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ABSTRACT 
Transient errors are one of the major reasons for system downtime 
in many systems. While prior research has mainly focused on the 
impact of transient errors on datapath, caches and main memories, 
the register file has largely been neglected. Since the register file is 
accessed very frequently, the probability of transient errors is high. 
In addition, errors in it can quickly spread to different parts of the 
system, and cause application crash or silent data corruption.  
This paper addresses the reliability of register files in superscalar 
processors. Particularly, we propose to duplicate actively used 
physical registers in unused physical registers. The rationale behind 
this idea is that if the protection mechanism (parity or ECC) used 
for the primary copy indicates an error, the duplicate can provide 
the data as long as it is not corrupted. We implement two types of 
strategies based on this register duplication idea. In the 
“conservative strategy,” we limit ourselves with the given register 
usage behavior, and duplicate register contents only on otherwise 
unused registers. Consequently, there is no impact on the original 
performance when there is no error, except for the protection 
mechanism used for the primary copy. Our experiments with two 
different versions of this strategy show that, with the more powerful 
conservative scheme, 78% of the accesses are to the physical 
registers with duplicates .The “aggressive strategy” sacrifices some 
performance to increase the number of register accesses with 
duplicates. It does so by marking the registers not used for a long 
time as “dead” and using them for duplicating actively used 
registers. The experiments with this strategy indicate that it takes 
the fraction of the reliable register accesses to 84%, and degrades 
the overall performance by only 0.21% on the average.  
 

1. INTRODUCTION  
Both consumer and business electronic product owners today are 
demanding high reliability in addition to high performance. With 
shrinking feature sizes, reducing supply and threshold voltages, 
transient errors are becoming an important problem. Such errors can 
occur even with zero-defect product and cause single-event upsets, 
which can eventually lead to application crash or wrong output. 
Moreover, the transient error problem is expected to be even more 
pressing in the future due to aggressive scaling-down of the supply 
voltages (Vdd), ever-scaling feature sizes, increasing clock rates, and 
the use of flip-chip packaging. Even if the error probability for a 
single transistor can be kept constant in the future, the overall error 
probability in a chip is going to increase in parallel with the number 
of transistors on a chip. While it is critical to put every effort to 
avoid these errors by careful circuit design and packaging, they can 
still occur and need to be addressed.  
While recent research has mainly focused on the impact of errors on 
main memories [6], cache structures [5, 13, 14], and the datapath 
[24], the register file has largely been ignored. Although the register 
file itself does not occupy a large on-chip area, it is accessed very 
frequently. As a result, chances for a transient error in the register 
file to occur are high. In addition, a register error, if not taken care 
of, can quickly propagate to the other parts of the system. In light of 
this, several processor architectures employ error detection and 
recovery schemes in their register files, e.g. IBM G5 uses an ECC-

based scheme [21].  In fact, soft errors in register files can lead to a 
large number of system failures [7, 20]. In addition, due to the high 
operation frequency, register files are not immune to other types of 
transient errors (e.g., errors due to inductive noise).  
There are at least two obvious ways of protecting register files 
against transient errors. First, one can use parity to detect any odd 
number of bit errors. While a parity-based protection is not 
expensive to accommodate (from both performance and energy 
perspectives), it is limited since no error correction is provided. An 
ECC scheme, on the other hand, can correct single or multiple bit 
errors. However, this advantage comes at the expense of increased 
power consumption and latency. Even a simple ECC can take up to 
three times the delay of a simple ALU operation [27]. More 
importantly, the energy consumption of an ECC-based scheme can 
be as high as an order of magnitude larger than the energy 
consumed during a register access [17]. Realistically speaking, most 
of the errors that occur are single bit errors, and a scheme that can 
successfully correct single bit errors without incurring 
power/performance problems seems to be highly desirable. 
  
