by

no means the only such computations. Any computation involving linear traversals of

vector-like data, where each element is typically visited only once during lengthy

portions of the computation, can suffer: examples include string processing, image

processing and other DSP applications, some database queries, some graphics

applications, and DNA sequence matching.

After defining access ordering, our technique for improving vector memory

bandwidth, we describe a hardware Stream Memory Controller (SMC) used to perform

access ordering dynamically at run time, and discuss how this technique relates to other

methods for improving memory system performance. We then describe the simulation

environment used to evaluate SMC systems, and present results demonstrating the

effectiveness of our technique. For long vectors, an SMC achieves nearly the full

bandwidth that the memory system can deliver.

2 RAMIsn't

The assumptions made by most memory architectures simply don't match the physical

characteristics of the devices used to build them. Memory components are usually

presumed to require about the same amount of time to access any random location; it

was this notion of uniform access time that originally gave rise to the term RAM, for

Random Access Memory. Many computer architecture textbooks ([2, 14, 15, and 26]

among them) specifically cultivate this view. Others skirt the issue entirely [25, 38].

Somewhat ironically, this assumption no longer applies to modern memory devices:

most components manufactured in the last ten to fifteen years provide special

capabilities that make it possible to perform some access sequences faster than others.

For instance, nearly all current DRAMs implement a form of page-mode operation [32].

These devices behave as if implemented with a single on-chip cache line, or page (this

should not be confused with a virtual memory page). A memory access falling outside

the address range of the current DRAM page forces a new page to be accessed. The

overhead time required to set up the new page makes servicing such an access

significantly slower than one that hits the current page.

Other common devices offer similar features (nibble-mode, static column mode, or

a small amount of SRAM cache on chip) or exhibit novel organizations (such as

Rambus [33], Ramlink, and the new synchronous DRAM designs [16]). The order of

requests strongly affects the performance of all these components. For instance,

Rambus devices provide high bandwidth for large transfers, but offer little performance

benefit for single-word accesses.

89

For multiple-module memory systems, the order of requests is important on yet

another level: successive accesses to the same memory bank cannot be performed as

quickly as accesses to different banks. To get the best performance out of such a system,

we must take advantage of the architecture's available concurrency.

Most computers already have memory systems whose peak bandwidth is matched

to the peak processor bus rate. But the nature of an algorithm, its data sizes, and

placement all strongly affect memory performance; an architecture that works well on

one problem may perform quite poorly on another. This was put in sharp focus for the

authors while attempting to optimize numerical libraries for the iPSC/860. On some

applications, even with painstakingly handcrafted code, inadequate memory

bandwidth limited us to 20% of peak processor performance [30]. Our experience is

not unique; results similar to ours have been reported by Lee [24], for example.

To illustrate one aspect of the bandwidth problem - - and how it might be addressed

at compile time----consider the effect of executing the fifth Livermore Loop (tridiagonal

elimination) using non-caching accesses to reference a single bank of page-mode

DRAMs. Figure l(a) represents the natural reference sequence for a straightforward

translation of the computation:

Vi xi~--z i x (Y i - X i _ l)

This computation occurs frequently in practice, especially in the solution of partial

differential equations by finite difference or finite element methods [9]. Since it contains

a first-order linear recurrence, it cannot be vectorized. Nonetheless, the compiler can

employ the recurrence detection and optimization algorithm of [6] to generate

streaming code: each computed value x i is retained in a register so that it will be

available for use as x i _ 1 on the following iteration. Except in the case of very short

vectors, elements from x, y, and z are likely to reside in different pages, so that

accessing each vector in turn incurs the page miss overhead on each access; memory

references likely to generate page misses are highlighted in the figure.

loop: loop:

load z[i] load z[i]

load y[i] load z[i+l]

stor x[i] load y[i]

jump loop load y[i+l]

stor x[i]

stor x[i+l]

jump loop

(a) (b)

Figure 1 tridiag Code

In the loop of Figure 1 (a), a page miss occurs for every reference. Unrolling the loop

and grouping accesses to the same vector, as in Figure 1 (b), amortizes the page-miss

cost over a number of accesses; in this case three misses occur for every six references.

Reducing the page-miss count increases processor-memory bandwidth significantly.

For example, consider a device for which the time required to service a page miss is

90

four times that for a page hit, a miss/hit cost ratio that is representative of current

technology. The natural-order loop in Figure l(a) only delivers 25% of the attainable

bandwidth, whereas the unrolled, reordered loop in Figure l(b) delivers 40%. External

effects such as bus turnaround delays are ignored for the sake of simplicity.

