
Increasing Register File Immunity to Transient Errors*

Gokhan Memik1, Mahmut T. Kandemir2, Ozcan Ozturk2

1Electrical and Computer Engineering Dept.
Northwestern University

memik@ece.northwestern.edu

2Computer Science and Engineering Dept.
Pennsylvania State University

{kandemir, ozturk}@cse.psu.edu

ABSTRACT
Transient errors are one of the major reasons for system downtime
in many systems. While prior research has mainly focused on the
impact of transient errors on datapath, caches and main memories,
the register file has largely been neglected. Since the register file is
accessed very frequently, the probability of transient errors is high.
In addition, errors in it can quickly spread to different parts of the
system, and cause application crash or silent data corruption.
This paper addresses the reliability of register files in superscalar
processors. Particularly, we propose to duplicate actively used
physical registers in unused physical registers. The rationale behind
this idea is that if the protection mechanism (parity or ECC) used
for the primary copy indicates an error, the duplicate can provide
the data as long as it is not corrupted. We implement two types of
strategies based on this register duplication idea. In the
“conservative strategy,” we limit ourselves with the given register
usage behavior, and duplicate register contents only on otherwise
unused registers. Consequently, there is no impact on the original
performance when there is no error, except for the protection
mechanism used for the primary copy. Our experiments with two
different versions of this strategy show that, with the more powerful
conservative scheme, 78% of the accesses are to the physical
registers with duplicates .The “aggressive strategy” sacrifices some
performance to increase the number of register accesses with
duplicates. It does so by marking the registers not used for a long
time as “dead” and using them for duplicating actively used
registers. The experiments with this strategy indicate that it takes
the fraction of the reliable register accesses to 84%, and degrades
the overall performance by only 0.21% on the average.

1. INTRODUCTION
Both consumer and business electronic product owners today are
demanding high reliability in addition to high performance. With
shrinking feature sizes, reducing supply and threshold voltages,
transient errors are becoming an important problem. Such errors can
occur even with zero-defect product and cause single-event upsets,
which can eventually lead to application crash or wrong output.
Moreover, the transient error problem is expected to be even more
pressing in the future due to aggressive scaling-down of the supply
voltages (Vdd), ever-scaling feature sizes, increasing clock rates, and
the use of flip-chip packaging. Even if the error probability for a
single transistor can be kept constant in the future, the overall error
probability in a chip is going to increase in parallel with the number
of transistors on a chip. While it is critical to put every effort to
avoid these errors by careful circuit design and packaging, they can
still occur and need to be addressed.
While recent research has mainly focused on the impact of errors on
main memories [6], cache structures [5, 13, 14], and the datapath
[24], the register file has largely been ignored. Although the register
file itself does not occupy a large on-chip area, it is accessed very
frequently. As a result, chances for a transient error in the register
file to occur are high. In addition, a register error, if not taken care
of, can quickly propagate to the other parts of the system. In light of
this, several processor architectures employ error detection and
recovery schemes in their register files, e.g. IBM G5 uses an ECC-

based scheme [21]. In fact, soft errors in register files can lead to a
large number of system failures [7, 20]. In addition, due to the high
operation frequency, register files are not immune to other types of
transient errors (e.g., errors due to inductive noise).
There are at least two obvious ways of protecting register files
against transient errors. First, one can use parity to detect any odd
number of bit errors. While a parity-based protection is not
expensive to accommodate (from both performance and energy
perspectives), it is limited since no error correction is provided. An
ECC scheme, on the other hand, can correct single or multiple bit
errors. However, this advantage comes at the expense of increased
power consumption and latency. Even a simple ECC can take up to
three times the delay of a simple ALU operation [27]. More
importantly, the energy consumption of an ECC-based scheme can
be as high as an order of magnitude larger than the energy
consumed during a register access [17]. Realistically speaking, most
of the errors that occur are single bit errors, and a scheme that can
successfully correct single bit errors without incurring
power/performance problems seems to be highly desirable.

Figure 1. Fraction of active physical registers over the simulation
time for the 253.perlbmk and 172.mgrid applications. See
Table 1 for processor configuration.
Superscalar processors have been traditionally used to increase the
performance in general-purpose architectures. Due to their
complexity, their usage in embedded systems was limited. However,
recently we are seeing increasingly more superscalar designs for
embedded systems, e.g., STMicroelectronics [26], ARM [8],
Renesans and Hitachi [9]. Our scheme targets such superscalar
machines. In search for an error correction scheme that incurs small
power and performance penalties, we studied the register usage of
the Spec2000 benchmarks. Figure 1 plots the fraction of the
physical registers that are allocated (i.e., that are mapped to a
logical register or hold valid data) during the execution for
253.perlbmk and 172.mgrid benchmarks (the details of our
experimental setup and simulation parameters will be given later).
One can see from these plots that, while the register usage behavior
changes during the course of execution, a significant fraction of the
physical registers (in particular for the 172.mgrid) are not used.
Based on this observation, this paper proposes to use unused
physical registers as duplicates for the actively used ones.
Specifically, we investigate two different strategies: conservative
and aggressive. In the conservative strategy, we limit ourselves with
the given register usage behavior of the application being executed.
That is, we duplicate active registers in the unused ones without

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200 250 300
Executed Instructions [M]

Fr
ac

tio
n

of
 a

ct
iv

e
re

gi
st

er
s

[%
]

253.perlbmk 172.mgrid

* This work is supported in part by the NSF Career Award #0093082.

