
Securing Proof-of-Work Ledgers via Checkpointing

Dimitris Karakostas

University of Edinburgh and IOHK

dimitris.karakostas@ed.ac.uk

Aggelos Kiayias

University of Edinburgh and IOHK

akiayias@inf.ed.ac.uk

Abstract

Our work explores mechanisms that secure a distributed ledger in the presence of adver-
sarial mining majorities. Distributed ledgers based on the Proof-of-Work (PoW) paradigm
are typically most vulnerable when mining participation is low. During these periods an
attacker can mount devastating attacks, such as double spending or censorship of transac-
tions. We put forth the first rigorous study of checkpointing as a mechanism to protect
distributed ledgers from such 51% attacks. The core idea is to employ an external set of
parties that assist the ledger by finalizing blocks shortly after their creation. This service
takes the form of checkpointing and timestamping; checkpointing ensures low latency in
a federated setting, while timestamping is fully decentralized. Contrary to existing check-
pointing designs, ours is the first to ensure both consistency and liveness. We identify a
previously undocumented attack against liveness, “block lead”, which enables Denial-of-
Service and censorship to take place in existing checkpointed settings. We showcase our
results on a checkpointed version of Ethereum Classic, a system which recently suffered a
51% attack, and build a federated distributed checkpointing service, which provides high
assurance with low performance requirements. Finally, we fully decentralize our scheme,
in the form of timestamping on a secure distributed ledger, and evaluate its performance
using Bitcoin and Ethereum.

1 Introduction

During the early ’80s, the seminal work of Shostak, Pease, and Lamport introduced the consensus
problem [39, 49]. 30 Years later, Bitcoin [43] accelerated research and development in this area
by introducing what is frequently referred to as “Nakamoto consensus”, as well as the blockchain
data structure, which has been widely used in distributed ledger systems since. It is well-known
that, to achieve consensus in any setting with an active adversary, (at least) a majority of
participants need to be honest [21]. Equivalently, Proof-of-Work (PoW) blockchain systems,
like Bitcoin, assume that over 50% of hashing power backs the correct protocol execution. If
honest majority is violated dangers arise, ranging from attacks against the system’s usability to
complete hostile takeovers [6].

Most commonly, attacks focus on reverting transaction finality. Finality ensures that trans-
actions published on the ledger are stable after some time, i.e. cannot be reversed (unless with
negligible probability). Attacks against finality are particularly devastating, since they invali-
date the ledger’s immutability. If finality is not ensured, problems like “double spending” arise;
simply put, if the adversary can revert any transaction it wishes, then it can double spend the
same assets by first issuing a payment and then reverting it, after it is presumed final by its
counterparty.

Double spending is arguably the most notorious threat against cryptocurrencies. Attacks
against systems like Horizen [55], Bitcoin Gold [31], and Ethereum Classic (ETC) [44], resulted
in over $20 million worth of damage. The ETC attack is rather enlightening: at its all time
high, the mining difficulty, i.e. the mining power which protected it, was 248 Th/s;1 4 months
later, at the time of the attack, it had dropped by more than half to 120 Th/s.

Another telling case is Bitcoin ABC, a Bitcoin Cash implementation. Bitcoin ABC 0.18.5 [1]
allows reverting only some of the 10 latest blocks. Although this prevents deep chain reorgani-

1https://bitinfocharts.com/comparison/difficulty-etc.html

1

https://bitinfocharts.com/comparison/difficulty-etc.html

zations, it introduces the following network split hazard: Assume that a node N goes offline for
5 hours, i.e. enough time to create 10 Bitcoin Cash blocks.2 However, an adversary also creates
10 blocks during this time.3 When N re-joins the network, it adopts (with some non-negligible
probability) the adversarial chain. Thus, a network split occurs, where the (otherwise honest)
node N joins the adversarial side and cannot the honest side, since N ’s chain is a fork older
than 10 blocks compared to the honest chain.

In addition to double spending, cryptocurrency systems may face Denial-of-Service (DoS)
attacks. A particularly dangerous and nuanced DoS attack occurs when adversarial miners
never include a certain transaction in their blocks, thus performing transaction censorship [53].
Although not as notorious as double spending, censorship attacks may also cause significant
financial damage. For instance, an attacker may grind to a halt the operation of a company
by censoring all transactions that spend assets from its wallet.4 Additionally, several systems
and protocols rely on the ability to publish a transaction within a certain time frame [16, 17].
Such attacks are hard to identify reliably, so it is important to ensure censorship resistance by
construction; with foresight, this can be satisfied by guaranteeing transaction liveness.

In summary, honest majority is not always viable and its violation may lead to significant
damages. A solution is to introduce external parties, which regularly checkpoint the system.
Although many systems have opted for this solution, they typically checkpoint an old block,
deeply “buried” in the chain. As we will show, this design ensures finality, but fails to provide
any liveness guarantees; specifically, it is susceptible to the block lead attack of Section 3.2. In
other cases, developers turn to ad-hoc solutions with questionable results, as exemplified by the
split hazard in Bitcoin ABC.
Our Contributions and Roadmap. Our work provides, to the best of our knowledge, the
first rigorous analysis of assisting mechanisms that mitigate mining majority attacks in Proof-
of-Work ledgers. Our contributions are summarized as follows:

1. a provably secure, federated checkpointing mechanism, implemented as a prototype demon-
strating high performance;

2. block lead, a novel attack against liveness which affects all existing checkpointing imple-
mentations;

3. a provably secure, decentralized timestamping-based checkpointing mechanism, evaluated
in Bitcoin and Ethereum.

Section 2 covers the execution and threat models, the distributed ledger’s properties, and
Proof-of-Work. Section 3.1 defines FCheckpoint, the checkpointing “ideal functionality”. FCheckpoint

defines a chain resolution mechanism, which employs checkpoints to guarantee persistence and
liveness with non-negligible probability. Guaranteeing liveness proved particularly more chal-
lenging than persistence, since an adversarial majority produces blocks at a faster rate than hon-
est parties. Our analysis first identifies the necessary and sufficient conditions such that liveness
is ensured. Then, we model the execution as an absorbing Markov chain (cf. Appendix A), such
that absorption guarantees liveness, and show that absorption is always reached after a suffi-
ciently large amount of time. We then evaluate liveness w.r.t. Ethereum Classic, demonstrating
the impact of checkpointing on a ledger that recently suffered from double spending. The anal-
ysis includes “block lead”, a novel attack against liveness which, to the best of our knowledge,
has not been previously discussed and threatens all existing checkpointing designs. We counter
block lead by ensuring that checkpointing acts as a “randomness beacon” that refreshes the
execution with each checkpoint.

The key objective is an implementation that does not trivialize the task of maintaining the
ledger. For instance, in a “permissioned” blockchain a closed set of nodes maintain the ledger.
Instead, the checkpointing service should perform the minimal work to secure the — otherwise
“permissionless” — ledger, i.e. without subverting the miners’ role. Our protocol (Section 3.4)
uses an updatable state that has (optimal) size O(κ), κ being the security parameter, where the

2A Bitcoin Cash block is (on average) created every 10 minutes.
3This is achievable even with 1

3
of the total mining power.

4Although cryptocurrencies are typically pseudonymous, it is common that addresses of well-known organi-
zations are public (e.g. https://www.walletexplorer.com).

2

https://www.walletexplorer.com

checkpointing parties only verify each block’s headers and issue a collective checkpoint for their
chosen chain. The protocol relies on an fail-stop protocol [46] that enables parties to collectively
compute an unpredictable nonce as part of a checkpoint; Appendix B relaxes this assumption by
tolerating byzantine faults among the checkpointing parties using an interactive consistency [49]
sub-protocol. We implement checkpointing as a prototype (Section 3.5), which uses Raft [46]
and issues a checkpoint in less than a second.

Our second design is timestamping-based checkpointing (Section 4). The key idea is to use
a second distributed ledger, presumably more reliable than the one we seek to protect. The
second ledger performs timestamping which, as we show, is equivalent to standard checkpoints.
Timestamping demonstrates a high level of decentralization, compared to our first solution
which requires a (closed) set of dedicated servers. Finally, timestamping is evaluated as an
implementation on Bitcoin and Ethereum, the biggest (and arguably most secure) existing
ledgers. We show that performance is worse than the federated prototype, increasing latency to
multiple seconds and introducing fees, although within reasonable limits.

2 Preliminaries

2.1 The Protocol’s Execution Model

We assume a multiparty setting, following Canetti’s formulation of the “real world” [11]. An
“environment” program Z drives the execution of a protocol Π by spawning an instance of an
“interactive Turing machine” (ITI) which executes the protocol, thus instantiating a party P .
Interaction between ITIs is controlled by a program C, such that (Z, C) form a system of ITMs.
We restrict both to “locally polynomial-bounded” systems of ITMs, ensuring polynomial-time
execution, and to a sequential execution of parties, i.e. first activating the adversary A and then
the parties P1 . . . Pn in order. A is an ITI which, upon activation, may “corrupt” a number of
parties by sending a corruption message to C, after the environment instructs it to do so. Next,
when a corrupted party is supposed to be activated, A is activated instead.

We assume that the ledger protocol is set in the synchronous setting, i.e. it the execution
proceeds in rounds. In each round, each party is activated to perform various operations. A
message produced at round r is received by the receiving parties on round r+1. Also, the number
of parties n is fixed for the duration of the execution (cf. the Bitcoin Backbone model [22]). We
note that, although the ledger protocol assumes a synchronous network, the checkpoint protocol
may be asynchronous (cf. Section 3.4). Future work will focus on relaxing both assumptions,
i.e. exploring the effects of checkpoints in asynchronous ledgers under dynamic participation.
Finally, we assume a diffuse functionality, i.e. a gossip protocol which allows the parties to share
messages without the need of a fully connected graph.

A party maintains two types of internal state, the local chain and the transaction memory
pool (mempool). The local chain is chosen from a pool of chains available on the network,
according to the chain decision rules (e.g. the longest chain rule in Bitcoin). The mempool
contains transactions which are valid and unpublished, i.e. can be added to the local chain but
are not yet part of it. We assume that a transaction is removed from the mempool either when
it is published on the adopted, local chain, or if u rounds pass since it was diffused. Finally, we
assume blocks of unlimited size.5

2.2 The Proof-of-Work Mechanism

Every distributed ledger hinges on the update eligibility mechanism, i.e. extending the chain
with a new block. The core question, i.e. “which party is responsible for updating the ledger
next?”, has seen a number of answers, the most prominent being Proof-of-Work (PoW). PoW
is based on computational power, thus each party creates a block with probability proportional
to its computational power. Each party performs q queries to a random oracle; in practice, a
miner repeatedly hashes the block’s payload with a pseudorandom nonce. A query is successful

5Although seemingly unrealistic, this assumption is observed in practice, e.g. assuming the transaction defines
large fees, incentivizing miners to prioritize it, or that the network is not congested. Particularly, it will allow us
to posit that honest miners include a transaction in their blocks immediately after its creation (Theorem 2).

3

if the produced hash adheres to a protocol-defined limit. The difficulty parameter p denotes the
probability that a single query to the random oracle is successful, thus the overall probability
that a party produces a block at any given round is q · p. We note that, although our work
focuses on PoW ledgers, the applicability of our checkpoints on alternatives, like Proof-of-Stake
or Proof-of-Space, is an interesting question.

2.3 The Ledger’s Properties

Our analysis relies on the properties that each ledger should possess, as distilled in the Bitcoin
Backbone model [22]. First, persistence ensures that the honest parties converge to a single
accepted chain of ordered transactions. If persistence holds, then the probability of reverting or
reordering a stable transaction is negligible. Second, liveness states that a valid transaction,
i.e. one which is not in conflict with a stable transaction, eventually becomes stable, as long as
it remains in the mempool of honest parties long enough. Intuitively, liveness ensures that A
cannot censor an honest transaction. Finally, no insertions, copies, or predictions occur, i.e. that
the employed hash function is secure. Concretely, we define the ledger’s properties as follows:

Definition 1 (Stable Transaction). A transaction is stable if every honest party reports it in
the same position in the ledger.