Figure 2 illustrates effective memory bandwidth versus depth of unrolling, given a

page-miss/page-hit cost ratio of four. For the bottom curve, the loop body of Figure l(a)

is essentially replicated the appropriate number of times, as is standard practice; for the

middle curve, accesses have been arranged as per Figure 1 (b); the top curve depicts the

bandwidth attainable if all accesses were to hit the current DRAM page. Reordering the

accesses realizes a performance gain of almost 130% at an unrolling depth of four, and

over 190% at a depth of eight. Although in theory we could improve performance

almost 240% by unrolling to a depth of sixteen, in most cases the size of the register file

won't permit unrolling that far.

200 -

180 1

160 -

140

120

100

80

6O

40

2O

p e a k b a n d w i d t h

r e - o r d e r e d a c c e s s e s ~ . . ~ . . . ~ . _ ~ _ . _ . ~ - - 4

I I I I I I I I I I I I I I I

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

depth of unrolling

Figure 2 tridiag Memory Performance

A comprehensive, successful solution to the memory bandwidth problem must

exploit the richness of the full memory hierarchy, both its architecture and its

component characteristics. One way to do this is via access ordering, which we define

as any technique for changing the order of memory requests to increase bandwidth.

Here we are especially concerned with ordering a set of vector-like "stream" accesses.

As our example illustrates, the performance benefits of doing such static access

ordering can be quite dramatic. Unfortunately, without the kinds of address alignment

information that are usually only available at run time, the compiler can't generate the

optimal access sequence. As pointed out above, the extent to which a compiler can

perform this optimization is further constrained by such things as the size of the

processor register file [31]. The beneficial impact of access ordering on effective

memory bandwidth along with the limitations inherent in implementing the technique

statically motivate us to consider an implementation that reorders accesses

dynamically at run time.

91

There are a number of hardware and software techniques that can help manage the

imbalance between processor and memory speeds. These include altering the placement

of data to exploit concurrency [11], reordering the computation to increase locality (as

in "blocking" [21]) address transformations for conflict-flee access to interleaved

memory [13, 34, 39], software prefetching data to the cache [4, 20, 37], and hardware

prefetching vector data to cache [1, 8, 18, 35]. The main difference between these

techniques and the complementary one we propose here is that we reorder stream

accesses to exploit the architectural and component features that make memory systems

sensitive to the sequence of requests.

3 A Taxonomy of Access Ordering Techniques

There are a number of options for when and how access ordering can be done, so first

we provide a brief taxonomy of the design space. Access ordering systems can be

classified by three key components:

stream detection (SD), the recognition of streams accessed within a loop,

along with their parameters (base address, stride, etc.),

access ordering (AO), the determination of that interleaving of stream

references that most efficiently utilizes the memory system, and

access issuing (A/), the determination of when the load/store operations

will be issued.

Each of these functions may be addressed at compile time, CT, or by hardware at run

time, RT. This taxonomy classifies access ordering systems by a tuple (SD, AO, AI)
indicating the time at which each function is performed.

Davidson [6] detects streams at compile time, and Moyer [31] has derived access-

ordering algorithms relative to a precise analytic model of memory systems. Moyer's

approach unrolls loops and orders memory operations to exploit architectural and

device features of the target memory system. As our tridiag example illustrates,

this (CT, CT, CT) system can improve bandwidth significantly, but is limited by the

size of the processor register file and lack of vector alignment information available at

compile time.

The purely compile-time approach can be augmented with an enhanced memory

controller that provides buffer space and that automates vector prefetching, producing

a (CT, CT, RT)system. Doing this relieves register pressure and decouples the

sequence of accesses generated by the processor from the sequence observed by the

memory components: the compiler determines a sequence of vector references to be

issued and buffered, but the actual access issue is executed by the memory controller.

Both of these solutions are static in the sense that the order of references seen by the

memory is determined at compile time; static techniques are inherently limited by the

lack of alignment information. Dynamic access ordering systems introduce logic into

the memory controller to determine the interleaving of a set of references.

For a dynamic (CT, RT, RT) system, stream descriptors are developed at compile

time and sent to the memory controller at run time, where the order of memory

references is determined dynamically and independently. Determining access order

92

dynamically allows the controller to optimize behavior based on run-time interactions.

Our results illustrate the dramatic impact this has on bandwidth.

Fully dynamic (RT, RT, RT) systems implement access ordering without compiler

support by augmenting the previous controller with logic to induce stream parameters.