1530-1591/05 $20.00 © 2005 IEEE

affecting the original execution cycle count of the application. We
evaluate two different implementations of this conservative strategy.
In the conservative-base (CB) version, whenever we allocate a new
physical register, we create a duplicate for it, either in an unused
register or over another duplicate. In the conservative-enhanced
(CE) version, when creating a new duplicate over an existing one,
we select the victim duplicate carefully, considering the frequency
of register usage. Also, we initiate a copy operation whenever a
register becomes available. A common characteristic of these two
versions is that they do not increase the original number of
execution cycles. As a consequence, when the register pressure is
very high, they tend to perform no duplication. In comparison, the
aggressive strategy creates a duplicate at the expense of
performance. The main idea is to predict the cases where a physical
register is not going to be used in the future, and (after writing its
contents to memory) use it for duplicating the contents of an active
physical register.
We used 20 applications (10 integer and 10 floating-point) from the
Spec2000 benchmark to evaluate our strategies. Experimental
results obtained using SimpleScalar [4] indicate that using the most
powerful conservative scheme results in nearly 78% of the register
accesses to have their duplicates (which is a good guarantee in case
the protection mechanism of the primary register indicates an error).
Our experiments also show that the aggressive scheme brings up the
number of such reliable register accesses to 84% on the average, at
the expense of a slight degradation in the original performance
(0.21% on the average across all benchmarks).
The rest of this paper is organized as follows. The next section
explains the default physical register allocation mechanism. Section
3 presents our experimental setup. Section 4 gives the details of the
proposed duplication-based strategies, and presents experimental
data showing their effectiveness. Section 5 discusses the related
architectural-level work on reliability. Section 6 concludes the paper
by summarizing our observations.
2. CONVENTIONAL REGISTER RENAMING
If the number of physical registers is sufficient, register renaming
removes the write-after-read (WAR) and write-after-write (WAW)
hazards, allowing higher levels of instruction-level parallelism (ILP)
to be achieved at runtime. This is achieved by mapping logical
registers to physical registers dynamically during the execution.
Specifically, each new logical register value is mapped to a different
physical register. Therefore, even if the instructions are executed
out-of-order, no WAR or WAW hazards will occur.
For each fetched instruction, two tasks have to be performed to
complete renaming: A new physical register has to be allocated for
the destination register(s), and the source registers should be
renamed to corresponding physical registers. There are several
possible implementations to achieve this. In this work, we employ a
scheme similar to that of Alpha 21264 [11], where the renamed and
architectural register files are merged into a single register file, and
there is a separate table for mapping logical registers to physical,
each physical register can be in one of the following four states: not
used or available (NU); used as an architectural register (AR);
allocated, but not valid (AN): allocated-valid (AV).
Initially, only the physical registers that correspond to the logical
registers are in the AR state, all the remaining registers are in the
NU state. When a register is allocated for a logical register, it is
transitioned to the AN state. Then, when the instruction in question
writes the value to the register, the register is placed into the AV
state. When the instruction completes, the register is placed into the
AR state. If the instruction is cancelled (or squashed), the register is
transitioned back to the NU state. Similarly, if the logical register is
mapped to another register, the register is placed into the NU state
after all the corresponding instructions complete. Register values
can only be read if the physical register is in AV or AR states. There
are usually three hardware structures to implement register

renaming: The Mapping Table (MT) maps logical registers to
physical registers; the Reservation Station (RS) keeps information
about each fetched instruction; and the Register Renaming Circuit
(RRC) stores the state of each physical register. The RRC can snoop
the register file accesses to update the state values.
We modify this model to achieve a precise rollback and to keep
track of “in-flight” instructions, i.e., the currently executing
instructions that have a physical register mapped as a source
register. If an instruction is squashed, we need to rollback only the
corresponding registers to their original states and values. In recent
Pentium family microprocessors [10] this is achieved with the help
of a Reorder Buffer. We, on the other hand, extend the Reservation
Station (RS) to hold the previous mapping information for the
destination registers. We also keep track of whether the RS entry
corresponds to an instruction that is the last consumer for a
particular physical register and which RS entry was the previous last
consumer for this source register. This instruction is used to
transition the physical register state to AR or NU. Only the last
consuming instruction changes the state of a register during its
commit stage. If the last consumer instruction completes and the
logical register is already mapped into another physical register, the
register can be placed directly into the NU state; otherwise, it is
transitioned to the AR state. If the last consuming instruction is
squashed, we use the previous RS entry field to retrieve the
information about the previous last consumer. If this instruction has
already committed, we can change the state to AR or NU. In our
experiments, we do not differentiate between AR, AN, and AV
states: as far as our techniques are concerned, all these registers are
considered as “active” registers. Hence, we only differentiate
between registers that are not in use and registers that are active.
3. EXPERIMENTAL SETUP
In the rest of this paper, we explain each proposed technique
followed by the presentation of its experimental results. Therefore,
we first present our experimental setup.
Table 1. Simulated applications and important statistics: Number of
execution cycles, total number of level 1 data cache accesses,
number of register values read, number of register values written,
the number of errors injected during the simulations, and the
number of faults caused by these injected errors.