Definition 2 (Persistence). A transaction which is part of a block at least k blocks away from
the ledger’s head, i.e. a block which is part of the chain which results from removing the last k
blocks of the current chain, is stable.

Definition 3 (Liveness). A transaction which is provided continuously as input to the parties
is stable after u rounds.

2.4 Threat Model

A controls µA of the network’s mining power. In the case of PoW, µA corresponds to hashing
power. We stress that it is possible that µA > 0.5, i.e. A might control the majority of the
mining power. Our analysis considers the number of parties so, given the total number of parties
n, it holds that µA = t

n
. Naturally, since A controls t parties, the amount of honest parties is

n− t. Additionally, A is “adaptive”, i.e. corrupts parties on the fly, and “rushing”, i.e. at each
round retrieves all honest parties’ messages before deciding its strategy.

We assume that A tries to break either persistence or liveness (or both). Regarding the
former, A tries to force two honest nodes to accept different chains as stable, i.e. to report
different transactions as stable in the same position in their respective ledger. To break liveness,
A attempts to prevent a transaction from becoming stable within u rounds. Assuming that
honest parties attempt to include the given transaction in their blocks, A’s goal is to prevent any
honest block from being adopted by all honest parties during these u rounds. With hindsight,
a transaction becomes stable when it is reported in the checkpointed chain. Thus, to prove
security we need to ensure that, regardless of the adversarial strategy, at least one honest block
is checkpointed within u rounds.

3 The Checkpointed Ledger

Our first scheme is the checkpointed ledger. Checkpoints are messages which help the ledger’s
maintainers and users converge to a single chain, even if the adversary A controls a mining
majority. We focus on making the chain decision rules generic enough to accommodate any
PoW blockchain, rather than focus on specific implementations. The checkpointed ledger is
realized in Section 3.5 using standard cryptographic primitives.

3.1 The Checkpointing Functionality

As motivated in the introduction, our goal is to define a ledger which is resistant to attacks
from an adversarial mining majority. In this section we achieve this via the checkpointing

4

functionality FCheckpoint. FCheckpoint achieves this by establishing checkpoints, i.e. irreversible
chains. FCheckpoint maintains two chains: i) C, which is its local chain, and ii) Cc, which is
the latest checkpoint. Upon retrieving a new candidate from the network, it decides whether
to adopt it as its local chain by running maxvalid(·, ·), i.e. the chain decision rule algorithm
(cf. [22]); the inner workings of this algorithm depend on the blockchain, e.g. Bitcoin uses the
heaviest chain, i.e. the chain with most hashing power. When FCheckpoint adopts a chain which
is kc blocks longer than its local checkpoint, it issues a new checkpoint. Following, any chain
which is not an extension of the checkpoint is automatically rejected. Observe that, even if a
fork occurs right before a checkpoint issuing, the functionality checkpoints only one block, thus
all parties will converge to the canonical chain identified by this checkpoint.

kc identifies the rate of checkpoint production. For instance, larger kc results in sparse
checkpoints, but also less stress on the network communications. On the other hand, smaller
kc allows the parties to synchronize faster and restricts A’s control over the chain’s blocks, as
shown in the security evaluation of Section 3.3. Additionally, checkpoints organize the protocol’s
execution in epochs, each beginning with the issuing of a checkpoint and consisting of a specific
number of blocks. Finally, since the network is asynchronous, A can choose to discard candidate
blocks and has full control of the scheduling of messages.

Every checkpoint is identified by an unpredictable nonce r. To model fail-stop faults, which
apply on the protocol of Section 3.4, FCheckpoint produces a list of nonces equal to the number of
parties. It then allows A to discard a minority of them, thus enabling A to partially influence
the r. If A discards a majority of the messages (equivalently if a majority of checkpointing
nodes crash), then the checkpointing operation halts. The unpredictable nonce is paramount to
the security of the system. As explored in Section 3.3.2, if r is predictable, an adversary with a
mining majority can break liveness via the “block lead” attack described next.

Figure 1 defines the checkpointing functionality FCheckpoint, parameterized by maxvalid and
kc. |C| denotes the length of a chain (in blocks), |V| the size of set V, || the concatenation of
blocks, chains of blocks, and strings, ≺ the prefix operation, e.g. if C = C ′|| · · · then C ′ ≺ C, \
the difference of two chains, e.g. if C = C ′||B|| · · · then C \ C ′ = B|| · · · , and tail(C) the last
block of C.

FCheckpoint interacts with a set of parties V, holds the local chain C and the checkpoint
chain Cc, both initially set to ǫ, and is parameterized by kc, i.e. the number of blocks
between two consecutive checkpoints, and maxvalid(·, ·).

Upon receiving (CandidateCheckpoint, C ′) from a party V, forward it to A and wait for
a response (CandidateCheckpoint, C ′). If Cc ≺ C ′, set C := maxvalid(C,C ′). Next, if

|C \ Cc| = kc compute a list R of |V| random values as rj
$
←− {0, 1}ω and send (Nonce, R)

to A. Upon receiving from A a response (Nonce, R′), where R′ is a list of at least |V|
2

values in R, set ri
$
←− R′, return (Checkpoint, tail(C)||ri) to V and set C := Cc := C||ri.

Functionality FCheckpoint

Figure 1: The checkpointing ideal functionality.

3.2 Block lead

As covered in the introduction, violating liveness enables devastating attacks. Before proceeding
with the security analysis, we present block lead (cf. Figure 2), an attack which breaks liveness
even in the presence of standard checkpointing mechanisms. To the best of our knowledge,
this attack has not been previously discussed or taken into consideration, thus all existing
checkpointing mechanisms fail to provide any liveness guarantees and protect the systems against
adversarial mining majorities.

The core observation is that an adversary A with a mining majority produces blocks faster

5

than honest parties. Thus, A gains an advantage by mining in private, i.e. withholding newly-
mined blocks until a competing chain is produced (similar to Selfish Mining [20, 51]). In the long
term, A builds a significant advantage and, since A is rushing, can compete with and discard
every future honest block. Liveness can thus be guaranteed only if this advantage is constrained.
This is the role of the unpredictable nonce r in our design; r “refreshes” the execution and
prevents A from retaining its advantage across epochs. Figure 3 enhances intuition behind the
block lead attack.

Assume A which controls µA of the mining power and acts as follows: A extends a private
chain, while not adopting any honest blocks; for every block which extends the longest
honest chain, A reveals a block, while keeping all other adversarial blocks hidden. If µA >

0.5, A produces (on average) more blocks than the honest parties, thus A will eventually
have produced more blocks than the honest parties. Since A is rushing, the adversarial
blocks are always adopted over the conflicting honest blocks. Eventually all blocks in the
chain are adversarial.

The Block Lead Attack

Figure 2: The block lead attack against liveness.

3.3 Security of the Checkpointed Ledger

We now show that the checkpointed ledger satisfies persistence and liveness w.r.t. the following
parameters:

• k: the persistence parameter, i.e. the number of blocks after which a transaction is stable;

• u: the liveness parameter, i.e. the amount of time that a transaction needs to be continu-
ously provided to all parties before it becomes stable;

• kc: the checkpointing interval, i.e. the epoch’s length;

• q: the number of queries to the hashing oracle that a party can make during a single
round;

• p: the block difficulty, i.e. the probability that a single query is successful in producing a
block;

• n: the number of parties;

• t: the number of adversarial parties.

Figure 3: The adversary A produces a private chain (top) which spans multiple epochs. Upon
publishing it, A can checkpoint all black blocks. However, it also contains a grey block, which
allows A to build an advantage into the next epoch. Mitigating block lead would render the
grey block invalid and restrict this advantage to only the black blocks.

6

3.3.1 Persistence

The checkpointing definition directly implies persistence. Intuitively, every block that is an
ancestor to a checkpoint is stable, thus persistence is satisfied for every block up to and including
the latest-issued checkpoint. Theorem 1 formally proves this intuition, where C⌈k denotes the
chain which is output by removing the k last blocks from C. We also note that kc is typically
small, thus persistence is guaranteed for relatively small k and transactions are finalized after a
short amount of time.

Theorem 1 (Persistence). The checkpointed chain resolution protocol of Section 3.1 satisfies
persistence (cf. Definition 2) for parameter k ≥ kc.

Proof. It suffices to show that, at any round r, for two honest parties V1,V2 with chains C1, C2

respectively, where |C1| ≤ |C2|, it holds that C
⌈k
1 ≺ C

⌈k
2 . In that case, a transaction in C

⌈k
1 is

also reported by V2 in the same position, since C
⌈k
1 is a prefix of its own chain. We observe

that, if k ≥ kc, at least one of the last k blocks in both chains C1, C2 is a checkpoint. Assume
that this checkpoint is the l1-th block from the head of C1 and the l2-th from the head of C2;

by definition of the chain decision rule, C
⌈l1
1 = C

⌈l2
2 .

3.3.2 Liveness

Proving that the checkpointed ledger satisfies liveness is significantly more challenging, so our
analysis proceeds in distinct steps. First, Theorem 2 shows that a transaction’s liveness is
guaranteed as long as an honest block is checkpointed. Second, we express the execution as
an absorbing Markov chain (Algorithm 1). Third, Theorem 3 shows that an honest block gets
checkpointed, i.e. liveness is guaranteed, as long as the execution reaches the absorbing state of
the Markov chain. Finally, we show that absorption, which depends on the adversarial power
and the checkpointing interval, is always reached with non-negligible probability, which increases
w.r.t. the liveness parameter u.

Theorem 2. For any execution of a checkpointed chain resolution protocol which securely re-
alizes FCheckpoint (cf. Section 3.1), a transaction τ is stable (cf. Definition 1) if at least one
honestly-generated block, which is mined after the creation of τ , is part of the checkpointed chain
after u rounds since τ is diffused on the network.

Proof. Assume a block B which is honestly produced after τ is diffused on the network and
extends a chain C. By definition of the model of Section 2.4, τ is part either of C or B.
Next, assume that B is part of the checkpointed chain. By definition of the checkpointing
functionality FCheckpoint, the miners reject any chain which does not extend the checkpointed
chain, i.e. which does not include B. Therefore, regardless of the adversarial strategy, after this
point τ is necessarily in the checkpointed chain.

An epoch begins with the creation of a new checkpoint and the accompanying unpredictable
nonce r. r refreshes the process and ensures that the execution is memoryless across epochs.
Thus, we can use a (somewhat) simple absorbing Markov chain, parameterized by kc, to express
the checkpointed ledger’s execution. Theorem 3 will then show that reaching the absorbing state
translates into checkpointing an honest block, i.e. achieving liveness.

Each state of the Markov chain is identified by a pair (i, j). i denotes the number of blocks
that the honest parties need to necessarily produce to reach the next checkpoint; equiv. j is
the number of blocks that A needs to produce. Corollary 1 shows that, to violate liveness, A
cannot adopt honestly-generated blocks, thus A mines separately from the honest parties.

Corollary 1. Assume a transaction τ , which is not part of the checkpointed chain. For any
execution of a checkpointed chain resolution protocol which securely realizes FCheckpoint of Sec-
tion 3.1, if A adopts an honest block which is produced after the creation of τ , then liveness is
guaranteed for τ .

Proof. If A adopts an honest block B, then either B or the chain that B extends contains the
transaction under question (cf. Theorem 2), so the transaction is eventually checkpointed.

7

Each epoch starts on state (kc, kc), where all parties need exactly kc blocks to “reach” the
next checkpoint. The absorbing state compounds all states of the form (0, j) with j > 0.
States (i, j) with i > 0 are transitional. Transitions represent the accumulation of honest
and adversarial blocks in their respective chains. We assume that, if an honest party produces
multiple blocks in a single round, it diffuses only the first. Therefore, the only allowed transitions
from state (i, j) are towards states (i−a, j−b) with a ∈ {0, 1}, b ∈ [0, j]. We define the following
random variables:

• H: H = 1 if at least one honest party produces a block at a given round, else H = 0;

• M (i): M (i) = 1 if all adversarial parties produce exactly i blocks at a given round, else
M (i) = 0;

for which the following hold, assuming that A cannot censor queries to the hashing oracle:

• E(H) = h = 1− (1− p)q·(n−t);

• E(M (i)) = m(i) =
(

q·t
i

)

· pi · (1− p)q·t−i for any i.