Whether or not such a scheme is superior to a (CT, RT, RT) system depends on the

relative quality of the compile-time and run-time algorithms for stream detection and

relative hardware costs. Proposals for (RT, RT, RT) "vector prefetch units" have

recently appeared [1, 35], but these do not order accesses to fully exploit the

underlying memory architecture.

4 The Stream Memory Controller

Based on our analysis and simulations, we believe that the best engineering choice is to

detect streams at compile time, but to defer access ordering and issue to run time - -

(CT, RT, RT) in our notation. Choosing this scheme over an (RT, RT, RT) system

follows a philosophy that has guided the design of RISC processors: move work to

compile time whenever possible. This speeds processing and helps minimize hardware.

Here we describe in general terms how such a scheme might be incorporated into an

overall system architecture.

The approach we suggest is generally applicable to any uniprocessor computing

system, but will be described based on the simplified architecture of Figure 3. Memory

is interfaced to the processor through a controller labeled "MSU" for Memory

Scheduling Unit. The MSU includes logic to issue memory requests as well as logic to

determine the order of requests during streaming computations. For non-stream

accesses, the MSU provides the same functionality and performance as a traditional

memory controller. This is crucial - - the access-ordering circuitry of the MSU is not in

the critical path to memory and doesn't affect scalar processing.

The MSU has full knowledge of all streams currently needed by the processor: given

the base address, vector stride, and vector length, it can generate the addresses of all

elements in a stream. The scheduling unit also knows the details of the memory

architecture, including interleaving and device characteristics. The access-ordering

circuitry uses this information to issue requests for individual stream elements in an

order that attempts to optimize memory system performance.

A separate Stream Buffer Unit (SBU) provides high-speed buffers for stream

operands and control registers that the processor uses to specify stream parameters

(base address, stride, length, and data size). As with the stream-specific parts of the

MSU, the SBU is not on the critical path to memory, and the speed of non-vector

accesses is not adversely affected by its presence. Together, the MSU and SBU

comprise a Stream Memory Controller (SMC) system.

There are a number of options for the internal architecture of the SBU: here we

describe one feasible organization. A set of memory-mapped registers provides a

processor-independent means of specifying stream parameters. Setting these registers

allows the processor to initiate an asynchronous stream of memory access operations

for a set of string operands. Data retrieval from the streams (loads) and insertion into

streams (stores) may be done in any of several ways; for instance, the SBU could appear

93

to be a traditional cache, or the model could include a set of FIFOs, as illustrated in

Figure 3. Each stream is assigned to one FIFO, which is asynchronously filled from (or

drained to) memory by the access/issue logic. The "head" of the FIFO is another

memory-mapped register, and load instructions from or store instructions to a particular

stream reference the FIFO head via this register, dequeueing or enqueueing data as is

appropriate.

scalar accesses

-mmo_

ra~

O

O

Figure 3 Stream Memory Controller

This organization is both simple and practical from an implementation standpoint:

similar designs have been built. In fact, the organization is almost identical to the

"stream units" of the WM architecture [42], or may be thought of as a special case of a

decoupled access-execute architecture [10, 36]. Another advantage is that this

combined hardware/software scheme doesn't require heroic compiler technology - - the

compiler need only detect the presence of streams, and Davidson's streaming algorithm

[6] can be used to do this.

Continuing the tridiag algorithm and memory system example introduced earlier,

the performance effect of such an SMC is illustrated by Figure 4. The details of this and

other results are discussed later, but the gestalt is simple - - performance on very short

vectors is about 2.5 times that of a system without an SMC; performance on moderate

length vectors is about triple that of the non-SMC system; for long vectors and deep

FIFOs, bandwidth reaches 98.5% of peak.

94

r

0

>

10

100

10000

w/o

SMC

25.0

Percentage of Peak Bandwidth

SMC FIFO depth

1 3 6 1 2
8

6 2 4 28 56

63.83 62.5 62.5 62.5 62.5 62.5

78.53 85.71 87.98 80.43 73.53 73.53

79.94 88.78 93.97 96.75 98.11 98.53

Figure 4 Bandwidth for the tridiag Illustration

5 Complementary Technologies

As mentioned above, there are a number of hardware and software techniques that can

help manage the imbalance between processor and memory speeds. Most of these are

complementary to access ordering.

