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Over the last 20 years, general equilibrium models of international trade featuring increasing re-
turns to scale have revitalized the international trade research agenda. Yet general equilibrium
econometric work remains underdevel oped: it has been scarce, only occasionally well-informed
by theory, and ailmost always devoid of economically-meaningful alternative hypotheses. There
are exceptions of course. These include Helpman (1987), Hummels and Levinsohn (1993, 1995),
Brainard (1993, 1997), Harrigan (1993, 1996), and Davis and Weinstein (1996). However, thislist
isas short as the work is hard. The complexity of general equilibrium, increasing returnsto scale
predictions has deflected empirical research of the kind that is closely aligned with theory.

Surprisingly, one empirically tractable prediction remains overlooked, despitethe fact that itis
central to the approach of Helpman and Krugman (1985). We are referring to a variant of Vanek’s
(1968) factor content of trade prediction. Inits Helpman-Krugman form the factor content of trade
depends critically on the extent of scale returnsin each industry. Scale matters because it deter-
mines both the pattern of trade and the amount of factors needed to produce observed trade flows.
AsHelpman and Krugman showed, their variant of the Vanek prediction comesout of avery large
set of increasing returns models and so provides arobust way of evaluating these models. Yet re-
markably, this increasing returns to scale factor content prediction has not been explored empir-
icaly. We know that the Heckscher-Ohlin-Vanek factor content prediction performs poorly e.g.,
Trefler (1995). Yet there has not been one iota of evidence that the Hel pman-Krugman class of
models performs better. Exploring this uncharted region isour first goal.

The second and moreimportant goal of this paper isto quantify the extent of increasing returns

to scalein the context of ageneral equilibrium model of international trade. Thisforces usto part



company with the existing scale literature which focuses on estimating scal e effects separately for
each industry. Instead, we must seek a radically different general equilibrium strategy. It is as
follows. The Helpman-Krugman variant of the Vanek prediction imposes a precise relationship
between the elasticities of scale in each industry and a particular set of data on trade, technology,
and factor endowments. We search for elasticities of scale that makethisrelationship fit best. Like
cosmol ogists searching the heavens for imprints of the big bang, we are searching the historical
record on trade flows for imprints of scale as a source of comparative advantage.

There are two reasons why 15 years of research has largely escaped exposure to general equi-
librium econometricwork. Asnoted, oneisthe complexity of general equilibrium predictions. The
other isthe lack of the internationally comparable cost data needed to make inferences about scale.
Surprisingly, both problemsare resolved by shifting thefocusfrom tradein goodsto the factor con-
tent of trade. Comparative costs are so obviously the basis of international trade that no amount of
evidence to the contrary would dislodge this view. That is, trade flows from low-cost exportersto
high-cost importers. It should therefore be possibleto use trade flow data to make inferences about
international cost differences. What makes this possibility so attractiveis that detailed trade flow
dataare available even where no cost dataexist. Factor content cal culationstransparently structure
the problem of inferring costs from trade data. Remember that the factor content of tradeisjust a
set of derived demands for the factor inputs used to produce observed trade flows. By Shephard's
lemma, these demands can be integrated back to obtain costs. That is, factor content predictions
provide away of inferring international cost differences from trade flows.

Just as you cannot squeeze water from a stone, you cannot infer costs without extensive data.



For this paper we have constructed a new and remarkable database covering al internationally
traded, goods-producing industries (27 in manufacturing and 7 outside of manufacturing) for 71
countries over the period 1972-1992. The database contains bilateral trade and gross output by in-
dustry, country, and year aswell asfactor endowments by country and year. The most difficult part
of this project has been the two years spent on database construction.

Our conclusionsare asfollows. When restricting al industriesto have the same scale el asticity
our method yields a precisely estimated scale elasticity of 1.05. Thisis small for mark-up mod-
els (Rotemberg and Woodford 1992), arguably large for endogenous growth models, and certainly
large for hysteretic models. However, there is considerable heterogeneity among industries. For
about athird of all industriesthe data are not sufficiently informative for making inferences about
scale. For another third of al industries, we estimate constant returnsto scale. That is, allowing for
scale in these industries does not add much to our understanding of the cost basis for trade flows.
For the remaining third of all industries, including such industries as pharmaceutical s and machin-
ery, we find strong evidence of increasing returnsto scale. For this group, our general equilibrium
scale estimates have a modal range of 1.10-1.20. Scale is central to understanding trade for these
industries.

At this stage, an important caveat isin order. We will be working with industry-level data, not
plant-level data. Thus, wewill befinding arelationship between industry output and trade-revealed
industry costs. Thisrelationship may be partly induced by underlying plant-level scale economies.
However, it may also be induced by industry-level externalities (e.g., Paul and Siegel 1999) and,

for the most technol ogically dynamic industries, by new processtechnol ogiesthat are embodiedin



anincreased scal e of operation (e.g., Rosenberg 1982, 1994). To smooth the exposition, we use the
term‘scale’ toinclude both themany familiar sourcesof scaleaswell asindustry-level externalities
and scale-biased technical change. Whencethe *All That’ of our title. This point is developed in
section 3.4.