Lemma 1 shows that, when at least one honest block is created, each honest party’s chain
increases by one block, though not necessarily the same; this result is adjacent to the chain
growth property first implied in [22] and explicitly highlighted in [33].

Lemma 1. If an honest party V has a chain of length l at round r, at round r+1 every honest
party has a chain of length at least l.

Proof. The proof is a direct result of the network synchronicity assumption. If, at round r, V
extends its chain to length l and diffuses the new block to the network, at round r+ 1 all other
honest parties will adopt either V’s chain or a longer one.

Lemma 2 defines the transition probability from a state (i, j) to a state (i − a, j − b), a ∈

{0, 1}, b ∈ [0, j]; we use the following notation: m̂l =
∑l

φ=0 m
(φ), h̄ = 1− h. These probabilities

are the minimum w.r.t. the honest chain growth, and assume that A publishes a chain with
length l only if the longest honest chain is also l-long. Indeed, if A publishes its chain earlier,
then the transition probabilities change in favor of the honest parties, since the honest parties
converge quicker to the absorption state.

Lemma 2 (Transition Probabilities). For transitions from round (i, j), where i > 1, j > 0 and
b ∈ [0, j − 1], the following hold:

• transition to (i, j − b) occurs with probability h̄ ·m(b);

• transition to (i− 1, j − b) occurs with probability h ·m(b).

Additionally, the following special cases hold:

i) the state (0, 0) is equivalent to the state (kc, kc);

ii) transition from round (1, j), where j > 0, to the absorbing state occurs with probability
h · m̂j−1;

iii) from round (i, j), where i, j > 0, the following hold:

• transition to (i, 0) occurs with probability h̄ · (1− m̂j−1);

• transition to (i− 1, 0) occurs with probability h̄ · (1− m̂j−1);

iv) from round (i, 0), where i > 0, the following hold:

• transition to (i− 1, 0) occurs with probability h;

• transition to (i, 0) occurs with probability h̄.

8

Proof. For the first part, at state (i, j), if at least one honest party computes a block, the first
coordinate is necessarily reduced by 1 (Lemma 1). Also, the second coordinate is reduced by b

if and only if all adversarial parties (sequentially) produce exactly b blocks, as A does not adopt
honest blocks (Corollary 1).

Regarding the special cases:

i) A controls the message delivery order, so if both the honest parties and A produce enough
blocks, A can ensure that its block is prioritized and is checkpointed over the honest block.

ii) If an honest block is produced and A produces less than j blocks, the absorbing state (0, l)
(with l > 0) is reached.

iii) If A produces at least j blocks, the next state is (i, 0) if no honest block is produced (resp.
(i− 1, 0) if one is).

iv) At j = 0, A has a long enough chain. So, the only possible transition (i.e. to state (i−1, 0))
depends on the honest block production probability h.

Algorithm 1 constructs the Markov chain following the rules of Lemma 2. createGraph(kc, kc)
produces the chain and is parameterized by addEdge, which creates a new edge given the source
state, destination state, and transition probability. The connection of this Markov chain to
liveness is established in Theorem 3.

Theorem 3 (Liveness). The Markov chain defined in Algorithm 1 has the property that, when-
ever it reaches the absorbing state, an honest block is guaranteed to be checkpointed in the
corresponding execution with error probability L · 2−ω, L being the protocol’s execution total
length.

Proof. The proof relies on two observations. We recall that the absorbing state is defined as
(0, j) for j > 1, i.e. in the current execution, and since the last checkpoint, the honest parties
have produced enough blocks to reach the next checkpoint, while A has produced at least one
block less. The first observation is that, whenever an honest block is produced in a round, the
chain of all honest parties is guaranteed to advance irrespectively of the adversarial strategy
(cf. Lemma 1). As a result, when the absorbing state is reached, one honest party possesses a
chain sufficiently long to be checkpointed. Next, we would like to show that such chain will have
at least one honest block. We can derive this from the second observation, i.e. the fact that

each checkpoint introduces unpredictable randomness r
$
←− {0, 1}ω. Thus, any adversarial blocks

produced prior to the calculation of the last checkpoint cannot contribute to the chain that an
honest party possesses (unless A correctly guesses the random nonce r of the checkpoint, prior
to its introduction, an event which is conveyed in the error term of the theorem). It follows
that, by definition, the absorbing state puts A at a position where it lacks a sufficient number
of blocks to match the blocks in an honest party’s chain and thus at least one honest block will
be checkpointed.

Finally, it remains to observe that, starting from any state, there exists a path which reaches
the absorption state with non-zero aggregate probability. Therefore, for a sufficiently large num-
ber of steps (equiv. rounds in our execution model), the absorption probability is non-negligible
and, as this number of steps tends to infinity, the probability that liveness is guaranteed tends
to 1.

Liveness Evaluation. To evaluate liveness, we take a snapshot of Ethereum Classic.6 Each
hash corresponds to a query and each party performs 237 MH/s.7 The total hash rate is on

average 8 TH/s, thus the total number of parties is n = 8·1012

237·106 = 33755. A single round
lasts 12 seconds (i.e. on average the time an Ethereum Classic block requires to be mined), so
q = 12 · 237 · 106. Finally, difficulty implies the required number of most-significant bits of a

6All data on Ethereum Classic are from https://bitinfocharts.com [6 February 2019].
7This corresponds to the popular mining hardware “PandaMiner B1 Plus”, thus we assume that each party

is realized by a single such machine.

9

https://bitinfocharts.com

Algorithm 1 The recursive construction algorithm for the absorbing Markov chain, parame-
terized by kc.

function createMarkovChain(kc)
createGraph(kc, kc)
addEdge(final, final, 1)

end function

function createGraph(i, j)
if j > 0 then

for l ∈ [0, j − 1] do
addEdge((i, j), (i, j − l), h̄ ·m(l))
if l > 0 then

createGraph(i, j − l)
end if

if i > 1 then

addEdge((i, j), (i− 1, j − l), h ·m(l))
createGraph(i− 1, j − l)

end if

end for

addEdge((i, j), (i, 0), h̄ · (1− m̂j−1))
createGraph(i, 0)
if i = 1 then

addEdge((i, j), final, h · m̂j−1)
addEdge((i, j), (kc, kc), h · (1− m̂j−1))

else

addEdge((i, j), (i− 1, 0), h · (1− m̂j−1))
createGraph(i− 1, 0)

end if

else

addEdge((i, j), (i, j), h̄)
if i = 1 then

addEdge((i, j), (kc, kc), h)
else

addEdge((i, j), (i− 1, j), h)
createGraph(i− 1, j)

end if

end if

end function

10

0 5 10 15 20 25 30 35 40 45 50

kc (blocks)

0

338

677

1016

1354

u
(1

2
se

c
ro

un
ds

)

Adversarial
mining power

33%

50%+1

66%

0.000

1.042

2.085

3.127

4.169

u
(1

2
se

c
ro

un
ds

)

×10
7

Figure 4: The expected number of steps before absorption for the checkpointed Ethereum
Classic w.r.t. kc, i.e. the expected u before liveness is achieved with probability at least 2

3 . The
primary (left) axis identifies the liveness parameter u for 33% and 50% + 1 adversarial control,
while the secondary axis corresponds to 66% adversarial power. Our model is parameterized
with q = 12 · 237 · 106, n = 33755, p = 9.1 · 10−15, and 12-second rounds.

block’s hash being equal to 0. In our case, the difficulty is 110 TH, i.e. 1 out of every 110 · 1012

hashes is successful on average, so p = 9.1 · 10−15.
To compute the expected amount of time until absorption and the absorption probability

w.r.t. u, we consider the transition matrix of the Markov chain of Algorithm 1. Additionally,
we assume a sufficiently large value of ω, such that the error probability is negligible.

Figure 4 depicts the expected number of steps before absorption w.r.t. kc and Ethereum
Classic’s parameters. This provides an estimation of the number of rounds, i.e. the value of
u, needed to achieve liveness with probability at least 2

3 . As expected, u increases with the
adversarial power. u increases linearly with kc if A controls a minority of the mining power.
However, if A controls a mining majority, u increases exponentially with kc, to the point where
a 66% adversary is orders of magnitude more powerful (and we need a different axis to make
the figure intelligible).

Figure 5 shows the liveness probability w.r.t. u for various values of kc. Naturally, the
liveness probability depends on the initial state of the graph, i.e. the state of the system when
the transaction is published for the first time. Therefore, the minimum liveness is extracted as
the minimum probability over all possible transient initial states. Our simulations show that, as
expected, this state is (kc, 0), i.e. when A has the biggest advantage; consequently, the liveness
probability is non-zero after at least 2 · kc rounds. To evaluate the liveness probability, we
fix the adversarial mining power to 50% + 1. We observe that liveness is achieved with high
probability after a relatively small amount of rounds for kc = 1; specifically after 50 rounds, i.e.
after 10 minutes, the liveness probability is 0.9975. However, the liveness probability decreases
significantly as the epoch length increases; for instance, again for 10 minutes, when kc = 5
the liveness probability is 0.5836, whereas when kc = 10 it drops significantly to 0.1434. This
behavior is expected since, as kc →∞ the system downgrades to the standard non-checkpointed
setting, where an adversary breaks liveness via a block lead attack.

Finally, Appendix C explores a checkpointing scheme with randomized kc unknown to the
adversary, whereas Appendix D explores liveness when the adversary is not rushing; both designs
slightly improve the previous liveness results.

3.4 The Checkpointed Chain Resolution Protocol

In this section we realize the checkpointing authority as a federated service distributed among
parties communicating over an asynchronous network. To make our design most efficient we

11

0 30 60 90 120 150 180 210 240 270 300

u (12 sec rounds)

0.00

0.25

0.50

0.75

1.00

L
iv

en
es

s
pr

ob
ab

ili
ty

kc

1

3

5

10

Figure 5: Liveness of a checkpointed Ethereum Classic w.r.t. u and kc. The vertical axis iden-
tifies the liveness probability, while the horizontal axis defines u, i.e. the number of consecutive
rounds for which the transaction is supplied to the miners. Our model is parameterized with
rounds which last 12 seconds, q = 12 · 237 · 106, n = 33755, and p = 9.1 · 10−15.The adversarial
mining power is 50% + 1 so t = 16877.

assume that the checkpointing service runs among a set of parties that trust each other and
tolerate benign faults e.g. crashes. Although not fully decentralized, like the timestamping
solution (Section 4), checkpointing is in line with similar real-world mechanisms, e.g. Bitcoin,
Peercoin, and Feathercoin, where checkpoints were issued by the software’s developers. Our pro-
totype implementation (Section 3.5) considers a scenario where 5 coordinating organizations,
such as development companies and/or community foundations operating in the ledger’s ecosys-
tem, employ 3 nodes each (for redundancy purposes). Appendix B relaxes this assumption via a
protocol that tolerates Byzantine Faults, although at the cost of using an expensive interactive
consistency protocol over a synchronous network.

The checkpointing protocol is parameterized by a number of subroutines. First, it is param-
eterized by a validation predicate Validate. This predicate identifies whether a chain is valid,
e.g. verifies the signatures and the Proof-of-Work of the chain’s blocks, similar to the maxvalid

function of the Bitcoin Backbone. Second, the parties coordinate via a fail-stop subprotocol
πFS, like RAFT [46] or Paxos [38]. This protocol enables the parties to both reach agreement
on which block to checkpoint and the value of the unpredictable nonce r. Each party Vj inputs

〈Bj , rj〉, where Bj is a (valid) block and rj
$
←− {0, 1}ω is a random nonce. At the end of πFS,

each party outputs 〈B′, r′〉, i.e. one of the input block and nonce. The checkpointing protocol is
defined in Figure 6, where C[i] denotes the i-th block of chain C. Theorem 4 formally shows that
πCheckpoint securely realizes FCheckpoint; the proof follows directly from the properties of the fail-
stop protocol if a majority of parties is live. We note that the theorem restricts to environments
that, when corrupting a party, they may force it to fail, rather than behave arbitrarily.