Traditional Caching: Traditional caches retain their importance for code and non-

vector data in a system equipped with an SMC. Furthermore, if algorithms can be

blocked [5, 41] and data aligned to eliminate significant conflicts [21], the cache and

SMC can be used in a complementary fashion for vector access. Under these conditions

multiple-visit vector data can be cached, with the SMC used to reference single-visit

vectors.

To illustrate this, consider implementing the matrix-vector multiply operation:

y = (A+B)~c

where A and B are n x m matrices and ; and ~ are vectors. Figure 5(a) depicts code for

a straightforward implementation using matrices stored in column-major order; the

code in Figure 5(b) strip-mines the computation to reuse elements of Y. Partition size

depends on cache size and structure [21]. Elements of ~ are preloaded into cache

memory at the appropriate loop level, and the SMC is then used to access elements of

A and B, since each element is accessed only once. The reference to ~ is a constant

within the inner loop, and is therefore preloaded into a processor register.

Software Prefetching: Some architectures include instructions to prefetch data from

main memory into cache. Using these instructions to load data for a future iteration of

a loop [4, 20, 37] can improve processor performance by overlapping memory latency

with computation, but prefetching does nothing to actually improve memory

performance. Note that prefetching can be used in conjunction with an SMC to help

hide latency in FIFO references.

Software Access Ordering: Software techniques such as reordering [30] and

"vectorization" via library routines [24, 29] can improve bandwidth by reordering

95

do 20 j = l,m

do i0 i = l,n

y(i) = y(i)

i0 continue

20 continue

+ (A(i,j) + B(i,j)) * x(j)

(a) straightforward implementation

do 30 IT = l,n, IS

load y(IT) through y(min(n,IT+IS-l))

do 20 j = l,m

load x(j) into processor register

do i0 i = IT,min(n, IT+IS-l)

y(i) = y(i) + (A(i,j) + B(i,j))

i0 continue

20 continue

30 continue

into cache

* x(j

(b) strip-mined implementation

Figure 5 Combining Caching and Non-Caching Accesses: y = (A + B)

requests at compile time. Such techniques cannot exploit run-time information and are

limited by processor register resources, hence they cannot outperform hardware-

assisted techniques such as the SMC.

Data Placement: An SMC can provide near-optimal bandwidth for a given memory

architecture, algorithm, and data placement, but cannot compensate for an unfortunate

placement of operands - - a vector stride that results in all elements placed in a single

bank of a multi-bank memory, for example. An SMC and data placement are

complementary; the SMC will perform better given a good placement.

New DRAM interfaces: Rambus [33] is a new, high-speed DRAM interface that

provides both higher bandwidth for sequential accesses and true caching of two DRAM

pages on the chip. Other sophisticated memory interfaces, such as RamLink and the

JEDEC synchronous DRAM, provide similar benefits [16]. The more sophisticated

such interfaces become, the more important it is to exploit them intelligently with

controllers such as the SMC.

Alternative Storage Schemes: Skewed storage [3, 12] and dynamic address

transformations [13, 34] have been proposed as methods for increasing concurrency,

and hence bandwidth, in parallel memory systems. Unfortunately, these techniques do

not work for interspersed multiple streams, and they do not exploit memory component

features.

96

6 Simulation Environment

We have simulated a wide range of SMC configurations and benchmarks, varying

FIFO depth,

dynamic order/issue policy,

number of memory banks,

DRAM speed,

benchmark algorithm, and

vector length, stride, and alignment with respect to memory banks.

Only samples of our results are given here; complete results can be found in [28]. In

particular, the results given below involve the following restrictions.

The simulations here use stride-one vectors aligned to have no DRAM pages in

common, but starting in the same bank unless otherwise specified. The SMC is very

robust in its ability to optimize memory bandwidth regardless of stride and alignment,

so this restriction does not materially affect the results.

We model the processor as a generator of load and store requests only - - arithmetic

and control are assumed never to be a computational bottleneck. This places the

maximum stress on the memory system by assuming a computation rate that out-paces

the memory's ability to transfer data. Scalar and instruction accesses are assumed to hit

in the cache for the same reason.

All memories modeled here consist of interleaved banks of page-mode DRAMs,

where each page is 2K double words.

The only order/issue policy considered is exceedingly simple. The SMC looks at

each FIFO in round-robin order, issuing accesses for the same FIFO stream while:

1) not all elements of the stream have been accessed, and

2) there is room in the FIFO for another read operand, or another write

operand is present in the FIFO.