Appl. cycle
[M]

DL1
acc.[M]

Reg.
reads[M]

Reg.
writes[M]

Error
injected[K]

Faults
caused[K]

168.wupwise 260.1 93.4 550.82 284.55 32.9 30.9
171.swim 837.5 97.5 344.10 127.46 106.1 44.4
172.mgrid 492.9 109.8 285.96 48.28 62.4 57.8
173.applu 661.9 114.2 284.64 41.53 93.8 84.1
177.mesa 147.8 109.8 339.7 192.92 18.7 9.1
179.art 1845.7 102.8 309.8 125.65 233.7 92.4
183.equake 1407.6 127.2 436.50 183.93 178.2 139.9
188.ammp 762.8 116.2 501.86 195.35 96.6 40.6
189.lucas 567.2 72.0 338.17 154.46 71.8 55.9
301.apsi 308.6 111.8 571.27 230.48 39.1 33.3
FP. Average 729.2 105.5 396.28 158.46 92.3 58.9
164.gzip 200.8 71.8 480.1 309.7 25.4 17.4
175.vpr 682.3 118.8 428.2 248.9 86.4 61.2
176.gcc 376.0 126.7 459.7 270.5 47.6 19.6
181.mcf 2151.6 20.3 260.4 185.3 272.5 75.7
186.crafty 308.8 119.5 450.8 280.5 39.1 17.6
197.parser 576.8 89.2 498.1 289.8 73.0 38.2
253.perlbmk 261.5 108.3 419.3 240.4 33.1 14.5
254.gap 230.4 115.1 459.4 297.9 29.2 14.5
255.vortex 314.2 124.8 317.9 185.1 39.8 20.3
300.twolf 802.7 100.1 518.2 300.5 101.6 66.3
Int. Average 590.5 99.5 429.2 260.9 74.8 34.5
Average 659.9 102.5 329.9 178.0 83.6 46.7
3.1 SIMULATION PARAMETERS AND BENCHMARKS
The SimpleScalar/Alpha [4] simulator is used to evaluate the
proposed techniques. The necessary modifications to the simulator

have been implemented to perform register renaming, error
injection, and the proposed error protection strategies. Some of the
schemes use the selective replay capabilities that exist in some
modern microprocessors such as Intel Pentium 4 [12]. Selective
replay is used to selectively rollback instructions that were not able
to execute correctly because of a misprediction. Therefore, we have
also made changes to SimpleScalar to simulate a realistically sized
issue queue, and to simulate a realistic scheduler under selective
replay. The base architecture is a 4-way superscalar processor with
32 logical and 80 physical integer and floating point registers, 16
KB, 4-way associative level 1 instruction and data caches and a 256
KB, 8-way unified level 2 cache.
We simulate 10 floating-point and 10 integer benchmarks from the
SPEC2000 benchmarking suite. We simulate 300 Million
instructions after fast-forwarding an application-specific number of
instructions as proposed by Sherwood et al. [23]. The important
statistics for our applications are given in Table 1. We see from this
table that the number of register accesses is much higher than the
number of L1 data cache accesses, which indicates that the chances
for a transient error in the register file to be consumed are higher
than that of a cache error. The last two columns of the table give the
number of errors we inject into the register file during the
simulations and how many of those injected errors cause a fault.