 
 
 
 
 
 
 
 

Figure 1. Fraction of active physical registers over the simulation 
time for the 253.perlbmk and 172.mgrid applications. See 
Table 1 for processor configuration.  
Superscalar processors have been traditionally used to increase the 
performance in general-purpose architectures. Due to their 
complexity, their usage in embedded systems was limited. However, 
recently we are seeing increasingly more superscalar designs for 
embedded systems, e.g., STMicroelectronics [26], ARM [8], 
Renesans and Hitachi [9]. Our scheme targets such superscalar 
machines. In search for an error correction scheme that incurs small 
power and performance penalties, we studied the register usage of 
the Spec2000 benchmarks. Figure 1 plots the fraction of the 
physical registers that are allocated (i.e., that are mapped to a 
logical register or hold valid data) during the execution for 
253.perlbmk and 172.mgrid benchmarks (the details of our 
experimental setup and simulation parameters will be given later). 
One can see from these plots that, while the register usage behavior 
changes during the course of execution, a significant fraction of the 
physical registers (in particular for the 172.mgrid) are not used. 
Based on this observation, this paper proposes to use unused 
physical registers as duplicates for the actively used ones. 
Specifically, we investigate two different strategies: conservative 
and aggressive. In the conservative strategy, we limit ourselves with 
the given register usage behavior of the application being executed. 
That is, we duplicate active registers in the unused ones without 
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affecting the original execution cycle count of the application. We 
evaluate two different implementations of this conservative strategy. 
In the conservative-base (CB) version, whenever we allocate a new 
physical register, we create a duplicate for it, either in an unused 
register or over another duplicate. In the conservative-enhanced 
(CE) version, when creating a new duplicate over an existing one, 
we select the victim duplicate carefully, considering the frequency 
of register usage. Also, we initiate a copy operation whenever a 
register becomes available. A common characteristic of these two 
versions is that they do not increase the original number of 
execution cycles. As a consequence, when the register pressure is 
very high, they tend to perform no duplication. In comparison, the 
aggressive strategy creates a duplicate at the expense of 
performance. The main idea is to predict the cases where a physical 
register is not going to be used in the future, and (after writing its 
contents to memory) use it for duplicating the contents of an active 
physical register. 
We used 20 applications (10 integer and 10 floating-point) from the 
Spec2000 benchmark to evaluate our strategies. Experimental 
results obtained using SimpleScalar [4] indicate that using the most 
powerful conservative scheme results in nearly 78% of the register 
accesses to have their duplicates (which is a good guarantee in case 
the protection mechanism of the primary register indicates an error). 
Our experiments also show that the aggressive scheme brings up the 
number of such reliable register accesses to 84% on the average, at 
the expense of a slight degradation in the original performance 
(0.21% on the average across all benchmarks).   
The rest of this paper is organized as follows. The next section 
explains the default physical register allocation mechanism. Section 
3 presents our experimental setup. Section 4 gives the details of the 
proposed duplication-based strategies, and presents experimental 
data showing their effectiveness. Section 5 discusses the related 
architectural-level work on reliability. Section 6 concludes the paper 
by summarizing our observations. 
2. CONVENTIONAL REGISTER RENAMING  
If the number of physical registers is sufficient, register renaming 
removes the write-after-read (WAR) and write-after-write (WAW) 
hazards, allowing higher levels of instruction-level parallelism (ILP) 
to be achieved at runtime. This is achieved by mapping logical 
registers to physical registers dynamically during the execution. 
Specifically, each new logical register value is mapped to a different 
physical register. Therefore, even if the instructions are executed 
out-of-order, no WAR or WAW hazards will occur. 
For each fetched instruction, two tasks have to be performed to 
complete renaming: A new physical register has to be allocated for 
the destination register(s), and the source registers should be 
renamed to corresponding physical registers. There are several 
possible implementations to achieve this. In this work, we employ a 
scheme similar to that of Alpha 21264 [11], where the renamed and 
architectural register files are merged into a single register file, and 
there is a separate table for mapping logical registers to physical, 
each physical register can be in one of the following four states: not 
used or available (NU); used as an architectural register (AR); 
allocated, but not valid (AN): allocated-valid (AV). 
Initially, only the physical registers that correspond to the logical 
registers are in the AR state, all the remaining registers are in the 
NU state. When a register is allocated for a logical register, it is 
transitioned to the AN state. Then, when the instruction in question 
writes the value to the register, the register is placed into the AV 
state. When the instruction completes, the register is placed into the 
AR state. If the instruction is cancelled (or squashed), the register is 
transitioned back to the NU state. Similarly, if the logical register is 
mapped to another register, the register is placed into the NU state 
after all the corresponding instructions complete. Register values 
can only be read if the physical register is in AV or AR states. There 
are usually three hardware structures to implement register 