Results reported here are for the four kernels described in Figure 6. Daxpy and swap

are from the BLAS (Basic Linear Algebra Subroutines) [22, 7], tridiag is the fifth

Livermore Loop from our earlier example[27], and vaxpy is a vector axpy I computation

that occurs in matrix-vector multiplication by diagonals. These benchmarks were

selected because they are representative of the access patterns found in real scientific

codes, including the inner loops of blocked algorithms. Nonetheless, our results show

that the actual reference sequence has little effect on SMC performance.

Non-SMC results are for the "natural" reference sequence for each benchmark,

using non-caching loads and stores.

SMC initialization requires two writes to memory-mapped registers for each stream;

this small overhead has no significant effect on results, and is not included here.

The DRAM page-miss cycle time is four times that of a DRAM page hit, unless

otherwise noted.

1. Here "axpy" refers to a computation involving some entity a times a vector x plus a

vector y: for daxpy, a is a double; for vaxpy, a is a vector.

97

daxpy: Vi Yi +- axi + Yi

tridiag: Vi xi ~-- zi • (Yi - xi - 1)

swap: 'v'i trap ~-- Yi Yi ~-- xi

vaxpy: Vi Yi +-" aixi + Yi

Figure 6 Benchmark Algorithms

x i ~-- trap

7 Results

Figure 7 through Figure 10 illustrate the relative performance of the four kernels for a

variety of memory systems using an SMC. The SMC's ability to optimize bandwidth is

relatively insensitive to vector access patterns, hence the shape of the performance

curves is similar for all benchmarks - - asymptotic behavior approaches 100%.

Figure 7 shows SMC performance for long vectors (length 10,000) as a function of

FIFO depth and number of memory banks (available concurrency) compared to the

analogous non-SMC systems. On the daxpy benchmark, for example, an SMC system

with two memory banks achieves 98.2% of peak bandwidth, compared to 18.8% for a

non-SMC system. In general, SMC systems with deep FIFOs achieve in excess of 92%

of peak bandwidth for all benchmarks and memory configurations. Even with FIFOs

that are only sixteen double-words deep, the SMC systems consistently deliver over

75% of peak bandwidth.

Note that increasing the number of banks reduces relative performance, a somewhat

counter-intuitive and deceptive effect. This is due in part to our keeping both the peak

memory system bandwidth and the DRAM page-miss/hit delay ratio constant. Thus, the

eight-bank system has four times the DRAM page-miss latency of the two-bank system.

If, alternatively, we hold the performance of the memory banks constant and assume a

faster bus, the peak bandwidth of the total system increases proportionally to the

number of banks. Although the percentage of bandwidth delivered is still smaller in this

case, the total bandwidth is much larger. The other reason for this effect is that

increasing the number of banks decreases the number of accesses to each bank, thus

page-miss cost is amortized over fewer accesses.

Figure8 represents SMC results for medium-length (100 element) vectors

compared with non-SMC performance. These SMC results depict the net effect of two

competing performance factors. With deeper FIFOs, DRAM page misses are amortized

over a larger number of total accesses, which can increase performance. At the same

time, the processor has to wait longer to complete its first loop iteration while the SMC

prefetches numerous operands to be used in the following loop iterations. This can

decrease performance, as evidenced by the tail-off beyond length-32 FIFOs. Optimum

FIFO depth could, and probably should, be run-time selectable in the SMC, since it is

so closely related to stream length.

Note that performance of non-SMC systems depicted in Figure 7 and Figure 8 is

independent of vector length. Since these systems employ no dynamic access ordering,

98

- - l b ~ k
. . . . 2b~ks
- - - 4b~ks
. 8 b ~

lOO - ~ _ SMC

:/ . .- '" 80-

60-
4

I o j
�9 o.

4 0 - - . ' ~

20- . .

. non-SMC
.

0 iI6 312 614 128 I 256

fifo depth

(a) daxpy

1 0 0 ~ ~ SMC

80 . ~- -. .2 7. 7- "-" "-"

! ~ J / , - "

6 0 / z / j . . . ' ""

40 ,. '"

non-SMI

8 16 r 614 128 2~6

fifo depth

(b) tr/d/ag

lOO ~ SMC

60 .-"

40 /'"

20

non-SMC
0

8 16 32 64 128 256

fifo depth

d~

100-

80-

60-

40-

20-

_ . - - -'.7 SMC

. /

, .

. non-SMI .

0 / t I [I

8 16 32 64 128 256

fifo depth

(c) swap (d) vaxpy

Figure 7 Long Vector Performance

the number of requests issued and the resulting percentage of total bandwidth obtained

are constant for each loop iteration. This is true of any system in which access issue is

determined at compile time, including those that use prefetching.