3.2 ERROR INJECTION
To test the effectiveness of the error protection techniques proposed
in this paper, we inject errors into the register file. These errors can
change the value stored in the register file (representing soft errors),
or they can occur during the reading or writing the register value
(representing other types of transient errors). The former is achieved
by using a random number generator to trigger an error in a random
location in the register file. This generator is invoked at every
simulation cycle. The error probability is set to 10-7 per each bit in
the register file in accordance with literature [15]. All the base
experiments use this probability. Later, to conduct a sensitivity
analysis, we have also performed some experiments with a larger
probability. Similarly, for the latter type of errors, in every access to
the register file (including register writes), we generate an error with
the same probability. In accordance with other studies, the
probability of two-bit errors is set to 10-9 and the probability of
three-bit errors is set to 10-11 [15].
4. ERROR PROTECTION STRATEGIES
4.1 CONSERVATIVE STRATEGIES
The conservative strategies proposed in this work utilize only the
physical registers that are not used by the register renaming
mechanism. Consequently, they do not degrade the performance
compared to the base architecture.
4.1.1 CONSERVATIVE-BASE (CB)
In the base architecture, the RRC has information about the physical
registers that are not used. Therefore, when we allocate a new
physical register, we also allocate a register that will be used for
copying the register value1. The copy register name is placed into
the RUU (or the Reservation Station). At the writeback pipeline
stage, the copy register is also written. In CB, this is the only time
when a copy can be generated. Note that, the RRC can later allocate
the copy register to be used for storing copies of other register
values. In addition, the copy register can also be activated, i.e.,
logical registers can be mapped to it. Therefore, even if during the
execution of the program all the physical registers are active, there
is no performance penalty caused by CB.
Figure 2 depicts the structures that are modified for CB. There are
three important modifications. First, the RRC is enhanced to select a
copy register and store the copy register name for any physical

1 The register that stores the copy value is called the copy register.

register that has a copy. Also, a physical register can be in an
additional state called copy, which indicates that it is used as a copy
register (duplicate). For CB, this information is only needed during
an error. Second, the Reservation Station is also enhanced to store
the name of this copy register to enforce the copy operation during
the execution of the instruction. Therefore, the path between the
register file and the RS should be modified to contain this
information. Finally, we need to make a modification to the register
file as well. Specifically, it should be enhanced to perform the copy
operation. For CB, copy operations are performed only during the
write operations. Therefore, we can add a “copy” port for each write
port in the register file. Any input in the copy port would force the
corresponding write value to be copied in the given register name.
Note that, additional ports can potentially have an impact on the
access time of the register file. However, the complexity of
implementing the copy operation discussed here is expected to be
less compared to having an additional write port, because the
values written to the registers will be the same. Hence, we only need
to receive two register numbers and one value as input and write the
value to both the registers. In addition, compared to alternative
reliability measures (such as ECC3), the increased complexity of this
addition would be smaller. In any case, if this extra delay is
intolerable, one option might be to perform the copy operation at the
background (e.g., one cycle after the actual write).

Figure 2. Register renaming for CB. The straddled area indicates
the additional hardware required. The addition to RS is used to
store the name of the copy register for the destination register. The
RRC stores information about the copies as well.
Irrespective of the error detection mechanisms, we can use two
metrics that can demonstrate how our duplication-based schemes are
performing in practice. The first of these is called the duplication
success rate, which is defined as the fraction of successful
duplication attempts. The second metric is the reliable read rate,
which gives us the fraction of time we read a register for which a
duplicate exists. Of these, the reliable read rate is more important
since we ultimately want to maximize the number of times where
the accessed physical register has its duplicate. Figure 3 presents the
results for both statistics. Figure 3(a) gives the duplication success
rate for CB (due to lack of space, we only present the results for two
applications and averages). We find that the duplication success rate
is around 85% for the integer benchmarks and 88% for the floating-
point benchmarks. These values are reasonable since the only time a
duplication attempt can fail is when all the physical registers are
active, which happens rarely in a typical execution. We also see that
majority of the duplicates are made to empty physical registers. This
is mainly because in this scheme when a duplicate is overwritten (by
another duplicate or a primary copy), it is not restored. When we
look at the reliable read rates given in Figure 3(b) (marked as has
copy), we find that on the average 71% of the reads are made to the
registers with duplicates. This result tells us that 71% of the time we
can correct odd number of bit errors if the duplicate is clean
(assuming that the registers are protected using parity).
CB has two main drawbacks. First, in many cases, it might happen
that a register can lose its duplicate but continue to be read many
times in subsequent computation. Since in CB the duplicates are

Reservation
Station (RS)

Decoded Inst.

OC

Rs1, Rs2 Mapping
Table

Rd, Rd’

Rs1’ Rs2’

Rd

Rd’

Rd’, Rs1’, Rs2’, Rdcopy

 R
R

C

Rdcopy

Rd state change

Merged Register
File

0
10
20
30
40
50
60
70
80
90

100

17
2.m

gri
d

FP
 av

g.

25
3.p

erl
bm

k

INT
 av

g.

dup. available
dup. copy
dup. fail

(a)

0
10
20
30
40
50
60
70
80
90

100

16
8.w

up
wis

e

17
1.s

wim

17
2.m

gri
d

17
3.a

pp
lu

17
7.m

es
a

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mm
p

18
9.l

uc
as

30
1.a

ps
i

FP
 av

g.

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

30
0.t

wo
lf

INT
 av

g.

Av
g.

Fra
cti

on
 [%

]

has copy has no copy

(b)

0
10
20
30
40
50
60
70
80
90

100

16
8.w

up
wis

e

17
1.s

wim

17
2.m

gri
d

17
3.a

pp
lu

17
7.m

es
a

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mm
p

18
9.l

uc
as

30
1.a

ps
i

FP
 av

g.