renaming: The Mapping Table (MT) maps logical registers to 
physical registers; the Reservation Station (RS) keeps information 
about each fetched instruction; and the Register Renaming Circuit 
(RRC) stores the state of each physical register. The RRC can snoop 
the register file accesses to update the state values.  
We modify this model to achieve a precise rollback and to keep 
track of “in-flight” instructions, i.e., the currently executing 
instructions that have a physical register mapped as a source 
register. If an instruction is squashed, we need to rollback only the 
corresponding registers to their original states and values. In recent 
Pentium family microprocessors [10] this is achieved with the help 
of a Reorder Buffer. We, on the other hand, extend the Reservation 
Station (RS) to hold the previous mapping information for the 
destination registers. We also keep track of whether the RS entry 
corresponds to an instruction that is the last consumer for a 
particular physical register and which RS entry was the previous last 
consumer for this source register. This instruction is used to 
transition the physical register state to AR or NU. Only the last 
consuming instruction changes the state of a register during its 
commit stage. If the last consumer instruction completes and the 
logical register is already mapped into another physical register, the 
register can be placed directly into the NU state; otherwise, it is 
transitioned to the AR state. If the last consuming instruction is 
squashed, we use the previous RS entry field to retrieve the 
information about the previous last consumer. If this instruction has 
already committed, we can change the state to AR or NU. In our 
experiments, we do not differentiate between AR, AN, and AV 
states: as far as our techniques are concerned, all these registers are 
considered as “active” registers. Hence, we only differentiate 
between registers that are not in use and registers that are active. 
3. EXPERIMENTAL SETUP 
In the rest of this paper, we explain each proposed technique 
followed by the presentation of its experimental results. Therefore, 
we first present our experimental setup.   
Table 1. Simulated applications and important statistics: Number of 
execution cycles, total number of level 1 data cache accesses, 
number of register values read, number of register values written, 
the number of errors injected during the simulations, and the 
number of faults caused by these injected errors.  

Appl. cycle 
[M] 

DL1 
acc.[M]

Reg. 
reads[M] 

Reg. 
writes[M] 

Error 
injected[K]

Faults 
caused[K]

168.wupwise 260.1 93.4 550.82 284.55 32.9 30.9
171.swim 837.5 97.5 344.10 127.46 106.1 44.4
172.mgrid 492.9 109.8 285.96 48.28 62.4 57.8
173.applu 661.9 114.2 284.64 41.53 93.8 84.1
177.mesa 147.8 109.8 339.7 192.92 18.7 9.1
179.art 1845.7 102.8 309.8 125.65 233.7 92.4
183.equake 1407.6 127.2 436.50 183.93 178.2 139.9
188.ammp 762.8 116.2 501.86 195.35 96.6 40.6
189.lucas 567.2 72.0 338.17 154.46 71.8 55.9
301.apsi 308.6 111.8 571.27 230.48 39.1 33.3
FP. Average 729.2 105.5 396.28 158.46 92.3 58.9
164.gzip 200.8 71.8 480.1 309.7 25.4 17.4
175.vpr 682.3 118.8 428.2 248.9 86.4 61.2
176.gcc 376.0 126.7 459.7 270.5 47.6 19.6
181.mcf 2151.6 20.3 260.4 185.3 272.5 75.7
186.crafty 308.8 119.5 450.8 280.5 39.1 17.6
197.parser 576.8 89.2 498.1 289.8 73.0 38.2
253.perlbmk 261.5 108.3 419.3 240.4 33.1 14.5
254.gap 230.4 115.1 459.4 297.9 29.2 14.5
255.vortex 314.2 124.8 317.9 185.1 39.8 20.3
300.twolf 802.7 100.1 518.2 300.5 101.6 66.3
Int. Average 590.5 99.5 429.2 260.9 74.8 34.5
Average 659.9 102.5 329.9 178.0 83.6 46.7
3.1 SIMULATION PARAMETERS AND BENCHMARKS  
The SimpleScalar/Alpha [4] simulator is used to evaluate the 
proposed techniques. The necessary modifications to the simulator 