Lack of dynamic ordering renders the performance of non-SMC systems

particularly sensitive to vector placement. In Figure 7 and Figure 8, the vectors are

aligned so that they both compete for the same bank on each iteration; this has little

effect on SMC performance (because it reorders requests), but it prevents the non-SMC

systems from taking advantage of the potential concurrency.

Figure 9 represents the performance of non-SMC and SMC systems on medium-

length vectors with better alignment. In these experiments the vectors are staggered

such that the i th vector in the pattern begins in bank (i rood n), where n is the number of

banks. In spite of the more favorable alignment, non-SMC daxpy performance is limited

- - 1 b a n k

. 2 b a n k s

. . . . 4 b a n k s

. 8 b a n k s

100-

80-

6 0 -

4o-

20-

o

8 1'6

. S M C

. . f 7.7.7.-.

o .

. n o n - S M C
.

312 614 128 2~6

f i fo depth

(a) daxpy

99

100-

8 0 -

6 0 -

4 0 -

.

2o-

�9 - " ~ ' - " - - - ' - S M C

. n o n - S M t

.

0
8 116 312 614 1~8 256

f ifo depth

(b) tr/d/ag

e~

e ~

1 0 0 -

8 0 -

" " s s ~ " - ~ ~ ' - . - L - - ' - - S M C

6 0 - ..~" . . . o � 9 1 4 9 1 7 6 "

4 0 - .~149

2 0 - _ .

. n o n - S M C
.

0 116 312 614 118 2~6

f i fo depth

80

60 --.'~-~- S M C

40 . ' " " " "

2 0 .

.-j.-Z2 I non-SMI
0

8 16 32 64 128 256

f ifo depth

(e) swap (d) vaxpy

Figure 8 Medium Vector Performance

to 30.0% of total bandwidth for a two-bank memory; tridiag, swap, and vaxpy are

limited to 18.8%, 40.0%, and 25.0%, respectively. SMC performance remains

essentially the same as in Figure 8.

Figure 10 illustrates SMC performance on very short (10-element) vectors.

Performance improvements are not as dramatic as for longer vectors, since there are

even fewer accesses over which to amortize page-miss costs. Nonetheless, short vector

computations benefit significantly from an SMC: daxpy run on a two-bank architecture

with an SMC achieves 53.6% of the attainable bandwidth, whereas the same benchmark

run on a similar non-SMC system is limited to 18.8%. The other kernels enjoy similar

increases in bandwidth. Non-SMC performance is as in Figure 8 or Figure 9, depending

on vector alignment; those lines are omitted here for clarity.

100-

- - 1 bank

. 2 banks

. . . . 4 banks

. 8 banks

80-

60-

40-

20-

0

. non-SMC

116 312 614 128 2~6

fifo depth

(a) daxpy

100

100-

�9 . SMC

60: 5; 5 : =

4 0 -

2 0 -

. non-SMI
.

I I
0 116 312 614 128 256

fifo depth

(b) tridiag

s

100-

.- , - " - - - - - 'C2- 'Z .
. ~ . - ~ 1 7 6 1 4 9 1 4 9

6 0 - - ' " ~149

40 - - ; - " - ' -

20

. non-SMC

0 116 312 64 128 256

fifo depth

100-

80-

6 o . 7 ; j
40- ,

2 0 .

. non-SMI

0 116 312 64 128 256

fifo depth

(c) swap (d) vaxpy

Figure 9 Medium Vector Performance for Better Vector Alignment

Figure 11(a) shows SMC performance for daxpy using long vectors (10,000

elements) as the page-miss to page-hit cost ratio increases�9 This figure may be a bit

misleading: the miss/hit ratio is likely to increase primarily as the result of a reduction

of the page-hit time, rather than an increase in the page-miss time. Thus, at a ratio of

sixteen the SMC is delivering a somewhat smaller percentage of a much larger available

bandwidth - - resulting in a significant net increase�9

If we hold the number of modules fixed and increase component performance,

deeper FIFOs are required in order to amortize the page-miss costs�9 As evidenced by

the slope of the curves in Figure 1 l(b), relative performance is approximately constant

if we scale FIFO depth linearly with miss/hit cost. Note that the faster systems still

require only modest amounts of buffer storage�9

lOO-

8 0 -

60-

40-
e ~

~ 20-

100 -

80-
~ �9

~ 60-

~ 40-

.~ .