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

30
0.t

wo
lf

IN
T a

vg
.

Av
g.

Fra
cti

on
 [%

]

has copy has no copy

(b)

0
10
20
30
40
50
60
70
80
90

100

17
2.m

gri
d

FP
 av

g.

25
3.p

erl
bm

k

IN
T a

vg
.

dup. available
dup. copy
dup. fail

(a)

0
10
20
30
40
50
60
70
80
90

100

16
8.w

up
wis

e

17
1.s

wim

17
2.m

gri
d

17
3.a

pp
lu

17
7.m

es
a

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mm
p

18
9.l

uc
as

30
1.a

ps
i

FP
 av

g.

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

30
0.t

wo
lf

INT
 av

g.

Av
g.

Err
or

Re
co

ve
ry

[%
]

CE + parity AG + parity ecc CE + ecc AG + ecc

created only at writes, all such accesses will be counted as
“unreliable reads.” Since CB allocates copy registers on write only,
during the periods with high register pressure, most copies are
overwritten and they are reallocated a copy register when the
pressure reduces. The second drawback is that, when it is creating a
new duplicate in a register that holds another one, the selection of
this victim register is done in some predetermined order.
4.1.2 CONSERVATIVE-ENHANCED (CE)
This scheme tries to eliminate the drawbacks of the CB by initiating
copy operations whenever a register becomes available. In addition,
CE tries to alleviate the second shortcoming of CB by being more
careful in selecting the copy registers. More specifically, for each
physical register, CE keeps track of the last time the register has
been accessed. Then, if a copy has to be overwritten, the copy
belonging to the “oldest” physical register is selected. The oldest in
this context is the physical register that has not been accessed for
the longest duration at the time of the decision. CE also uses a
similar approach to decide on the physical register to be copied in
the case of copy generation due to copy-on-free (i.e. the copy
operation performed when a register becomes available).
To capture the age of a physical register, we use a 7-bit global
counter that is incremented at every 1000 cycles. When a register is

accessed, the value of the global counter is stored in the
corresponding register access time field in the RRC. When a
decision is made, this value is used to select the copy register to be
overwritten or the physical register to be copied. If the counter rolls
over (which will happen at every 128,000 cycles), we check the
most significant bits of the counter values of the physical registers.
The physical registers with the MSB value being zero (i.e., the
registers that have not been accessed for more than 64,000 cycles)
are marked using an additional “too-old” bit in the RRC. When a
copy register needs to be overwritten and there is a physical register
with a copy that has the too-old bit set, its copy is overwritten.
The duplication success rate and reliable read rate for this scheme
are given in Figures 4(a) and 4(b), respectively. One can observe
from these results that CE in general generates better results than
CB. Specifically, CE achieves a 78% reliable read rate, and 65% of
the copies overwrite other copies. Intuitively, a register that has not
been accessed for more than 10,000 cycles has less chance of being
accessed again soon compared to a register that has been accessed in
last 10 cycles. In Section 4.2, we study these probabilities, and
present empirical data that this intuition is indeed correct. Therefore,
by having copies for registers that are recently accessed, CE
increases the reliable read rates.

Figure 3. Success of the CB scheme: (a) The fraction of duplication failure (dup. fail), duplication over another copy (dup. copy), and
duplication over an available register (dup. available), (b) The fraction of accesses to registers having a copy and the ones without a copy.

Figure 4. Success of the CE scheme. The labels are the same as in Figure 3.

Figure 5. Register re-usage: Fraction of registers accessed after being put into the AR state (reaccessed), fraction of registers accessed after
10 cycles (after 10), after 100 cycle (100), after 1000 cycles (1000), and after 10000 cycles (after 10000) of going into the AR state.

Figure 6. Error recovery rates for Aggressive scheme. AG + parity is the aggressive scheme with pure-parity based error detection, AG +
ecc is the aggressive technique along with the ECC error recovery/detection.

0.0000001
0.000001

0.00001
0.0001

0.001
0.01

0.1
1

10
100

168
.wu

pw
ise

171
.sw

im

172
.mg

rid

173
.ap

plu

177
.me

sa

179
.ar

t

183
.eq

uak
e

188
.am

mp

189
.luc

as

301
.ap

si

FP
 av

g.

164
.gz

ip

175
.vp

r

176
.gc

c

181
.mc

f

186
.cra

fty

197
.pa

rse
r

253
.pe

rlbm
k

254
.ga

p

255
.vo

rte
x

300
.tw

olf

INT
 av

g.

Av
g.

Fra
ctio

n [
%]

reaccessed after 10 after 100 after 1000 after 10000

Figure 7. Increase in energy consumption for different schemes. The energy numbers are relative to the consumption in the register file.