have been implemented to perform register renaming, error 
injection, and the proposed error protection strategies. Some of the 
schemes use the selective replay capabilities that exist in some 
modern microprocessors such as Intel Pentium 4 [12]. Selective 
replay is used to selectively rollback instructions that were not able 
to execute correctly because of a misprediction. Therefore, we have 
also made changes to SimpleScalar to simulate a realistically sized 
issue queue, and to simulate a realistic scheduler under selective 
replay. The base architecture is a 4-way superscalar processor with 
32 logical and 80 physical integer and floating point registers, 16 
KB, 4-way associative level 1 instruction and data caches and a 256 
KB, 8-way unified level 2 cache. 
We simulate 10 floating-point and 10 integer benchmarks from the 
SPEC2000 benchmarking suite. We simulate 300 Million 
instructions after fast-forwarding an application-specific number of 
instructions as proposed by Sherwood et al. [23]. The important 
statistics for our applications are given in Table 1. We see from this 
table that the number of register accesses is much higher than the 
number of L1 data cache accesses, which indicates that the chances 
for a transient error in the register file to be consumed are higher 
than that of a cache error. The last two columns of the table give the 
number of errors we inject into the register file during the 
simulations and how many of those injected errors cause a fault. 

3.2 ERROR INJECTION  
To test the effectiveness of the error protection techniques proposed 
in this paper, we inject errors into the register file. These errors can 
change the value stored in the register file (representing soft errors), 
or they can occur during the reading or writing the register value 
(representing other types of transient errors). The former is achieved 
by using a random number generator to trigger an error in a random 
location in the register file. This generator is invoked at every 
simulation cycle. The error probability is set to 10-7 per each bit in 
the register file in accordance with literature [15]. All the base 
experiments use this probability. Later, to conduct a sensitivity 
analysis, we have also performed some experiments with a larger 
probability. Similarly, for the latter type of errors, in every access to 
the register file (including register writes), we generate an error with 
the same probability. In accordance with other studies, the 
probability of two-bit errors is set to 10-9 and the probability of 
three-bit errors is set to 10-11 [15].  
4. ERROR PROTECTION STRATEGIES  
4.1 CONSERVATIVE STRATEGIES  
The conservative strategies proposed in this work utilize only the 
physical registers that are not used by the register renaming 
mechanism. Consequently, they do not degrade the performance 
compared to the base architecture. 
4.1.1 CONSERVATIVE-BASE (CB) 
In the base architecture, the RRC has information about the physical 
registers that are not used. Therefore, when we allocate a new 
physical register, we also allocate a register that will be used for 
copying the register value1. The copy register name is placed into 
the RUU (or the Reservation Station). At the writeback pipeline 
stage, the copy register is also written. In CB, this is the only time 
when a copy can be generated. Note that, the RRC can later allocate 
the copy register to be used for storing copies of other register 
values. In addition, the copy register can also be activated, i.e., 
logical registers can be mapped to it. Therefore, even if during the 
execution of the program all the physical registers are active, there 
is no performance penalty caused by CB. 
Figure 2 depicts the structures that are modified for CB. There are 
three important modifications. First, the RRC is enhanced to select a 
copy register and store the copy register name for any physical 
                                                                 