Theorem 4. Protocol πCheckpoint securely realizes FCheckpoint if a majority of parties in V are
live, i.e. do not fail-stop.

Proof. Since we assume only crash faults, a party either follows the protocol or is unresponsive.
As a result, the blocks proposed for checkpointing are valid, since the protocol employs the
validation predicate Validate before providing them as input to πFS. Additionally, the value
rj , picked by each party at random, is unpredictable and indistinguishable from ri chosen
by FCheckpoint. Therefore, the inputs to πFS are well-structured, i.e. indistinguishable from the
corresponding values in FCheckpoint. Finally, if a majority of parties is available, πFS is guaranteed
to produce a checkpoint chosen according to maxvalid, as in FCheckpoint. We note that, in the

12

A checkpointing party which runs πCheckpoint is parameterized by the list V of n check-
pointing parties, a (fail-stop) consensus protocol πFS, a validation predicate Validate, the
function maxvalid, and kc. It keeps a local checkpointed block, Bc, initially set to ǫ.

Upon receiving (CandidateCheckpoint, C ′) check:

• ∃i : C ′[i] = Bc (i.e. if C ′ extends the checkpoint);

• Validate(C ′) = 1 (i.e. if C ′ is valid);

• |C ′| − i = kc (i.e. if C ′ is long enough).

If all hold:

1. pick rj
$
←− {0, 1}ω;

2. pick input 〈C ′, rj〉 for the protocol πFS;

3. execute πFS with the parties in V to agree on an input 〈C ′, r′〉, such that ∀〈Ĉ, r̂〉 ∈
I : maxvalid(C ′, Ĉ) = C ′ with I the set of inputs, i.e. choose the output according to
maxvalid;

4. set Bc := tail(C ′)||r′.

Finally, return (Checkpoint, Bc).

Protocol πCheckpoint

Figure 6: The protocol run by the parties of the checkpointing authority.

ideal world, the simulator A can control the delivery of messages to FCheckpoint, such that the
first valid candidate block which is proposed is also the heaviest (according to maxvalid).

Naturally, if the availability guarantee fails, i.e. if a majority of parties is unavailable, then
πFS stops. In that case, checkpoint consistency is guaranteed, i.e. no conflicting checkpoints
will be issued, but also no new checkpoints are produced. In turn, the ledger downgrades to the
plain execution model: persistence is guaranteed for all blocks prior to the last checkpoint and
liveness is no longer guaranteed, under adversarial mining majority.

To incorporate checkpoints in the consensus protocol run by miners, we slightly adapt Bitcoin
Backbone. Specifically, instead of using maxvalid directly for chain resolution, a miner now
utilizes the checkpointing mechanism. The chain resolution protocol, which is run by miners in
the checkpointed setting, is defined in Figure 7; C[: i] denotes the chain consisting of the first i
blocks of C. When a miner creates a new block, they submit it to all checkpointing parties via
the CandidateCheckpoint interface of πCheckpoint. When the new checkpoint is issued, they accept
it and, following, they adopt a new chain only if it contains a newly-issued checkpoint.

Although πCheckpoint checkpoints valid chains, i.e. validates both the block’s headers and
transactions before selecting a chain, we can relax this assumption by requiring πCheckpoint to
validate only the block’s headers. This change reduces the computation and trust requirements
of πCheckpoint, but also permits invalid transactions in the chain. Specifically, a block with invalid
transactions may present valid headers, i.e. extend the hash chain correctly per the PoW rules.
A party which validates only the headers, and not each transaction in the block, would thus
accept it. In this case, the ledger’s consensus mechanism should be adapted to accept only
the first of the potential conflicting transactions, rather than rejecting the chain which contains
invalid transactions altogether, as is the case in existing systems.

As motivated in the introduction, checkpoints are a temporary measure. Once honest ma-
jority is ensured and the ledger can securely exist without assistance, the shut down of the
checkpointing service is initiated. Shutdown is parameterized by a security threshold, such that,

13

A party which runs πCheckpointMiningRes is parameterized by maxvalid, the n checkpointing
parties V which run πCheckpoint, and kc. It keeps a local chain C and the checkpoint index
ic, initially set to ǫ and 0.

Upon receiving (CandidateChain, C ′), set C := maxvalid(C,C ′). If |C| ≥ ic + kc
set ic := ic + kc and send C[: ic] to all parties in V. Upon receiving ⌈n2 ⌉ messages
(Checkpoint, B||r) from different checkpointing parties, if C[ic] = B||r set C := C[: ic]||r.

Upon receiving (Read) return (Chain, C).

Protocol πCheckpointMiningRes

Figure 7: Checkpointed chain resolution for miners.

after it is reached, the checkpoint protocol halts and the ledger relies solely on PoW mining.
Although the nature of this threshold is outside of the scope of this paper, potential candidates
include the network’s hash rate and the profitability of attacks. To future-proof the system
we present two options: a) if the security threshold is publicly computable, then the miners
know whether it has been reached and ignore future checkpoints; b) the authority produces
a well-defined “shut down” message to alert the miners. Future work will explore additional
mechanisms for shutting down the checkpointing service in a future-proof manner.

3.5 Prototype Implementation

Following Section 3.3, checkpointing needs to occur frequently, so it is important that check-
points are issued quickly and are lightweight. Therefore, we evaluate our checkpointing scheme
by building a prototype. We assume a PKI for the checkpointing nodes; after agreeing on a
checkpoint, the nodes produce and publish a collective signature. The collective signature is
unpredictable, otherwise an attacker would be able to produce forged signatures. Therefore, the
signature acts both as a non-interactive proof, used by miners to verify checkpoints, and as the
necessary unpredictable nonce.

Our experiments ran on a private Ethereum network on Amazon’s EC2 platform with
t2.micro instances8 running Ubuntu 18.04 LTS. The network consisted of 3 mining nodes,
which coordinated via a “bootnode” node. Our network replaced the costly PoW mechanism
of Ethereum with Parity’s Proof-of-Authority (PoA) [19], which uses the Clique algorithm to
simulate PoW. All nodes were launched within the same geographical region (EU) and produced
blocks on a 10 second interval (as opposed to the 15 second interval of the real-world Ethereum
mainnet).

The checkpointing federation consisted of 15 nodes and was built using various existing tools.
First, each node ran an Ethereum client which retrieved the blocks from the mining nodes.
Second, to coordinate checkpointing we used etcd,9 a distributed file system which employs
Raft [46] to resolve conflicts. Using etcd the nodes reach agreement on a new checkpoint and
also exchange and store signatures on newly-issued checkpoints. Third, each node was identified
by a public key — we assume that the keys are well-known, e.g. are part of the genesis block of
the system. The keys and signatures were generated using the JavaScript cryptographic library
TweetNaCl.10

A checkpointing node connected to an Ethereum client and waited until at least kc blocks
had been mined on top of the latest checkpoint; our implementation set kc := 4. At that point,
the node signed the block’s hash and stored it on etcd. A valid checkpoint consisted of at
least 8 signatures on a block’s hash. If the checkpointing nodes failed to reach agreement, i.e.

8t2.micro instances use 1 virtual CPU and 1 GB of memory.
9https://etcd.io/

10https://tweetnacl.js.org

14

https://etcd.io/
https://tweetnacl.js.org

0 320 640 960 1280 1600 1920 2240

Checkpoint index

0

500

1000

1500

2000

L
at

en
cy

(m
s)

Figure 8: Evaluation of latency, i.e. the time between retrieving a block and accepting it as a
checkpoint, for the prototype checkpointing implementation. Each graph point corresponds to
an independent checkpoint, over a period of more than 24 hours.

produced signatures on conflicting blocks, they dismissed it and proceeded to checkpoint the
next candidate block, i.e. after kc blocks.

Our analysis focuses on the following metrics: i) network latency, i.e. the time between
the transmission of a block and its acceptance as a checkpoint; ii) the storage overhead of
checkpoints.

Regarding (i), we deployed a client outside of Amazon’s service and connected it both to the
Ethereum private network and the checkpoint federation. To estimate latency we measured the
elapsed time between retrieving a block eligible for checkpointing and obtaining a majority of
valid federation signatures for the block’s hash. Our analysis lasted more than 24 hours, span-
ning over 2200 checkpoints. Figure 8 depicts our results, which are rather positive. Specifically,
latency was on average 679 ms — occasionally, a checkpoint would need more time to be pub-
lished, although no more than 1.5 seconds. Additionally, we observed cases when the federation
nodes would not produce a checkpoint, with this failure rate being approximately 15%. Each
fail resulted in a 40 second delay, i.e. until a following checkpoint was issued. However, we
expect production-grade implementations to minimize such fails.

Latency also depends on the geographical disparity of the node and the client connected.
Specifically, a client residing in the United Kingdom performed as follows, when connecting to
checkpointing nodes in different regions:

• London (EU): 557 ms

• N. California (US West): 620 ms

• São Paulo (South America): 711 ms

• Tokyo (Asia Pacific): 723 ms

• Singapore (Asia Pacific): 779 ms

Table 1 provides a latency comparison based on geographical location. Nevertheless, regardless
of the client’s geographical location, we expect an average latency of less than 1 second in
real-world implementation.

Regarding (ii), a checkpoint consists of the concatenated signatures of federation nodes. Since
each TweetNaCl signature consists of 64 bytes, each checkpoint amounts to 8 · 64 = 512 bytes,
thus checkpointing results in a 0.6% increase in the ledger’s size.11 We expect production-grade
implementations to offer better results, e.g. utilizing multi-signature schemes, like the ASM
scheme of [5], to reduce the checkpoint’s size.

11An Ethereum block is on average 20 KB. (https://etherscan.io/chart/blocksize)

15

https://etherscan.io/chart/blocksize

Region Average Latency (ms)

London (EU) 557

N. California (US West) 620

São Paulo (South America) 711

Tokyo (Asia Pacific) 723

Singapore (Asia Pacific) 779

Table 1: Latency based on the geographical location of the checkpointing node to which a
client in the UK connects.

4 The Timestamped Ledger

Our second scheme, timestamping, is motivated by the need for fully decentralized checkpoints.
Timestamping allows us to relax our assumptions, while still achieving the same guarantees as
above. Following, we first model timestamping as an ideal functionality and then realize it as
an interactive decentralized service built on top of an existing distributed ledger.

4.1 The Timestamping Functionality

Figure 9 defines the global timestamping functionality. FTimestamp issues timestamps by keeping
a monotonically increasing counter and a list of timestamped strings. It allows a party to
timestamp a string s by submitting the message (Timestamp, s); afterwards, every party can
verify it via the Verify interface. We stress that the timestamping functionality is global, i.e.
timestamps are not issued privately. Therefore, when a party timestamps a string, every other
party can access both the string and its timestamp. We also note that the timestamp consists of
both a counter and a random value. The latter helps mitigate the block lead attack (cf. Figure 2).
In the decentralized implementation of Section 4.3, where the timestamping functionality is
realized as a distributed ledger, the random value is the hash of the block which timestamps a
given string.

FTimestamp holds the following items: i) T[]: an initially empty list of timestamped strings;
ii) τ : a counter initially set to 0.

Upon receiving (Timestamp, s), if ∀(s′, ·) ∈ T[] : s
′ 6= s, set τ := τ + 1. Then compute a

list R of p(κ) random values as rj
$
←− {0, 1}ω and send (Nonce, R) to A. Upon receiving a

response (Nonce, ri), such that ri ∈ R, add (s, τ, ri) to T[].

Upon receiving (Verify, s, τ), if ∃(s, τ) ∈ T[] then return (VerifyTimestamp,⊤).

Functionality FTimestamp

Figure 9: The timestamping ideal functionality.

4.2 Timestamped Chain Resolution

Using FTimestamp we can now construct the timestamped ledger. Similar to Section 3, we define
the timestamped mining protocol, which leverages FTimestamp and picks a chain among the set
of all possible candidates. A miner can timestamp a new block by submitting it to FTimestamp;
a timestamped block is the tuple Bt = (B, τ), where B is the block created by the miner and τ

is the timestamp issued by FTimestamp; B.τ denotes the timestamp of the block B.