20 -

1 bank

. 2 banks

. . . . 4 banks

. 8 banks

j ~ 1 7 6 .

fifo depth

(a) daxpy

. ~
. ~

1'6 32 (~4 128 256

fifo depth

(c)swap

101

100 -

,= 8 0 -

6o-

r
=~

4 0 - ~

.

2 0 - . - "

0 I I
8 ;6 3'2 128 256

fifo depth

(b)tridiag

100-

80-

60-

40-

20-

0

. ~ .

. ~

1'6 312 614 128 256

fifo depth

(d) vaxpy

Figure 10 Very Short Vector Performance

8 C o n c l u s i o n s

Memory bandwidth is rapidly becoming the performance bottleneck in the application

of high performance microprocessors to vector-like algorithms, including many of the

"grand challenge" scientific problems. Caching is not the sole solution for these

applications due to their poor temporal and spatial locality.

Achieving greater bandwidth requires exploiting the characteristics of the entire

memory hierarchy; it cannot be treated as though it were uniform access-time RAM.

Moreover, exploiting the memory's properties will have to be done dynamically - -

essential information (such as alignment) will generally not be available at compile

time.

102

lOO-

" 80-

," 6 0 -

40-

~ 2o-

- - miss/hit cost ratio = 2
. 3
. . . . 4

. 8

. 12
16

�9 - j , - - f

. , � 9 ~ 1 4 9
/

�9 / /
,~ i

/

100-

80-

60-

t 4 0 -

~ .

2 0 -

~ i ,~176 �9 l

, . '11 ,�9 S" i
i ' / ." i .~ I

." �9149 f

, " , , , ' j
~ 1 4 9

SS ..I

' i i i i 0
16 32 64 128 256 8

fifo depth

(a) I bank (b) 8 banks

I I I

1'6 A 64 128 256

fifo depth

Figure 11 daxpy Performance for Various Page-miss/Page-hit Cost Ratios

Reordering can optimize accesses to exploit the underlying memory architecture.

By combining compile-time detection of streams with execution-time selection of the

access order and issue, we achieve near-optimal bandwidth for vector-like accesses

relatively inexpensively. This complements more traditional cache-based schemes, so

that overall effective memory performance need not be a bottleneck.

Here we have reported the basic design of a Stream Memory Controller (SMC) and

have demonstrated its performance for a variety of FIFO depths, memory

configurations, etc. Using current memory parts and only a few hundred words of buffer

storage, an SMC system can deliver nearly the full memory system bandwidth.

Moreover, it does so with naive code, and performance is independent of the alignment

and stride of the operands.

9, Acknowledgments

Thanks go to the other members of Bill Wulf's research group for their valuable

feedback: Scott Briercheck, Rob Craighurst, Katie Oliver, Ramesh Peri, and Alec

Yasinsac. This work has been supported in part by a grant from Intel Supercomputer

Division and by NSF contract MIP-9114110.

103

References

1. Baer, J. L., Chen, T. E, "An Effective On-Chip Preloading Scheme To Reduce Data

Access Penalty", Supercomputing'91, November 1991.

2. Baron, R.L., and Higbie, L., Computer Architecture, Addison-Wesley, 1992.

3. Budnik, P., and Kuck, D., "The Organization and Use of Parallel Memories", IEEE

Trans. Comput., 20, 12, 1971.

4. Callahan, D., et. al., "Software Prefetching", Fourth International Conference on

Architectural Support for Programming Languages and Systems, April 1991.

5. Cart, S., Kennedy, K., "Blocking Linear Algebra Codes for Memory Hierarchies",

Proc. Fourth SIAM Conference on Parallel Processing for Scientific Computing,

1989.

6. Davidson, Jack W., and Benitez, Manuel E., "Code Generation for Streaming: An

Access/Execute Mechanism", Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, April 1991.

7. Dongarra, et. al., "Linpack User's Guide", SIAM, Philadelphia, 1979.

8. Fu, J. W. C., and Patel, J. H., "Data Prefetching in Multiprocessor Vector Cache

Memories", 18th International Symposium on Computer Architecture, May 1991.

9. Golub, G., and Ortega, J.M., Scientific Computation: An Introduction with Parallel

Computing, Academic Press, Inc., 1993.

10. Goodman, J. R., et al, "PIPE: A VLSI Decoupled Architecture", Twelfth

International Symposium on Computer Architecture, June 1985.

11. Gupta, R., and Sofia, M., "Compile-time Techniques for Efficient Utilization of

Parallel Memories", SIGPLAN Not., 23, 9, 1988, pp. 235-246.