1 The register that stores the copy value is called the copy register.  

register that has a copy. Also, a physical register can be in an 
additional state called copy, which indicates that it is used as a copy 
register (duplicate). For CB, this information is only needed during 
an error. Second, the Reservation Station is also enhanced to store 
the name of this copy register to enforce the copy operation during 
the execution of the instruction. Therefore, the path between the 
register file and the RS should be modified to contain this 
information. Finally, we need to make a modification to the register 
file as well. Specifically, it should be enhanced to perform the copy 
operation. For CB, copy operations are performed only during the 
write operations. Therefore, we can add a “copy” port for each write 
port in the register file. Any input in the copy port would force the 
corresponding write value to be copied in the given register name. 
Note that, additional ports can potentially have an impact on the 
access time of the register file. However, the complexity of 
implementing the copy operation discussed here is expected to be 
less compared to having an additional write port, because the 
values written to the registers will be the same. Hence, we only need 
to receive two register numbers and one value as input and write the 
value to both the registers. In addition, compared to alternative 
reliability measures (such as ECC3), the increased complexity of this 
addition would be smaller. In any case, if this extra delay is 
intolerable, one option might be to perform the copy operation at the 
background (e.g., one cycle after the actual write).  
 
 
 
 
 
 
 
 
 
 
Figure 2. Register renaming for CB. The straddled area indicates 
the additional hardware required. The addition to RS is used to 
store the name of the copy register for the destination register. The 
RRC stores information about the copies as well. 
Irrespective of the error detection mechanisms, we can use two 
metrics that can demonstrate how our duplication-based schemes are 
performing in practice. The first of these is called the duplication 
success rate, which is defined as the fraction of successful 
duplication attempts. The second metric is the reliable read rate, 
which gives us the fraction of time we read a register for which a 
duplicate exists. Of these, the reliable read rate is more important 
since we ultimately want to maximize the number of times where 
the accessed physical register has its duplicate. Figure 3 presents the 
results for both statistics. Figure 3(a) gives the duplication success 
rate for CB (due to lack of space, we only present the results for two 
applications and averages). We find that the duplication success rate 
is around 85% for the integer benchmarks and 88% for the floating-
point benchmarks. These values are reasonable since the only time a 
duplication attempt can fail is when all the physical registers are 
active, which happens rarely in a typical execution. We also see that 
majority of the duplicates are made to empty physical registers. This 
is mainly because in this scheme when a duplicate is overwritten (by 
another duplicate or a primary copy), it is not restored. When we 
look at the reliable read rates given in Figure 3(b) (marked as has 
copy), we find that on the average 71% of the reads are made to the 
registers with duplicates. This result tells us that 71% of the time we 
can correct odd number of bit errors if the duplicate is clean 
(assuming that the registers are protected using parity). 
CB has two main drawbacks. First, in many cases, it might happen 
that a register can lose its duplicate but continue to be read many 
times in subsequent computation. Since in CB the duplicates are 
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created only at writes, all such accesses will be counted as 
“unreliable reads.” Since CB allocates copy registers on write only, 
during the periods with high register pressure, most copies are 
overwritten and they are reallocated a copy register when the 
pressure reduces. The second drawback is that, when it is creating a 
new duplicate in a register that holds another one, the selection of 
this victim register is done in some predetermined order.  
4.1.2 CONSERVATIVE-ENHANCED (CE) 
This scheme tries to eliminate the drawbacks of the CB by initiating 
copy operations whenever a register becomes available. In addition, 
CE tries to alleviate the second shortcoming of CB by being more 
careful in selecting the copy registers. More specifically, for each 
physical register, CE keeps track of the last time the register has 
been accessed. Then, if a copy has to be overwritten, the copy 
belonging to the “oldest” physical register is selected. The oldest in 
this context is the physical register that has not been accessed for 
the longest duration at the time of the decision. CE also uses a 
similar approach to decide on the physical register to be copied in 
the case of copy generation due to copy-on-free (i.e. the copy 
operation performed when a register becomes available).  
To capture the age of a physical register, we use a 7-bit global 
counter that is incremented at every 1000 cycles. When a register is 