16

When a miner is given a new candidate chain, they compare it with their local chain. Starting
from the genesis block, it parses both chains until it finds the timestamped position where the
two diverge, i.e. the oldest timestamped block in each chain which does not exist in the other.
If such point exists, then we adopt the chain with the oldest diverging block. Otherwise, i.e.
if the last checkpointed block in both chains is the same, we employ the maxvalid algorithm.
Finally, between timestamped and non-timestamped blocks, the former are preferred. Figure 11
provides intuition for the timestamped chain decision rules, showcasing a basic timestamped
block graph, with the timestamped mining chain resolution protocol πTimeMiningRes defined in
Figure 10.

A party that runs πTimeMiningRes holds the local chain C, initially set to ǫ, and is parame-
terized by maxvalid(·, ·).

Upon receiving (CandidateChain, C ′), for every timestamped block B ∈ C ′, send
(Verify, B,B.τ) to FTimestamp and wait for (VerifyTimestamp,⊤). Next:

i) set i := 0;

ii) while C[i] = C ′[i] do i := i+ 1;

iii) set i′ := i, c := i− 1;

iv) while C[i] is not timestamped and i < |C| do i := i+ 1;

v) while C ′[i′] is not timestamped and i′ < |C ′| do i′ := i′ + 1;

vi) if i = |C| and i′ = |C ′| set C := maxvalid(C \ C[: c], C ′ \ C ′[: c]),

vii) else if i = |C| or C ′[i′].τ < C[i].τ then set C := C ′.

Upon receiving (Read) return (Chain, C).

Protocol πTimeMiningRes

Figure 10: Timestamped chain resolution for miners.

Theorem 5 formally shows the security of πTimeMiningRes. The proof follows directly from
observing that a block cannot be backdated, therefore the first block that extends a chain and
gets timestamped acts as a checkpoint.

Theorem 5 (Timestamping). The timestamped resolution protocol πTimeMiningRes and the times-
tamping functionality FTimestamp of Section 4.1 guarantee persistence and liveness with parameter
kc = 1 (cf. Theorems 1 and 3).

Proof. Assume all parties hold the same chain C. It suffices to show that the first block which
extends C (and gets timestamped) acts as a checkpoint. Assume the first such block B1 extends
C and is assigned a timestamp t1. Any subsequent block Bi which extends C is assigned a times-
tamp ti strictly larger than t1, by definition of the timestamping mechanism. Thus, an honest
miner will always adopt the chain C||B1 over C||Bi. Regardless of the adversarial strategy, if the
honest parties produce a block first, its timestamp is irreversible and older than any subsequent
adversarial block. Also since the adversary cannot censor timestamp requests, honest blocks
always get timestamped. Therefore, the timestamp produced for the first block that extends a
chain acts as a checkpoint. Finally, there are two considerations for the randomness r which
mitigates block lead. First, as above, the adversary can predict it with probability L · 2−ω, L
being the protocol’s execution length. Second, in decentralized timestamping, where r is the
timestamping block’s hash, the adversary does not affect the block’s randomness. The latter
assumption implies that either the adversary does not participate in mining on the timestamping

17

Figure 11: A graph of (potentially) timestamped blocks. A chain is chosen by traversing the
graph, starting with a which has children b and d. Since b is not timestamped, the tree of b
is traversed until timestamped blocks are encountered. So the decision is among a||d, 0||b||c,
and a||b||e||f ; since block c has an older timestamp than d and e, a||b||c is chosen. However,
if block b is later checkpointed, the canonical chain will become a||d, which is the reason why
timestamping as soon as possible is paramount.

ledger, or that its participation power is limited; if its power is close to (but less than) 50%,
then liveness is still guaranteed albeit for larger values of u.

Two important caveats need to be stressed here. First, timestamping blocks as they are
produced is crucial, as A can discard an arbitrarily long non-timestamped chain. Additionally,
the timestamping protocol needs to prevent A from producing forged timestamps; we build such
decentralized mechanism next using a secure distributed ledger. Second, A could timestamp the
hash and keep the block secret, resulting in a DoS where the honest miners halt until the block
is revealed. In a centralized setting, this can be prevented by ensuring that the timestamping
service timestamps only fully available blocks. Next, we show how to prevent this attack in the
decentralized setting via the concept of consecutive timestamps.

4.3 Decentralized Implementation

We implement a fully decentralized timestamping service via a distributed ledger L; Appendix E
also provides a centralized solution similar to checkpoints.To timestamp a (possibly long) string
s, a user submits a transaction τ to L containing d = H(s) for a hash function H(·). L is
an append-only ledger, so a unique, monotonically increasing index can be assigned to every
transaction in L, thus providing a total ordering of transactions; as long as L satisfies persistence,
the ordering of stable transactions is irreversible. If L also satisfies liveness, then it is infeasible
for A to censor an honest party’s transaction. In our timestamping service, d is the hash of a
block.

The miners of the timestamping ledger are divided in three categories: i) adversarial miners,
controlled byA, ii) “indifferent” miners, who publish every available and valid transaction (under
the timestamping ledger’s validity rules), iii) “observing” miners. Observing miners publish the
timestamping transaction for a block of the insecure ledger only if the block’s content s is fully
available; however, they do accept blocks created by other miners who contain such transactions.
This results in a (non-disruptive) “velvet fork” [32].

However, this assumption alone does not prevent A from timestamping private blocks, since
adversarial and indifferent miners accept timestamping transactions. Therefore, we will require
that d is published in v consecutive blocks. For large enough v, at least one block will be created
by an observing miner, hence a private (adversarial) block cannot be timestamped, assuming a
lower bound on the hashing power of observing miners.

The timestamp of a string is the index of the last timestamping transaction in the ledger,
i.e. the transaction which finalizes the timestamping process. Additionally, the unpredictable
nonce that mitigates block lead is the hash of the block which contains the first timestamping

18

0.0 0.2 0.4 0.6

Observing Bitcoin miners

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

ili
ty

o
f

su
cc

es
sf

u
l
at

ta
ck

v
5

10

15

20

Figure 12: Probability of a successful adversarial timestamping, w.r.t. the observing mining
percentage and the number of consecutive timestamping blocks v. Adversarial miners control
10% of the timestamping ledger’s power.

transaction. Evidently, the required public state’s size is O(n · v · |d|), n being the length of the
“insecure” ledger in number of blocks.
Evaluation of Decentralized Timestamping. First, we evaluate the probability of an ad-
versarial block getting timestamped, i.e. the probability of a successful DoS attack. Similar to
Section 3.3.2, we construct a Markov chain (using equivalent random variables H,M for the
observing and adversarial miners) with the following rules:

• the initial state is (v, v);

• all states (0, j), j > 0 compound to the “winning” absorbing state;

• all states (i, 0) compound to the “losing” absorbing state;

• from round (i, j), i, j > 0 and b ∈ [0, j − 1], the following transitions probabilities hold:

– to (v, j − b) occurs with probability m(b);

– to (i− 1, v) occurs with probability h ·m(0);

– to (i− 1, j − 1) occurs with probability h̄ ·m(0) · ι, ι the probability of an indifferent
block being mined.

Figures 12 and 12 depict how the probability of a successful attack is affected by v and the
adversarial mining power respectively.

We implement the timestamping service on two major blockchain systems, Bitcoin and
Ethereum; the results of our constructions are demonstrated in Table 2. In Ethereum, a contract
could simply receive the block’s hash and emit an event.12 The timestamping cost is identified
as the gas cost per operation and is evaluated in USD.13 Deploying our contract costs 176569
gas ($4.7), whereas timestamping costs 27397 gas ($0.7). In Bitcoin we can use the OP RETURN

opcode [4] to timestamp arbitrary data up to 80 bytes, at a cost of $0.1.14

12An implementation of this contract has been deployed on the Ropsten testnet: https://ropsten.etherscan.
io/address/0xf95c1b1caefe5f2b5050844f64cac906f15a78f1

131gas = 4.5 · 10−8 ETH, 1ETH =$ 593 (https://etherscan.io/chart/gasprice [December 2020])
14Although Bitcoin’s consensus rules do not impose such limit, the 80 byte threshold is a relay standard

enforced by most miners. The Bitcoin dust fee for OP RETURN transactions is 546 satoshis and a single Bitcoin
(108 satoshis) costs $18700. (https://coinmarketcap.com [December 2020])

19

https://ropsten.etherscan.io/address/0xf95c1b1caefe5f2b5050844f64cac906f15a78f1
https://ropsten.etherscan.io/address/0xf95c1b1caefe5f2b5050844f64cac906f15a78f1
https://etherscan.io/chart/gasprice
https://coinmarketcap.com

0.0 0.2 0.4 0.6

Observing Bitcoin miners

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

ili
ty

o
f

su
cc

es
sf

u
l
at

ta
ck

Adversarial
Bitcoin
miners

0.0

0.1

0.2

0.3

Figure 13: Probability of a successful adversarial timestamping, w.r.t. the observing mining
percentage and the adversarial mining percentage. The number of consecutive timestamping
blocks is v = 10.

Cost
Ethereum

Contract deployment $4.7

Timestamping $0.7

Bitcoin Timestamping $0.1

Proof size

Ethereum

Full node 348 GB

SPV 9 GB

NIPoPoW 6 MB

FlyClient 3 MB

Bitcoin
Full node 312 GB

SPV 62 GB

Table 2: Decentralized timestamping performance, using Ethereum and Bitcoin. [December
2020]

Latency is (expectedly) worse in the decentralized case. First, at least v rounds are required,
a number which increases as adversarial timestamping miners increase and observing miners
decrease. Additionally, Ethereum requires (on average) 35 confirmations until a transaction is
stable, corresponding to 9 minutes,15 while Bitcoin requires 10 minutes for unstable transactions
and 60 minutes for stable transactions.

To verify a transaction, a node typically acquires and parses a full copy of the ledger.
The Ethereum chain is 348 GB.16 An efficient alternative is Simplified Payment Verification
(SPV) [43]. SPV clients retrieve only the blocks’ headers, instead of the entire chain. Since the
timestamp is only the index of a transaction in the ledger, to verify that the timestamp of a string
d is τ , the miner checks the chain’s headers in a standard SPV fashion and additionally obtains
the full block which contains the transaction of interest. The data which an SPV Ethereum
client needs to retrieve and parse amount to about 9 GB. Finally, the state-of-the-art solutions
are super-light client modes, like NIPoPoW [32] and FlyClient [7]. Super-light clients employ
succinct proofs of synchronization, thus allowing to verify the timestamp of a string using a

15The reference numbers of confirmations as used by the Coinbase exchange: https://support.coinbase.com/
customer/portal/articles/593836

16https://etherscan.io/chartsync/chaindefault [December 2020]

20

https://support.coinbase.com/customer/portal/articles/593836
https://support.coinbase.com/customer/portal/articles/593836
https://etherscan.io/chartsync/chaindefault

proof of O(polylog(n)) size on the chain’s length n. A super-light Ethereum-based timestamp-
ing client would thus require about 6 MB and 3 MB for NIPoPoW and FlyClient respectively [7]
as the timestamping proof. For Bitcoin, the timestamping proof is roughly 312 GB for a full
node and 62 GB for an SPV node.17

5 Related work

Checkpointing precedes blockchains as a method of stabilizing a consensus protocol. In their
seminal paper on Practical Byzantine Fault Tolerance [12], Castro and Liskov describe such
mechanism in a replicated setting to bring up to date a replica “left behind”.

In the blockchain engineering space, checkpoints are often used against network attacks and
to enhance performance. Bitcoin introduced checkpoints18 to speed up the bootstrapping of
network nodes and mitigate DoS and 51% attacks. The checkpoints were issued in an entirely
centralized manner, a method also employed by Peercoin [35] and Feathercoin [25]. Our check-
pointing solution (Section 3) is similar, albeit federated rather than fully centralized. In a
different direction, Bitcoin ABC restricted chain re-orderings to a maximum depth of 10 blocks;
similarly, Nxt [45] applies a maximum re-ordering depth of 720 blocks. However, these solu-
tions introduce the major “network split” hazard (Section 1). Finally, RSK [40] proposes a
checkpoint system similar to Bitcoin, which is constructed as a federation. Notwithstanding,
all mechanisms fail to counter the block lead attack (Section 3.2) and ensure liveness, since the
checkpoints exist outside of the chain.