4.2 AGGRESSIVE STRATEGY (AG)
The partial success of CE is a strong motivation to look for more
aggressive schemes. Particularly, an aggressive scheme can address
the failures incurred by the lack of a duplicate. We started to search
for such a strategy by collecting further statistics on register usage.
Figure 5 shows the fraction of active physical registers accessed
after going into the AR state. Note that small values are highlighted
in the lower portion of the graph. We see from these results that, on
the average, only 18% of the registers are re-accessed after going
into the AR state. This ratio drops to 10.8%, 4.4%, 0.4%, and 0.06%
after 10, 100, 1,000, and 10,000 cycles after going into the AR state,
respectively. In other words, if we wait long enough, it is likely that
contents of a given physical register are dead, and thus can be used
for holding the duplicate of an active register.
Architecturally, AG is not significantly different from CE. The RRC
is enhanced to implement the eviction decision. This will be
explained further in the following discussion. In addition, the
physical register states are also changed. Instead of five states, the
AG scheme uses two additional states: victim-copy and victim-
available. Victim-copy indicates that the RRC has evicted this
physical register and uses it as a copy register. Victim-available, on
the other hand, indicates that the physical register is evicted, but it is
not used at the moment. Victim registers are never mapped to
logical registers. If we had mapped it to other logical registers, we
would have needed a complicated rollback mechanism to change the
mapping. Once a register is selected as a victim register, the RRC
introduces a dummy store operation into the pipeline. We assume
that predetermined portions of the address space are allocated for
copying the registers. The RRC then checks for source registers
addressed to this physical register. If such an instruction is fetched,
the RRC introduces a dummy load operation in front of this
instruction to read the value back to the register file. Since the
original register can only be used as a copy register, this load is
guaranteed to not change any logical register mappings. If, instead,
the logical register is overwritten, the register will be placed into the
NU (if it is victim-available) or Copy (if it is victim-copy) states.
AG is conservative in the register evictions. If the number of
available registers goes above 10% of the available physical
registers, the evicted registers are read back to the register file. It
should be emphasized that even a misprediction in our context does
not cause a correctness problem, as we always write the contents of
the register to the memory before it is modified. However, a high
misprediction rate can cause an increase in the original execution
cycles. Therefore, the threshold value after which the contents of a
register are pronounced dead should be kept large enough. In our
experiments, we mark the registers that are not accessed for more
than 10,000 cycles as dead. This results in increased reliability with
minimal performance impact. Due to limited space, we do not
present the results for the duplication success rate and reliable read
rate for the AG. In summary, the reliable read rate for the aggressive
scheme is 84% on the average. The duplication success rates are
reduced compared to CE. This is an expected result as, with the
evicted registers, the RRC has more registers that can be used for
copying, thereby reducing the number of copy overwrites.
4.2.1 ERROR RESILIENCE RESULTS
Note that, all the results presented so far were for simulations
without injecting any errors. While these results clearly showed that
our strategies are successful in providing reliable reads, it is also

important to evaluate their behavior under errors. To do this, we
inject transient errors into the register file using the method
explained in Section 3.1. The graph in Figure 6 presents the error
resilience results for AG when used with parity (AG + parity) and
with ECC (AG + ecc). We also present the results for CE + parity,
CE + ecc, and pure ECC schemes. Note that, for the aggressive
scheme, we assumed that the memory is reliable, i.e., if the register
does not contain any errors while it is written to the memory, it will
still have no errors when it is read back. The results indicate that the
aggressive scheme performs better, in terms of error recovery, than
CE. Particularly, AG + parity and AG + ecc can recover over 77.1%
and 95.0% of the transient errors, respectively. We have also
performed an analysis of the failed recoveries for AG + parity. We
do not present the detailed results here; but, they revealed that most
failures (37.1%) are due to lack of duplicates, and the multi-bit
errors and the corrupted copies constitute 30.5% and 32.4% of the
failures, respectively.

4.2.2 PERFORMANCE RESULTS
Unlike the conservative strategies, AG has a performance penalty
that should be quantified as well for a fair comparison. Therefore,
we measure the misprediction rate for AG. We define the
misprediction rate as the number of times we pronounce a physical
register as dead but the register is later accessed. The misprediction
rates for integer and floating-point benchmarks are 0.22% and
0.19%, respectively, indicating that our prediction mechanism
works very well with a threshold value of 10,000 cycles. To see the
impact of this misprediction rate on the overall performance of our
applications, we recorded execution cycles. The average
performance degradation is around 0.09% across all applications.
4.3 ENERGY CONSUMPTION RESULTS
After having discussed the reliability and performance results in
detail, we now focus on energy consumption of different schemes.
Figure 7 gives the register file energy consumption for four schemes
(CB in conjunction with parity, CE in conjunction with parity, AG
in conjunction with parity, and the pure ECC scheme), as
normalized values with respect to the pure parity-based scheme for
an error-free execution (the energy results with errors injected are
very similar since the number of errors is very small compared to
the total number of register file accesses). To measure the energy
consumed by the ECC scheme, we simulated the error
detection/correction events. Then, we used published energy
consumption values [17] to find the energy impact of the
techniques. On average, an ECC operation consumes 206% of the
energy consumed for a register file access. Also, it should be
emphasized that the energy consumption values given for CB and
CE include all the energy overheads associated with these schemes.
Specifically, we consider the register write operations due to copies,
the energy overhead of the register file due to the additional copy
port, increased size of the reservation table and the RRC for all the
techniques; the global-counter and 8-bit counter stores for CE; the
extra memory accesses, effects of selective replay, and increased
number of instructions executed for the aggressive strategy. We see
from these results that the conservative strategies are much more
energy efficient than the pure ECC scheme. This is because the ECC
scheme pays an energy price (over the pure parity-based protection)
at each register access (i.e., whether we have error or not). On
average, CB, CE, AG, and ECC increase the energy consumption by
11.1%, 15.7%, 28.8%, and 195.6% respectively. It should also be