accessed, the value of the global counter is stored in the 
corresponding register access time field in the RRC. When a 
decision is made, this value is used to select the copy register to be 
overwritten or the physical register to be copied. If the counter rolls 
over (which will happen at every 128,000 cycles), we check the 
most significant bits of the counter values of the physical registers. 
The physical registers with the MSB value being zero (i.e., the 
registers that have not been accessed for more than 64,000 cycles) 
are marked using an additional “too-old” bit in the RRC. When a 
copy register needs to be overwritten and there is a physical register 
with a copy that has the too-old bit set, its copy is overwritten. 
The duplication success rate and reliable read rate for this scheme 
are given in Figures 4(a) and 4(b), respectively. One can observe 
from these results that CE in general generates better results than 
CB. Specifically, CE achieves a 78% reliable read rate, and 65% of 
the copies overwrite other copies. Intuitively, a register that has not 
been accessed for more than 10,000 cycles has less chance of being 
accessed again soon compared to a register that has been accessed in 
last 10 cycles. In Section 4.2, we study these probabilities, and 
present empirical data that this intuition is indeed correct. Therefore, 
by having copies for registers that are recently accessed, CE 
increases the reliable read rates.  

 
 
 
 
 
 
 
 
Figure 3. Success of the CB scheme: (a) The fraction of duplication failure (dup. fail), duplication over another copy (dup. copy), and 
duplication over an available register (dup. available), (b) The fraction of accesses to registers having a copy and the ones without a copy. 
 
 
 
 
 
 

Figure 4. Success of the CE scheme. The labels are the same as in Figure 3.  

 

 

 

Figure 5. Register re-usage: Fraction of registers accessed after being put into the AR state (reaccessed), fraction of registers accessed after 
10 cycles (after 10), after 100 cycle (100), after 1000 cycles (1000), and after 10000 cycles (after 10000) of going into the AR state. 

 

 

 

Figure 6. Error recovery rates for Aggressive scheme. AG + parity is the aggressive scheme with pure-parity based error detection, AG + 
ecc is the aggressive technique along with the ECC error recovery/detection.  
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Figure 7. Increase in energy consumption for different schemes. The energy numbers are relative to the consumption in the register file.  

4.2 AGGRESSIVE STRATEGY (AG)  
The partial success of CE is a strong motivation to look for more 
aggressive schemes. Particularly, an aggressive scheme can address 
the failures incurred by the lack of a duplicate. We started to search 
for such a strategy by collecting further statistics on register usage. 
Figure 5 shows the fraction of active physical registers accessed 
after going into the AR state. Note that small values are highlighted 
in the lower portion of the graph. We see from these results that, on 
the average, only 18% of the registers are re-accessed after going 
into the AR state. This ratio drops to 10.8%, 4.4%, 0.4%, and 0.06% 
after 10, 100, 1,000, and 10,000 cycles after going into the AR state, 
respectively. In other words, if we wait long enough, it is likely that 
contents of a given physical register are dead, and thus can be used 
for holding the duplicate of an active register. 
Architecturally, AG is not significantly different from CE. The RRC 
is enhanced to implement the eviction decision. This will be 
explained further in the following discussion. In addition, the 
physical register states are also changed. Instead of five states, the 
AG scheme uses two additional states: victim-copy and victim-
available. Victim-copy indicates that the RRC has evicted this 
physical register and uses it as a copy register. Victim-available, on 
the other hand, indicates that the physical register is evicted, but it is 
not used at the moment. Victim registers are never mapped to 
logical registers. If we had mapped it to other logical registers, we 
would have needed a complicated rollback mechanism to change the 
mapping. Once a register is selected as a victim register, the RRC 
introduces a dummy store operation into the pipeline. We assume 
that predetermined portions of the address space are allocated for 
copying the registers. The RRC then checks for source registers 
addressed to this physical register. If such an instruction is fetched, 
the RRC introduces a dummy load operation in front of this 
instruction to read the value back to the register file. Since the 
original register can only be used as a copy register, this load is 
guaranteed to not change any logical register mappings. If, instead, 
the logical register is overwritten, the register will be placed into the 
NU (if it is victim-available) or Copy (if it is victim-copy) states. 
AG is conservative in the register evictions. If the number of 
available registers goes above 10% of the available physical 
registers, the evicted registers are read back to the register file. It 
should be emphasized that even a misprediction in our context does 
not cause a correctness problem, as we always write the contents of 
the register to the memory before it is modified. However, a high 
misprediction rate can cause an increase in the original execution 
cycles. Therefore, the threshold value after which the contents of a 
register are pronounced dead should be kept large enough. In our 
experiments, we mark the registers that are not accessed for more 
than 10,000 cycles as dead. This results in increased reliability with 
minimal performance impact. Due to limited space, we do not 
present the results for the duplication success rate and reliable read 
rate for the AG. In summary, the reliable read rate for the aggressive 
scheme is 84% on the average. The duplication success rates are 
reduced compared to CE. This is an expected result as, with the 
evicted registers, the RRC has more registers that can be used for 
copying, thereby reducing the number of copy overwrites. 
4.2.1 ERROR RESILIENCE RESULTS 
Note that, all the results presented so far were for simulations 
without injecting any errors. While these results clearly showed that 
our strategies are successful in providing reliable reads, it is also 