Blockchain academic literature has primarily considered checkpoints in the context of long-
range attacks against Proof-of-Stake (PoS), rather than protecting Proof-of-Work (PoW) sys-
tems. PoS protocols replace mining power with “stake”, i.e. the subset of the coins that the
block producer owns. Although such systems avoid the (environmentally) costly mining oper-
ations, they also enable an adversary to produce blocks at no-cost, which in turn results in a
number of threats, such as the nothing-at-stake [18, 41], long range [8], and stake bleeding [23]
attacks. Checkpoints prevent such attacks in protocols like Ouroboros [34], Snow White [13],
and Ouroboros Praos [14], in the latter also serving as a mechanism to mitigate adaptive cor-
ruptions. In a slightly different direction, Fantomette [3] employs decentralized checkpoints to
secure a blockDAG-based ledger. In contrast, our mechanism prevents attacks from mining
majorities; importantly, it assumes that the majority of online parties can be adversarial, as
opposed to [2].

Checkpoints are often used to improve transaction finality, by reducing the time until a
transaction is stable. Casper [9, 10] defines a checkpointing mechanism which, in conjunction
with a PoW blockchain, protects against block reversions by (financially) penalizing misbehaving
parties; a similar approach is taken by GRANDPA [52]. Afgjort [42] describes a generic finality
layer, which is run by a sub-committee and can be applied on top of any blockchain. HotPoW [30]
combines PoW with HotStuff [54] to achieve constant-time finality via the creation of party
quorums.

Employing a committee that irreversibly commits the ledger’s state has also seen extensive
research. On the PoW side, notable works include hybrid consensus [47], which integrates a per-
missioned protocol with a decentralized ledger to elect rotating committees, Thunderella [48],
where a committee optimistically confirms transactions via an asynchronous consensus protocol
with PoW as fallback, and ByzCoin [36]. On the PoS side, Algorand [24] uses a Verifiable Ran-
dom Function to elect a committee which runs a Byzantine Agreement protocol. Nonetheless,
these systems also rely on the honest majority assumption of the underlying ledger. In turn,
checkpointing could be used to secure instances of these protocols in cases when the majority is
adversarial.

Finally, secure timestamping has been extensively researched. In a representative work,
Haber and Stornetta [28] construct a timestamping scheme with hashes and digital signatures.
Blockchains increased interest in the topic, with a distributed ledger acting as a timestamping

17https://www.blockchain.com/charts/blocks-size [December 2020]
18For a detailed discussion on checkpoints in the early versions of Bitcoin we refer to https://bitcointalk.

org/index.php?topic=437.msg3807

21

https://www.blockchain.com/charts/blocks-size
https://bitcointalk.org/index.php?topic=437.msg3807
https://bitcointalk.org/index.php?topic=437.msg3807

service. Gipp et al. [26] explored trusted timestamping using the Bitcoin blockchain, while
projects such as OriginStamp [29] aim to allow users to timestamp arbitrary data using Bitcoin’s
blockchain. Additionally, both Veriblock [50] and Komodo [37] provide elaborate mechanisms
which leverage Bitcoin’s blockchain to perpetually secure other chains, thus relying entirely on
the Bitcoin chain’s security. In comparison, our timestamping scheme (Section 4.3) is only a
temporary solution that avoids trivializing ledger maintenance.

6 Conclusion

This paper explores security mechanisms for protecting distributed ledgers from an adversarial
mining majority. Given that, in this context, the ledger cannot protect itself by definition, the
core idea is to introduce an external set of parties to guarantee security. We provide a rigorous
treatment of two mechanisms, checkpointing and timestamping, which guarantee persistence
and liveness, the two needed properties of a distributed ledger. Our analysis highlights a novel
attack against liveness, block lead which threatens all existing checkpointing designs, and shows
how to mitigate it. Finally, our timestamping solution achieves a high level of decentralization.

References

[1] Bitcoin ABC. Bitcoin abc 0.18.5 released, 2018. https://www.bitcoinabc.org/

2018-11-20-bitcoin-abc-0-18-5/.

[2] Georgia Avarikioti, Lukas Käppeli, Yuyi Wang, and Roger Wattenhofer. Bitcoin security
under temporary dishonest majority. In Ian Goldberg and Tyler Moore, editors, FC 2019:
23rd International Conference on Financial Cryptography and Data Security, volume 11598
of Lecture Notes in Computer Science, pages 466–483, Frigate Bay, St. Kitts and Nevis,
February 18–22, 2019. Springer, Heidelberg, Germany.

[3] Sarah Azouvi, Patrick McCorry, and Sarah Meiklejohn. Betting on blockchain consensus
with fantomette. CoRR, abs/1805.06786, 2018.

[4] Bitcoin. Op return, 2019. https://en.bitcoin.it/wiki/OP_RETURN.

[5] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology –
ASIACRYPT 2018, Part II, volume 11273 of Lecture Notes in Computer Science, pages
435–464, Brisbane, Queensland, Australia, December 2–6, 2018. Springer, Heidelberg, Ger-
many.

[6] Joseph Bonneau. Hostile blockchain takeovers (short paper). In Aviv Zohar, Ittay Eyal,
Vanessa Teague, Jeremy Clark, Andrea Bracciali, Federico Pintore, and Massimiliano Sala,
editors, FC 2018 Workshops, volume 10958 of Lecture Notes in Computer Science, pages
92–100, Nieuwpoort, Curaçao, March 2, 2019. Springer, Heidelberg, Germany.

[7] Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-light clients
for cryptocurrencies. Cryptology ePrint Archive, Report 2019/226, 2019. https://eprint.
iacr.org/2019/226.

[8] Vitalik Buterin. On stake, 2014.

[9] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget, 2017.

[10] Vitalik Buterin, Daniël Reijsbergen, Stefanos Leonardos, and Georgios Piliouras. Incentives
in ethereum’s hybrid casper protocol. In IEEE International Conference on Blockchain and
Cryptocurrency, ICBC 2019, Seoul, Korea (South), May 14-17, 2019, pages 236–244. IEEE,
2019.

[11] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067.

22

https://www.bitcoinabc.org/2018-11-20-bitcoin-abc-0-18-5/
https://www.bitcoinabc.org/2018-11-20-bitcoin-abc-0-18-5/
https://en.bitcoin.it/wiki/OP_RETURN
https://eprint.iacr.org/2019/226
https://eprint.iacr.org/2019/226
http://eprint.iacr.org/2000/067

[12] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Margo I. Seltzer
and Paul J. Leach, editors, Proceedings of the Third USENIX Symposium on Operating
Systems Design and Implementation (OSDI), New Orleans, Louisiana, USA, February 22-
25, 1999, pages 173–186. USENIX Association, 1999.

[13] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In Ian Goldberg and Tyler Moore, editors,
FC 2019: 23rd International Conference on Financial Cryptography and Data Security,
volume 11598 of Lecture Notes in Computer Science, pages 23–41, Frigate Bay, St. Kitts
and Nevis, February 18–22, 2019. Springer, Heidelberg, Germany.

[14] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part II, volume
10821 of Lecture Notes in Computer Science, pages 66–98, Tel Aviv, Israel, April 29 – May 3,
2018. Springer, Heidelberg, Germany.

[15] Panos Diamantopoulos, Stathis Maneas, Christos Patsonakis, Nikos Chondros, and Mema
Roussopoulos. Interactive consistency in practical, mostly-asynchronous systems. In 21st
IEEE International Conference on Parallel and Distributed Systems, ICPADS 2015, Mel-
bourne, Australia, December 14-17, 2015, pages 752–759. IEEE Computer Society, 2015.

[16] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. PERUN: Vir-
tual payment channels over cryptographic currencies. Cryptology ePrint Archive, Report
2017/635, 2017. http://eprint.iacr.org/2017/635.

[17] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General state channel net-
works. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
ACM CCS 2018: 25th Conference on Computer and Communications Security, pages 949–
966, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

[18] Ethereum. Proof of stake faqs, 2018. https://github.com/ethereum/wiki/wiki/

Proof-of-Stake-FAQs.

[19] Parity Ethereum. Proof-of-authority chains, 2019. https://wiki.parity.io/

Proof-of-Authority-Chains.

[20] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In Nicolas Christin and Reihaneh Safavi-Naini, editors, FC 2014: 18th International Con-
ference on Financial Cryptography and Data Security, volume 8437 of Lecture Notes in
Computer Science, pages 436–454, Christ Church, Barbados, March 3–7, 2014. Springer,
Heidelberg, Germany.

[21] Matthias Fitzi. Generalized communication and security models in Byzantine agreement.
PhD thesis, ETH Zurich, 2002.

[22] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer
Science, pages 281–310, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[23] Peter Gaži, Aggelos Kiayias, and Alexander Russell. Stake-bleeding attacks on proof-of-
stake blockchains. Cryptology ePrint Archive, Report 2018/248, 2018. https://eprint.

iacr.org/2018/248.

[24] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Al-
gorand: Scaling byzantine agreements for cryptocurrencies. Cryptology ePrint Archive,
Report 2017/454, 2017. http://eprint.iacr.org/2017/454.

23

http://eprint.iacr.org/2017/635
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs
https://wiki.parity.io/Proof-of-Authority-Chains
https://wiki.parity.io/Proof-of-Authority-Chains
https://eprint.iacr.org/2018/248
https://eprint.iacr.org/2018/248
http://eprint.iacr.org/2017/454

[25] David Gilson. Feathercoin secures its block chain with ad-
vanced checkpointing, 2013. https://www.coindesk.com/

feathercoin-secures-block-chain-advanced-check-pointing.

[26] Bela Gipp, Norman Meuschke, and André Gernandt. Decentralized trusted timestamping
using the crypto currency bitcoin, 2015.

[27] Charles Miller Grinstead and James Laurie Snell. Introduction to probability. American
Mathematical Soc., 2012.

[28] Stuart Haber and W. Scott Stornetta. How to time-stamp a digital document. Journal of
Cryptology, 3(2):99–111, January 1991.

[29] Thomas Hepp, Patrick Wortner, Alexander Schönhals, and Bela Gipp. Securing physical
assets on the blockchain: Linking a novel object identification concept with distributed
ledgers. In Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Dis-
tributed Systems, CRYBLOCK@MobiSys 2018, Munich, Germany, June 15, 2018, pages
60–65. ACM, 2018.

[30] Patrik Keller and Rainer Böhme. Hotpow: Finality from proof-of-work quorums. CoRR,
abs/1907.13531, 2019.

[31] C. Edward Kelso. Bitcoin gold hacked for $18 million, 2018. https://news.bitcoin.com/
bitcoin-gold-hacked-for-18-million/.

[32] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of proof-
of-work. Cryptology ePrint Archive, Report 2017/963, 2017. http://eprint.iacr.org/

2017/963.

[33] Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in blockchain protocols.
Cryptology ePrint Archive, Report 2015/1019, 2015. http://eprint.iacr.org/2015/

1019.

[34] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture Notes in
Computer Science, pages 357–388, Santa Barbara, CA, USA, August 20–24, 2017. Springer,
Heidelberg, Germany.

[35] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake,
2012.

[36] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,
and Bryan Ford. Enhancing bitcoin security and performance with strong consistency via
collective signing. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016:
25th USENIX Security Symposium, pages 279–296, Austin, TX, USA, August 10–12, 2016.
USENIX Association.

[37] Komodo. Advanced blockchain technology, focused on freedom, 2018. https://docs.

komodoplatform.com/whitepaper/introduction.html.

[38] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[39] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,
1982.

[40] Sergio Demian Lerner. Rsk white paper overview, 2015. https://docs.rsk.co/RSK_

White_Paper-Overview.pdf.