0
20
40
60
80

100
120
140
160
180
200

16
8.w

up
wis

e

17
1.s

wim

17
2.m

gri
d

17
3.a

pp
lu

17
7.m

esa

17
9.a

rt

18
3.e

qu
ake

18
8.a

mm
p

18
9.lu

cas

30
1.a

psi

FP
 av

g.

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

30
0.t

wo
lf

INT
 av

g.

Av
g.Inc

rea
se

in
En

erg
y

Co
ns

um
pti

on
 [%

]
CB CE AG ECC

emphasized that, while a 15.7% increase in the register file energy
consumption (for CE) may seem significant at first glance, the
register file energy itself typically constitutes a small fraction of the
overall system energy. Therefore, one may expect the impact on the
overall system energy consumption to be within tolerable limits.
Overall, these results clearly indicate that, while a pure ECC-based
protection mechanism might be a good candidate from the reliability
angle, it is certainly not a good candidate when one considers power
consumption. Note that, even if the ECC computation is done at the
background (i.e., with no performance penalty) as has been assumed
here, it is still not possible to hide its energy overhead.
4.4 DISCUSSION
In this paper, we have presented a scheme for increasing the
robustness of register files to transient errors. The main idea was to
duplicate the values of the activate registers in the registers that are
not used. One could also come up with alternate techniques for
duplicating the register values. One such scheme would be to
replicate the register file and have a second “copy” register file
where the writes to the main register file are snooped and performed
on the copy register file. The main drawback with this approach
would be doubling the register file size. Although the register file
itself constitutes a small fraction of the overall chip area, it resides
in a critical segment of the datapath, and increasing the area in this
segment can have a negative impact on the overall performance of
the processor. Note that, in comparison, our approach tunes the
aggressiveness of protection based on the dynamic demands on the
physical registers.
5. RELATED WORK
Designing for transient-error tolerance has traditionally been
considered in the context of systems that operate in high-radiation
environments or in outer space, where there is a heavy concentration
of alpha-particles and atmospheric neutrons [28]. Research from
IBM showed that computer systems are susceptible to transient
faults induced by these particles [25]. More recently, designing
computer systems for resiliency [16] to transient faults has gained
greater significance due to the combined effect of higher integration
densities, lower voltages, and faster clock frequencies. Redundancy
is a frequently used technique for providing fault tolerance. Spatial
redundancy may involve a complete duplication of all hardware
components as in the HP NonStop Himalaya machine [1]. The IBM
POWER4 [3] provides an extensive hierarchy of checkers
distributed in all the major sections of the processor. Temporal
redundancy has been proposed for both superscalar and SMT
paradigms [18, 19, 22]. The DIVA architecture takes a slightly
different approach wherein a special checker-processor is used at
the commit stage of the main core's pipeline to verify the
correctness of the instructions being committed [2].
6. CONCLUDING REMARKS
This paper proposes and evaluates different strategies for increasing
the resilience of register files to transient errors. These strategies are
based on the observation that at a given time a significant fraction of
the physical registers do not hold valid data, and can thus be used as
placeholders for duplicates of the actively used registers. Our
conservative schemes do not impact original performance of
applications, and duplicate registers using only otherwise unused
registers. We found that the most effective conservative scheme
(CE) has around a 78% reliable read rate, and recovers from the
67% of the cases where a pure parity-based scheme fails. Our
experiments with the aggressive strategy showed that it takes the
error recovery rate to 77%, at the expense of slight (0.21%)
degradation in the original performance. It is to be emphasized that
errors occur rarely. Therefore, one of the most important issues is
not to incur too much additional performance/energy overhead in
the normal (error-free) case. Our conservative and aggressive
strategies achieve this. Hence, we believe that the duplication-based
recovery schemes are attractive solutions under these requirements.