important to evaluate their behavior under errors. To do this, we 
inject transient errors into the register file using the method 
explained in Section 3.1. The graph in Figure 6 presents the error 
resilience results for AG when used with parity (AG + parity) and 
with ECC (AG + ecc). We also present the results for CE + parity, 
CE + ecc, and pure ECC schemes. Note that, for the aggressive 
scheme, we assumed that the memory is reliable, i.e., if the register 
does not contain any errors while it is written to the memory, it will 
still have no errors when it is read back. The results indicate that the 
aggressive scheme performs better, in terms of error recovery, than 
CE. Particularly, AG + parity and AG + ecc can recover over 77.1% 
and 95.0% of the transient errors, respectively. We have also 
performed an analysis of the failed recoveries for AG + parity. We 
do not present the detailed results here; but, they revealed that most 
failures (37.1%) are due to lack of duplicates, and the multi-bit 
errors and the corrupted copies constitute 30.5% and 32.4% of the 
failures, respectively.  

4.2.2 PERFORMANCE RESULTS 
Unlike the conservative strategies, AG has a performance penalty 
that should be quantified as well for a fair comparison. Therefore, 
we measure the misprediction rate for AG. We define the 
misprediction rate as the number of times we pronounce a physical 
register as dead but the register is later accessed. The misprediction 
rates for integer and floating-point benchmarks are 0.22% and 
0.19%, respectively, indicating that our prediction mechanism 
works very well with a threshold value of 10,000 cycles. To see the 
impact of this misprediction rate on the overall performance of our 
applications, we recorded execution cycles. The average 
performance degradation is around 0.09% across all applications.  
4.3 ENERGY CONSUMPTION RESULTS  
After having discussed the reliability and performance results in 
detail, we now focus on energy consumption of different schemes. 
Figure 7 gives the register file energy consumption for four schemes 
(CB in conjunction with parity, CE in conjunction with parity, AG 
in conjunction with parity, and the pure ECC scheme), as 
normalized values with respect to the pure parity-based scheme for 
an error-free execution (the energy results with errors injected are 
very similar since the number of errors is very small compared to 
the total number of register file accesses). To measure the energy 
consumed by the ECC scheme, we simulated the error 
detection/correction events. Then, we used published energy 
consumption values [17] to find the energy impact of the 
techniques. On average, an ECC operation consumes 206% of the 
energy consumed for a register file access.  Also, it should be 
emphasized that the energy consumption values given for CB and 
CE include all the energy overheads associated with these schemes. 
Specifically, we consider the register write operations due to copies, 
the energy overhead of the register file due to the additional copy 
port, increased size of the reservation table and the RRC for all the 
techniques; the global-counter and 8-bit counter stores for CE; the 
extra memory accesses, effects of selective replay, and increased 
number of instructions executed for the aggressive strategy. We see 
from these results that the conservative strategies are much more 
energy efficient than the pure ECC scheme. This is because the ECC 
scheme pays an energy price (over the pure parity-based protection) 
at each register access (i.e., whether we have error or not). On 
average, CB, CE, AG, and ECC increase the energy consumption by 
11.1%, 15.7%, 28.8%, and 195.6% respectively. It should also be 
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emphasized that, while a 15.7% increase in the register file energy 
consumption (for CE) may seem significant at first glance, the 
register file energy itself typically constitutes a small fraction of the 