24

https://www.coindesk.com/feathercoin-secures-block-chain-advanced-check-pointing
https://www.coindesk.com/feathercoin-secures-block-chain-advanced-check-pointing
https://news.bitcoin.com/bitcoin-gold-hacked-for-18-million/
https://news.bitcoin.com/bitcoin-gold-hacked-for-18-million/
http://eprint.iacr.org/2017/963
http://eprint.iacr.org/2017/963
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2015/1019
https://docs.komodoplatform.com/whitepaper/introduction.html
https://docs.komodoplatform.com/whitepaper/introduction.html
https://docs.rsk.co/RSK_White_Paper-Overview.pdf
https://docs.rsk.co/RSK_White_Paper-Overview.pdf

[41] Wenting Li, Sébastien Andreina, Jens-Matthias Bohli, and Ghassan Karame. Securing
proof-of-stake blockchain protocols. In Data Privacy Management, Cryptocurrencies and
Blockchain Technology, pages 297–315. Springer, 2017.

[42] Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi. Afgjort: A
partially synchronous finality layer for blockchains. Cryptology ePrint Archive, Report
2019/504, 2019. https://eprint.iacr.org/2019/504.

[43] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[44] Mark Nesbitt. Deep chain reorganization detected on
ethereum classic (etc), 2019. https://blog.coinbase.com/

ethereum-classic-etc-is-currently-being-51-attacked-33be13ce32de.

[45] Nxt. Nxt whitepaper, 2014. https://nxtwiki.org/wiki/Whitepaper:Nxt.

[46] Diego Ongaro and John K. Ousterhout. In search of an understandable consensus algo-
rithm. In Garth Gibson and Nickolai Zeldovich, editors, 2014 USENIX Annual Technical
Conference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014, pages 305–319.
USENIX Association, 2014.

[47] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless
model. Cryptology ePrint Archive, Report 2016/917, 2016. http://eprint.iacr.org/

2016/917.

[48] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation.
Cryptology ePrint Archive, Report 2017/913, 2017. http://eprint.iacr.org/2017/913.

[49] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[50] Maxwell Sanchez and Justin Fisher. Veriblock whitepaper, 2018. https://www.veriblock.
org/wp-content/uploads/2018/03/PoP-White-Paper.pdf.

[51] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining strate-
gies in bitcoin. In Jens Grossklags and Bart Preneel, editors, FC 2016: 20th International
Conference on Financial Cryptography and Data Security, volume 9603 of Lecture Notes
in Computer Science, pages 515–532, Christ Church, Barbados, February 22–26, 2016.
Springer, Heidelberg, Germany.

[52] Alistair Stewart. Poster: GRANDPA finality gadget. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference
on Computer and Communications Security, pages 2649–2651. ACM Press, November 11–
15, 2019.

[53] Fredrik Winzer, Benjamin Herd, and Sebastian Faust. Temporary censorship attacks in the
presence of rational miners. Cryptology ePrint Archive, Report 2019/748, 2019. https:

//eprint.iacr.org/2019/748.

[54] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham.
HotStuff: BFT consensus with linearity and responsiveness. In Peter Robinson and Faith
Ellen, editors, 38th ACM Symposium Annual on Principles of Distributed Computing, pages
347–356, Toronto, ON, Canada, July 29 – August 2, 2019. Association for Computing
Machinery.

[55] ZenCash. Zencash statement on double spend attack, 2018. https://blog.zencash.com/
zencash-statement-on-double-spend-attack/.

25

https://eprint.iacr.org/2019/504
https://blog.coinbase.com/ethereum-classic-etc-is-currently-being-51-attacked-33be13ce32de
https://blog.coinbase.com/ethereum-classic-etc-is-currently-being-51-attacked-33be13ce32de
https://nxtwiki.org/wiki/Whitepaper:Nxt
http://eprint.iacr.org/2016/917
http://eprint.iacr.org/2016/917
http://eprint.iacr.org/2017/913
https://www.veriblock.org/wp-content/uploads/2018/03/PoP-White-Paper.pdf
https://www.veriblock.org/wp-content/uploads/2018/03/PoP-White-Paper.pdf
https://eprint.iacr.org/2019/748
https://eprint.iacr.org/2019/748
https://blog.zencash.com/zencash-statement-on-double-spend-attack/
https://blog.zencash.com/zencash-statement-on-double-spend-attack/

Figure 14: The example Markov chain.

s0 s1 s2

s0 0.5 0.2 0.3

s1 0.4 0.6 0

s2 0 0 1

Table 3: Example transition matrix.

A Mathematical Background

In this section we cover the mathematical details of the absorbing Markov chain [27] used in
Section 3.3.2.

The Markov chain. A Markov chain is identified by a set of states S = {s1, s2, . . . }.
An execution starts at one of the states in S and progresses in steps, each corresponding to a
transition from a state si to a (different or the same) state sj . Each transition is identified by
a probability pij , which is independent of the history of the execution, but only depends on the
current state si. Figure 14 depicts an example Markov chain with 3 states, which we will use to
provide intuition in the following paragraphs.

The absorbing state. A state si is absorbing if for the transition probabilities it holds
pii = 1 and pij = 0, i 6= j; in other words, if the execution reaches an absorbing state it will
never transition to a different state after. Every state which is not absorbing is transient.

The transition matrix. The stochastic transition matrix of a Markov chain is a matrix
which comprises of the transition probabilities between any two states of the Markov chain.
Specifically, it is a n×n square matrix M , where n is the number of states of the Markov chain,
such that the entry Mij = pij ; in other words, the ij-th entry in M contains the probability of
transition from state si to sj . The canonical form of the transition matrix M is:

M =

(

Q R

O Ir

)

where Q is the t× t matrix, where each column corresponds to one of the t transient states, and
R is the r× t matrix, where each column corresponds to one of the r absorption states; O is the
r × t zero matrix and Ir is the r × r identity matrix.

Table 3 depicts the canonical form of the transition matrix of an example Markov chain with
3 states, where s2 is the absorption state and s0, s1 are transient states.

Absorption probability after u rounds. Assume a transition matrixM of an (absorbing)
Markov chain. The ij-th entry of matrix Mu identifies the probability that starting from state
si the execution is at state sj after exactly u steps.

Table 4 depicts the canonical form of the transition matrix of the above Markov chain after
5 steps. Therefore, if the execution starts from the state s0, the probability of absorption in
state s2 after 5 steps is 0.68661.

The fundamental matrix and expected number of steps until absorption. For
an absorbing Markov chain with transition matrix M as above, it holds (I − Q)−1 = N =

26

s0 s1 s2

s0 0.17061 0.14278 0.68661

s1 0.28556 0.242 0.47244

s2 0 0 1

Table 4: Example transition matrix after 5 steps.

s0 s1

s0 3.333 1.667

s1 3.333 4.167

Table 5: Example fundamental matrix.

I + Q + Q2 + · · · ; the matrix N is called the fundamental matrix for M . The ij-th entry in
N denotes the expected number of times that the execution is in state sj having started from
state si.

Given the fundamental matrix N as above, the expected number t of steps before absorption
is t = ⌈

∑t

j=0 Nij⌉, when the execution starts from the state si.
Table 5 depicts the fundamental matrix of the example Markov chain. The expected number

of steps until absorption from the initial state s0 is 5.

B A Checkpointed Protocol That Tolerates Byzantine Faults

In this section we relax the trust assumption between the parties that realize the checkpointing
authority. In Section 3.4 we assumed that a party may only fail by crushing. In order to allow
arbitrary behavior, i.e. Byzantine Faults, instead of a fail-stop protocol we now employ an
interactive consistency subprotocol πIC, such as the schemes of [15]. This protocol enables the
parties to both reach agreement on which block to checkpoint and also collectively produce the
unpredictable nonce r.

Now, we need to slightly modify the ideal functionality FCheckpoint to express the byzantine
behavior. In FCheckpointBFT of Figure 15, the adversary has more power by choosing among a
polynomial number of potential random values rj . This change models the ability to produce a
(polynomial-bounded) number of random values to pick from and participate in the interactive
consistency protocol.

FCheckpoint interacts with a set of parties V and holds the local chain C and the checkpoint
chain Cc, both initially set to ǫ. It is parameterized by kc, which defines the number of
blocks between two consecutive checkpoints, and the maxvalid(·, ·) algorithm.

Upon receiving (CandidateCheckpoint, C ′) from a party V, if Cc ≺ C ′ set C :=
maxvalid(C,C ′). Next, if |C \ Cc| = kc compute a list R of p(κ) random values as

rj
$
←− {0, 1}ω and send (Nonce, R) to A. Upon receiving from A a response (Nonce, ri),

such that ri ∈ R, return (Checkpoint, tail(C)||ri) to V and set C := Cc := C||ri.

Functionality FCheckpointBFT

Figure 15: The checkpointing ideal functionality that tolerates byzantine faults.

27

As before, the checkpointing protocol is also parameterized by a validation predicate Validate,
which identifies whether a chain is valid. Each party Vj inputs 〈Bj , rj〉, where Bj is the block
which it wishes to checkpoint and rj is a random nonce. At the end of πIC, each party outputs
an ordered list [〈B1, r1〉, . . . , 〈Bn, rn〉], which contains the inputs of all parties; in case a party
aborts a default value 〈⊥,⊥〉 is chosen as its input. Following, the parties pick the block that has
plurality among the blocks that are output, breaking ties in lexicographical order. Additionally,
they produce the collective nonce as r = H(r1|| . . . ||rj), where H : {0, 1}⋆ → {0, 1}ω is a hash
function.

The checkpointing protocol is defined in Figure 16 and Theorem 6 shows that πCheckpointBFT

securely realizes FCheckpointBFT.

A checkpointing party which runs πCheckpoint is parameterized by the list V of n check-
pointing parties, an interactive consistency protocol πIC, a hash function H, a validation
predicate Validate, and kc. It keeps a local checkpointed block, Bc, initially set to ǫ.

Upon receiving (CandidateCheckpoint, C ′) from a party V, check:

• ∃i : C ′[i] = Bc (i.e. if C ′ extends the checkpoint);

• Validate(C ′) = 1 (i.e. if C ′ is valid);

• |C ′| − i = kc (i.e. if C ′ is long enough).

If all hold do:

1. pick rj
$
←− {0, 1}ω;

2. execute protocol πIC with the parties in V with input 〈tail(C ′), rj〉 and wait for its
output [〈B1, r1〉, . . . , 〈Bn, rn〉];

3. find the block Bj which has plurality among the output blocks (breaking ties lexico-
graphically) and set Bc := Bj ||H(r1|| . . . ||rn).

Finally, return (Checkpoint, Bc) to V.

Protocol πCheckpointBFT

Figure 16: The protocol which is run by the parties of the checkpointing authority.

Theorem 6. Protocol πCheckpointBFT securely realizes the functionality FCheckpointBFT, assuming
a secure interactive consistency protocol πIC, which successfully terminates, and a hash function
H.

Proof sketch. πIC is an interactive consistency protocol, so the honest parties agree on the same
checkpoint block and produce the same nonce r. Since at least one honest party contributes to
the output of the protocol and, since H is secure, r is pseudorandom and unpredictable, like r

of FCheckpointBFT.

C Liveness for Epochs of Random Length

As shown above, longer epochs act in favor of the adversary. In order to sidestep this advantage,
we will try instead to hide the epoch’s length. The core idea here is, if the adversary can no
longer plan when to publish its chain, it is in its best interest to publish it immediately, although
allowing the honest parties to catch up; the following example showcases this argument.

Consider the case when the honest parties have produced only a single block and the ad-
versary has produced 2 blocks. Since the adversary does not know the epoch’s length, by
withholding its chain it risks the possibility that the honest parties produce a second block and,

28

if kc = 2, reach the checkpoint. Additionally, observe that now the epoch’s length becomes
known only after the checkpoint has been issued, when it is too late for the adversary. There-
fore, the only way for the adversary to be completely sure that it beats the honest parties to
the checkpoint is to directly publish any new block it produces.

In order to apply this idea to our model we make a small change in the checkpointing
functionality of Section 3.1. Now the functionality, defined in Figure 17, is parameterized by an
upper bound k⊤c , which is known to the adversary. Additionally, it holds an internal variable
kc unknown to the adversary, which is drawn from (0, k⊤c] uniformly at random and is updated
when a checkpoint is issued.