12. Harper, D. T., Jump., J., "Vector Access Performance in Parallel Memories Using a

Skewed Storage Scheme", IEEE Trans. Comput., 36, 12, 1987.

13. Harper, D. T., "Address Transformation to Increase Memory Performance", 1989

International Conference on Supercomputing.

14. Hayes, J.P., Computer Architecture and Organization, McGraw-Hill, 1988.

15. Hwang, K., and Briggs, EA., Computer Architecture and Parallel Processing,

McGraw-Hill, Inc., 1984.

16. "High-speed DRAMs", Special Report, IEEE Spectrum, vol. 29, no. 10, October

1992.

17. i860 XP Microprocessor Data Book, Intel Corporation, 1991.

18. Jouppi, N., "Improving Direct-Mapped Cache Performance by the Addition of a

Small Fully Associative Cache and Prcfetch Buffers", 17th International

Symposium on Computer Architecture, May 1990.

19. Katz, R., and Hennessy, J., "High Performance Microprocessor Architectures",

University of California, Berkeley, Report No. UCB/CSD 89/529, August, 1989.

20. Klaiber, A., et. al., "An Architecture for Software-Controlled Data Prefetching",

18th International Symposium on Computer Architecture, May 1991.

21. Lam, Monica, et. al., "The Cache Performance and Optimizations of Blocked

Algorithms", Fourth International Conference on Architectural Support for

Programming Languages and Systems, April 1991.

22. Lawson, et. al., "Basic Linear Algebra Subprograms for Fortran Usage", ACM

Trans. Math. Soft., 5, 3, 1979.

104

23. Lee, K., "Achieving High Performance On the i860 Microprocessor Using Naspack

Subroutines", NAS Systems Division, NASA Ames Research Center, July 1990.

24. Lee, K., "On the Floating Point Performance of the i860 Microprocessor", RNR-90-

019, NAS Systems Division, NASA Ames Research Center, October 1990.

25. Maccabe, A.B., Computer Systems: Architecture, Organization, and Programming,
Richard D. Irwin, Inc., 1993.

26. Mano, M.M., Computer System Architecture, 2nd ed., Prentice-Hall, Inc., 1982

27. McMahon, EH., "The Livermore Fortran Kernels: A Computer Test of the

Numerical Performance Range", Lawrence Livermore National Laboratory, UCRL-

53745, December 1986.

28. McKee, S.A, "Hardware Support for Access Ordering: Performance of Some

Design Options", University of Virginia, Department of Computer Science,

Technical Report CS-93-08, July 1993.

29. Meadows, L., Nakamoto, S., and Schuster, V., "A Vectorizing, Software Pipelining

Compiler for LIW and Superscalar Architectures", RISC'92, February 1992.

30. Moyer, S.A., "Performance of the iPSC/860 Node Architecture," University of

Virginia, IPC-TR-91-007, 1991.

31. Moyer, S., "Access Ordering and Effective Memory Bandwidth", Ph.D.

Dissertation, Department of Computer Science, University of Virginia, Technical

Report CS-93-18, April 1993.

32. Quinnell, R., "High-speed DRAMs", EDN, May 23, 1991.

33. "Architectural Overview", Rambus Inc., Mountain View, CA, 1992.

34. Rau, B. R., "Pseudo-Randomly Interleaved Memory", 18th International

Symposium on Computer Architecture, May 1991.

35. Sklenar, Ivan, "Prefetch Unit for Vector Operation on Scalar Computers", Computer

Architecture News, 20, 4, September 1992.

36. Smith, J. E., et al, "The ZS-1 Central Processor", The Second International

Conference on Architectural Support for Programming Languages and Systems,

Oct. 1987

37. Sohi, G. and Manoj, E, "High Bandwidth Memory Systems for Superscalar

Processors", Fourth International Conference on Architectural Support for

Programming Languages and Systems, April 1991.

38. Tomek, I., The Foundations of Computer Architecture and Organization, Computer

Science Press, 1990.

39. Valero, M., et. al., "Increasing the Number of Strides for Conflict-Free Vector

Access", 19th International Symposium on Computer Architecture, May 1992.

40. Wallach, S., "The CONVEX C-1 64-bit Supercomputer", Compcon Spring 85,

February 1985.

41. Wolfe, M., "Optimizing Supercompilers for Supercomputers", MIT Press,

Cambridge, MA, 1989.

42. Wulf, W. A., "Evaluation of the WM Architecture", 19th Annual International

Symposium on Computer Architecture, vol 20, no. 2, May 19-21, 1992.