overall system energy. Therefore, one may expect the impact on the 
overall system energy consumption to be within tolerable limits. 
Overall, these results clearly indicate that, while a pure ECC-based 
protection mechanism might be a good candidate from the reliability 
angle, it is certainly not a good candidate when one considers power 
consumption. Note that, even if the ECC computation is done at the 
background (i.e., with no performance penalty) as has been assumed 
here, it is still not possible to hide its energy overhead. 
4.4 DISCUSSION  
In this paper, we have presented a scheme for increasing the 
robustness of register files to transient errors. The main idea was to 
duplicate the values of the activate registers in the registers that are 
not used. One could also come up with alternate techniques for 
duplicating the register values. One such scheme would be to 
replicate the register file and have a second “copy” register file 
where the writes to the main register file are snooped and performed 
on the copy register file. The main drawback with this approach 
would be doubling the register file size. Although the register file 
itself constitutes a small fraction of the overall chip area, it resides 
in a critical segment of the datapath, and increasing the area in this 
segment can have a negative impact on the overall performance of 
the processor. Note that, in comparison, our approach tunes the 
aggressiveness of protection based on the dynamic demands on the 
physical registers.  
5. RELATED WORK  
Designing for transient-error tolerance has traditionally been 
considered in the context of systems that operate in high-radiation 
environments or in outer space, where there is a heavy concentration 
of alpha-particles and atmospheric neutrons [28]. Research from 
IBM showed that computer systems are susceptible to transient 
faults induced by these particles [25]. More recently, designing 
computer systems for resiliency [16] to transient faults has gained 
greater significance due to the combined effect of higher integration 
densities, lower voltages, and faster clock frequencies. Redundancy 
is a frequently used technique for providing fault tolerance. Spatial 
redundancy may involve a complete duplication of all hardware 
components as in the HP NonStop Himalaya machine [1]. The IBM 
POWER4 [3] provides an extensive hierarchy of checkers 
distributed in all the major sections of the processor. Temporal 
redundancy has been proposed for both superscalar and SMT 
paradigms [18, 19, 22]. The DIVA architecture takes a slightly 
different approach wherein a special checker-processor is used at 
the commit stage of the main core's pipeline to verify the 
correctness of the instructions being committed [2].  
6. CONCLUDING REMARKS  
This paper proposes and evaluates different strategies for increasing 
the resilience of register files to transient errors. These strategies are 
based on the observation that at a given time a significant fraction of 
the physical registers do not hold valid data, and can thus be used as 
placeholders for duplicates of the actively used registers. Our 
conservative schemes do not impact original performance of 
applications, and duplicate registers using only otherwise unused 
registers. We found that the most effective conservative scheme 
(CE) has around a 78% reliable read rate, and recovers from the 
67% of the cases where a pure parity-based scheme fails. Our 
experiments with the aggressive strategy showed that it takes the 
error recovery rate to 77%, at the expense of slight (0.21%) 
degradation in the original performance. It is to be emphasized that 
errors occur rarely. Therefore, one of the most important issues is 
not to incur too much additional performance/energy overhead in 
the normal (error-free) case. Our conservative and aggressive 
strategies achieve this. Hence, we believe that the duplication-based 
recovery schemes are attractive solutions under these requirements. 
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