FCheckpointRand interacts with a set of parties V, is parameterized by k⊤c and maxvalid(·, ·),
and holds the local chain C and the checkpointed chain Cc, both initially set to ǫ, and kc,

the current epoch’s length, initially set to kc
$
←− (0, k⊤c].

Upon receiving a message (CandidateChain, C ′), if Cc ≺ C ′ set C := maxvalid(C,C ′). If

|C| − |Cc| ≥ kc then pick r
$
←− {0, 1}ω, and set C := Cc := C||r and kc

$
←− (0, k⊤c].

Upon receiving a message (Read) from a party V ∈ V return (Chain, C).

Functionality FCheckpointRand

Figure 17: The Randomized Checkpointing Functionality

In order to evaluate liveness we again consider the adversarial strategy and the Markov chain
which results from it. As mentioned above, the plain strategy that an adversary follows is to
immediately publish every block it produces. Indeed, this strategy gives the adversary the best
chances of getting checkpointed, assuming that its chain is only 1 block shy of reaching the
epoch’s limit. However, if the checkpoint is further away, then publishing the chain will only
allow the honest parties to “catch up”. We note that this strategy is straightforward, but not
necessarily the optimal ; future work will explore alternative strategies which might produce
better results for the adversary, such as taking into account the probability that kc is equal to
some value given k⊤c and choosing whether to publish the chain accordingly.

Similar to Section 3.3.2, the adversary will not adopt any of the honestly-generated blocks.
However, it cannot anymore gain an advantage over the honest parties. Therefore, the states
(i, j) where i > j are now merged with the state (j, j). Algorithm 2 defines the updated chain
generation mechanism; following the notation of Section 3.3.2, we set m = (1 −mΣ

0), i.e. the
probability that the adversary produces at least 1 block, and m̄ = m(0), i.e. the probability that
the adversary does not produce any blocks.

Our simulations have shown that the behavior of the liveness probability and the expected
steps is the same as in Section 3.3.2. Specifically, the liveness probability decreases significantly
as the epoch length increases, while u increases roughly linearly with kc, when the adversary
controls a minority, and exponentially when it controls a large majority. However, randomizing
the epoch lengths does improve both the liveness probability and the expected rounds compared
to the plain setting of Section 3.3.2. Figures 18 and 19 depict the comparison of the expected
rounds and the liveness probability respectively between the non-randomized and the random-
ized epoch length settings. For comparison, in the randomized setting after 300 steps for kc = 3
the liveness probability is 0.871, compared to 0.7173 in the non-randomized setting.

D Liveness for Non-Rushing Adversaries

In this section we slightly modify our model, in an attempt to both make it more realistic and
achieve better liveness. Specifically, we no longer assume that the adversary is rushing, so now
the adversary can no longer plan its strategy with the knowledge of the honest parties’ messages
during a round. More importantly, if, for a specific round, both an adversarial and an honest

29

Algorithm 2 The Markov chain construction algorithm for randomized epoch lengths.

function createMarkovChain(kc)
createGraph(kc, kc)

end function

function createGraph(i, j)
if i = 0 then

addEdge(final, final, 1)
return

end if

addEdge((i, j), (i, j), h̄ · m̄)
if i = j then

if i = 1 then

addEdge((i, j), (kc, kc),m)
addEdge((i, j), final, h · m̄)

else

addEdge((i, j), (i− 1, j − 1),m)
createGraph(i− 1, j − 1)
addEdge((i, j), (i− 1, j), h · m̄)
createGraph(i− 1, j)

end if

else

addEdge((i, j), (i, j − 1), h̄ ·m)
createGraph(i, j − 1)
if i = 1 then

addEdge((i, j), final, h)
else

addEdge((i, j), (i− 1, j − 1), h ·m)
createGraph(i− 1, j − 1)
addEdge((i, j), (i− 1, j), h · m̄)
createGraph(i− 1, j)

end if

end if

end function

0 5 10 15 20 25 30 35 40 45 50

kc (blocks)

0

338

677

1016

1354

u
(1

2
se

c
ro

un
ds

)

Randomized
epochs

False

True

Figure 18: Comparison of the expected number of steps before absorption in the non-
randomized and the randomized epoch length settings. The adversarial power is fixed to 51%.

30

0 30 60 90 120 150 180 210 240 270 300

u (12 sec rounds)

0.00

0.25

0.50

0.75

1.00

L
iv

en
es

s
pr

ob
ab

ili
ty

Randomized
epochs

False

True

Figure 19: Comparison of the liveness property in the non-randomized and the randomized
epoch length settings. The adversarial power is fixed to 51% and the epoch length is set to
kc = 3.

chain are published, it is no longer the case that the adversarial chain will be adopted. Instead
we introduce the network adoption parameter γ as follows:

• γ: the probability that an adversarial chain is adopted in a round over an honest chain.

This change affects the Markov chain production algorithm. Algorithm 3 defines the con-
struction of the updated Markov chain, taking γ into account. Specifically, in case both the
adversary and the honest parties produce chains which can be checkpointed, there exists now a
probability 1− γ that honest parties’ chain is checkpointed; it is evident that, when γ = 1, the
algorithm produces the same chain as Algorithm 1.

However, now Algorithm 3 does not necessarily model a minimal execution. Specifically, it
might be in the adversary’s benefit to avoid risking a checkpoint of the honest parties’ chain,
and instead follow a conservative strategy. This strategy defines that the execution does not
reach the state (1, 0), i.e. the adversary publishes its chain when the honest parties are only
one block short of reaching the checkpoint. Observe that, if the execution is at state (i, 0), i > 1
then the adversary will always checkpoint its chain. Algorithm 4 is a slightly modified version
of Algorithm 3 which accommodates this change.

In our analysis, in order to find the minimum liveness probability, we take into account both
strategies. Specifically, for every execution we simulate both strategies and find the strategy
which is best for the adversary, i.e. results in worse liveness probability. Figures 20 and 21 show
the comparison between the optimistic setting and the standard execution of Section 3.3.2. The
results in the optimistic setting are better both in terms of liveness probability and expected
steps before absorption, which is expected since the adversary is now in a disadvantage compared
to the standard setting.

E Centralized and Non-Interactive Timestamping

Similarly to checkpoints, the most straightforward way of realizing the timestamping functional-
ity is as a centralized authority. The timestamping service is now parameterized by a EUF-CMA

signature scheme and identified by a public key vk. Additionally, it keeps an internal counter c,
which increases when a timestamp is issued. Interestingly, this counter can be removed under
the assumption of a global clock which allows all parties to coordinate.

The timestamped object is the tuple 〈r||c, Sign(sk, r||c||m)〉, consisting of the (monotonically
increasing) time counter, the randomness r (cf. the checkpointing functionality FCheckpoint), and

31

Algorithm 3 The absorbing Markov chain construction algorithm for the optimistic setting,
defined by the chain construction function createMarkovChainOptimistic, parameterized by kc,
and the recursive helper function createGraph.

function createMarkovChainOptimistic(kc)
createGraph(kc, kc)
addEdge(final, final, 1)

end function

function createGraph(i, j)
if j > 0 then

for l ∈ [0, j − 1] do
addEdge((i, j), (i, j − l), h̄ ·m(l))
if l > 0 then

createGraph(i, j − l)
end if

if i > 1 then

addEdge((i, j), (i− 1, j − l), h ·m(l))
createGraph(i− 1, j − l)

end if

end for

addEdge((i, j), (i, 0), h̄ · (1−mΣ
j−1))

createGraph(i, 0)
if i = 1 then

addEdge((i, j), final, h ·mΣ
j−1 + m̄ · h · (1−mΣ

j−1))

addEdge((i, j), (kc, kc),m · h · (1−mΣ
j−1))

else

addEdge((i, j), (i− 1, 0), h · (1−mΣ
j−1))

createGraph(i− 1, 0)
end if

else

addEdge((i, j), (i, j), h̄)
if i = 1 then

addEdge((i, j), (kc, kc),m · h)
addEdge((i, j), final, m̄ · h)

else

addEdge((i, j), (i− 1, j), h)
createGraph(i− 1, j)

end if

end if

end function

32

Algorithm 4 The absorbing Markov chain construction algorithm of the “conserva-
tive” strategy for the optimistic setting, defined by the chain construction function
createMarkovChainOptimistic, parameterized by kc, and the recursive helper function createGraph.

function createMarkovChainOptimisticConservative(kc)
createGraph(kc, kc)
addEdge(final, final, 1)

end function

function createGraph(i, j)
if j > 0 then

for l ∈ [0, j − 1] do
addEdge((i, j), (i, j − l), h̄ ·m(l))
if l > 0 then

createGraph(i, j − l)
end if

if i > 1 then

addEdge((i, j), (i− 1, j − l), h ·m(l))
createGraph(i− 1, j − l)

end if

end for

if i = 1 then

addEdge((i, j), (kc, kc), h̄ · (1−mΣ
j−1) + γ · h · (1−mΣ

j−1))

addEdge((i, j), final, h ·mΣ
j−1 + γ̄ · h · (1−mΣ

j−1))
else

addEdge((i, j), (i, 0), h̄ · (1−mΣ
j−1))

createGraph(i, 0)
if i = 2 then

addEdge((i, j), (kc, kc), h · (1−mΣ
j−1))

else

addEdge((i, j), (i− 1, 0), h · (1−mΣ
j−1))

createGraph(i− 1, 0)
end if

end if

else

addEdge((i, j), (i, j), h̄)
if i = 2 then

addEdge((i, j), (kc, kc), h)
else

addEdge((i, j), (i− 1, j), h)
createGraph(i− 1, j)

end if

end if

end function

33

0 5 10 15 20 25 30 35 40 45 50

kc (blocks)

0

338

677

1016

1354

u
(1

2
se

c
ro

un
ds

)

Optimistic
False

True

Figure 20: Comparison of the expected number of steps before absorption in the non-optimistic
and the optimistic settings. The adversarial power is fixed to 50%+1 and the network adoption
parameter to γ = 0.5.

0 30 60 90 120 150 180 210 240 270 300

u (12 sec rounds)

0.00

0.25

0.50

0.75

1.00

L
iv

en
es

s
pr

ob
ab

ili
ty

Optimistic
False

True

Figure 21: Comparison of the liveness probability in the non-optimistic and the optimistic
settings. The adversarial power is fixed to 50% + 1, the epoch length is set to kc = 3, and the
network adoption parameter to γ = 0.5.

34

the service’s signature on the timestamped message m. In order to construct the authority
as a federation of parties, a Byzantine Agreement protocol can again be deployed, similar to
Section 3.4.

The major benefit of this mechanism lies in the non-interactive nature of signatures. A miner
can broadcast the timestamped signature, along with the new block, and a validator can check
it non-interactively; naturally, the security of the mechanism relies on the underlying signature
scheme’s security. Additionally, the timestamping authority does not need to maintain a list of
timestamped objects; instead, the miners always choose the oldest, when provided with multiple
timestamps for the same message. Therefore, the state that the timestamping service needs to
maintain is O(|c| + κ), whereas, assuming a global clock, the state is non-updatable and only
O(κ) long, comprising only of the signing key.

A further benefit of this approach is the ease of migration to a non-timestamped setting.
When the blockchain achieves an adequate level of security and assistance is no longer needed,
the timestamping service can simply halt its operation. In this case, the miners continue par-
ticipating in the protocol uninterrupted, even though the chains are no longer timestamped.
Therefore, the transition to the non-timestamped setting is seamless and without the need for
extra effort, such as a hard fork of the blockchain.

35

	Introduction
	Preliminaries
	The Protocol's Execution Model
	The Proof-of-Work Mechanism
	The Ledger's Properties
	Threat Model

	The Checkpointed Ledger
	The Checkpointing Functionality
	Block lead
	Security of the Checkpointed Ledger
	Persistence
	Liveness

	The Checkpointed Chain Resolution Protocol
	Prototype Implementation

	The Timestamped Ledger
	The Timestamping Functionality
	Timestamped Chain Resolution
	Decentralized Implementation

	Related work
	Conclusion
	Mathematical Background
	A Checkpointed Protocol That Tolerates Byzantine Faults
	Liveness for Epochs of Random Length
	Liveness for Non-Rushing Adversaries
	Centralized and Non-Interactive Timestamping