REFERENCES
[1] Albonesi, D. H. Selective cache ways. In Int. Symposium of
Microarchitecture, Nov. 1999. Haifa / Israel.
[2] Austin, T. DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design. In Intl. Symp. on Microarchitecture, Nov. 1999.
[3] Bossen, D. C., J. M. Tendler, and K. Reick., POWER4 System Design for
High Reliability. IEEE Micro, March 2002, 22(2): p. 16-24.
[4] Burger, D. and T. Austin, SimpleScalar Tool Set, Version 2.0. June 1997,
University of Wisconsin.
[5] Chen, C. and A. K. Somani, Fault Containment in Cache Memories for
TMR Redundant Processor Systems. IEEE Transactions on Computers,
March 1999, 48(4): p. 609-623.
[6] Dell, T. J., A White Paper on the Benefits of Chipkill-Correct ECC for PC
Serve Main Memory. Nov. 1997, IBM Microelectronics Division.
[7] Dupont, E. Soft Error: A new skill in semiconductor business. In
International Reliability Physics Symposium, 2003.
[8] EETimes. Two call on superscalar CPUs for handset apps, Oct. 2003,
http://www.eetimes.com/futureofsemis/showArticle.jhtml?articleId=1650212
3&kc=6255.
[9] Global-Electronics. Renesas and Hitachi announce development of 32-Bit
RISC CPU Core for Embedded Systems, http://www.global-
electronics.net/id/23262/CMEntries_ID/46656.
[10] Hinton, G., D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and
P. Roussel, The microarchitecture of the Pentium 4 processor. 2001.
[11] Kessler, R., The Alpha 21264 Microprocessor. IEEE Micro, Mar/Apr
1999, 19(2).
[12] Kim, I. and M. H. Lipasti. Understanding Scheduling Replay Schemes.
In International Symp. on High Performance Computer Architecture, Feb.
2004.
[13] Kim, S. and A. K. Somani, An Adaptive Write Error Detection
Technique in On-Chip Caches of Multi-Level Caching Systems. Journal of
Microprocessors and Microsystems, March 1999, 22(9): p. 561-570.
[14] Kim, S. and A. K. Somani. Area Efficient Architectures for Information
Integrity in Cache Memories. In Intl. Symp. on Computer Architecture, 1999.
[15] Li, L., V. Degalahal, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin.
Soft error and energy consumption interactions: a data cache perspective. In
International Symposium on Low Power Electronics and Design, 2004.
[16] Patel, S. J., Z. Kalbarczyk, R. K. Iyer, W. Magda, and N. Nakka. A
Processor-Level Framework for High-Performance and High-Dependability.
In Workshop on Evaluating and Architecting Systems for Dependability,
2001.
[17] Phelan, R., Addressing Soft Errors in ARM Core-based SoC. Dec. 2003,
ARM Ltd.
[18] Rashid, F., K. K. Saluja, and P. Ramanathan. Fault tolerance through re-
execution in multiscalar architecture. In International Conference on
Dependable Systems and Networks (DSN), June 2000.
[19] Ray, J., J. Hoe, and B. Falsafi. Dual Use of Superscalar Datapath for
Transient-Fault Detection and Recovery. In International Symposium on
Microarchitecture (MICRO), Dec. 2001.
[20] Rebaudengo, M., M. S. Reorda, and M.Violante. An Accurate Analysis
of the Effects of Soft Errors in the Instruction and Data Caches of a Pipelined
Microprocessor. In Design, Automation and Test in Europe (DATE), 2003.
[21] Reinhardt, S. K. and S. S. Mukherjee. Transient Fault Detection via
Simultaneous Multithreading. In Intl. Symp. on Computer Architecture, 2000.
[22] Sato, T. and I. Arita. Tolerating Transient Faults through an Instruction
Reissue Mechanism. In International Conference on Parallel and
Distributed Computing Systems (PDCS), Aug. 2001.
[23] Sherwood, T., E. Perelman, and B. Calder. Basic Block Distribution
Analysis to Find Periodic Behavior and Simulation Points in Applications. In
Intl. Conf.on Parallel Architectures and Compilation Techniques, Sep. 2001.
[24] Shivakumar, P., M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi.
Modeling the Effect of Technology Trends on the Soft Error Rate of
Combinational Logic. In Intl. Conf. on Dependable Systems and Networks
(DSN). Bethesda, MD.
[25] Srinivasan, G. R., Modeling the Cosmic-Ray-Induced Soft-Error Rate in
Integrated Circuits: An Overview. IBM Journal of Research and
Development, Jan. 1996, 40(1): p. 77-89.
[26] STMicroelectronics. STPC Microcontrollers - Overview, 2004,
http://www.st.com/stonline/products/support/micro/stpc/home.htm.
[27] Tremblay, M. and Y. Tamir. Support for Fault Tolerance in VLSI
Processors. In Intl. Symp. on Circuits and Systems, 1989. Portland, Oregon.
[28] Turmon, M., R. Granat, and D. Katz. Software-implemented fault
detection for high-performance space applications. In International
Conference on Dependable Systems and Networks (DSN), June 2000.