The reader with no trade interests may want to skip section 1 (adata preview) and skim section
2 (trade theory and econometric identification). The estimating equation appears in section 2.4
(equation 12). The core empirical work appearsin section 3, especially tables 3 and 4. Sensitivity

analysis appearsin section 4.

1. Preliminaries

1.1. The Data

The database constitutes one of the most, if not the most, comprehensive descriptions of the global
trading environment ever assembled. Its construction consumed two years of intensive work. The
data have four dimensions. (i) Countries. There are 71 countries covering the entire devel opment
spectrum. Seeappendix table A.1for alist of countries. (ii) Industries. Thereare 34 industriescov-
ering virtually the entire tradeables or goods-producing sector. 27 of these are 3-digit 1SIC manu-
facturing industries. The remaining industries are non-manufacturing industriesranging from live-
stock to electricity generation. A list of industries appearsin the tablesbelow. (iii) Factors. There
are 11 factors: capital stock (Summersand Heston 1991), 4 levels of educational attainment (Barro
and Lee 1993), 3 energy stocks (coal reserves, oil and gas reserves, and hydroel ectric potential),

and 3 types of land (cropland, pasture, and forests). (iv) Years. There are 5 years: 1972, 1977,



1982, 1987, and 1992.

The database contains the following: (i) deflated bilateral trade and deflated gross output by
country, industry, and year, (ii) factor endowments and income by country and year, and (iii)
double-deflated input-output relations by year for the United States. See appendix A for database

details. Finer detailswill appear as a separate paper when the database is made publicly available.

1.2. Data Preview

The single most important fact supporting the use of increasing returns modelsis the presence of
intra-industry trade, that is, of trade in similar products. Models by Krugman (1979), Helpman
(1981), and Ethier (1982) were designed to explain such trade. (Though note that Davis (1995,
1997) providesRicardian and Heckscher-Ohlin explanationsof intra-industry trade.) Figure 1 plots
each country’s 1992 imports and exports of Instruments against its output of the Instruments in-
dustry (ISIC 385). A country’s imports from the rest of the world appear as a point above the axis
and a country’s exports to the rest of the world appear below the axis. Imports, exports, and out-
put are scaled by the country’s gross domestic product (gdp). The main point about the pictureis
that countries with large imports also have large exports. Thisisintra-industry trade and has been
well-documented. What issurprising ishow extensiveit isboth for large and small producers. This
may bethe graphical counterpart to Hummelsand L evinsohn’s (1993, 1995) result about how well
monopolistic competition models perform for poor countries. Another surprise is the mirror-like
quality across the horizontal axis. Some of thisis entrepot trade as in the case of Singapore, but
symmetry extends to al countries. One gets no sense of the specialization that lies at the heart of

theories of comparative advantage. A possible explanation is offshore sourcing of parts, a phe-



nomenon which we term ‘intra-mediate’ trade.

Does this pattern hold for bilateral trade as well? Figure 2 plots bilateral trade in instruments
for cases where the U.S. is the importer (top panel) or exporter (bottom panel). For example, the
‘HKG' observation in the upper right plots U.S. imports from Hong K ong against Hong K ong out-
put. The data are scaled by the gdp of the (non-U.S.) producer country. Remarkably, symmetry
persists even at the bilateral level. Another feature of the datais a point made by Harrigan (1996).
The bilateral monopolistic competition model predicts that country i’simports from country j will
be proportional toj’soutput (Hel pman and Krugman 1985). Harrigan re-writesthisasalog regres-
sion of bilateral imports on output, that is, as the regression line plotted in the top panel of figure
2 (though without gdp scaling). He obtains a dope of 1.2 and an R? of 0.7. The similar figure 2
statistics - a slope of 1.4 and an R? of 0.5 - reinforce how robust Harrigan’s results are. An odd
feature stemming from symmetry is that the regression line in the bottom panel of figure 2 also fits
well (aslope of 0.6 and an R? of 0.4). This means that the United States exports instruments to
big producers of instruments. Thisis not a prediction that comes out of the standard monopolis-
tic competition model. It is consistent with multinational sourcing of intermediate parts (Brainard
1993, 1997 and Feenstra and Hanson 1996a, 1996b, 1997).

Increasing returns model s often predict extreme patterns of specialization and regional concen-
tration of industry. A measure of regional concentration is the Herfindahl index defined as }"; qgi
where g, is country 7’s share of world production of good g. Table 1 reports the Herfindahl index
for 1992. Note from the *1992-1972" column that the index has fallen over time in almost all in-

dustries. Thisis the globalization trend that has received so much attention. The most ssimplistic



model of scalereturns predictsthat increasing returnsto scaleindustrieswill be geographically spe-
cialized and thus appear at the top of the table 1 list. Not surprisingly, Instruments and Machinery
appear near the top. Footwear and Leather Products - a priori constant returns industries - appear
near the bottom of thelist asexpected. Thetablereportsthree commonly used, albeit weak, proxies
of scale. Thesearedescribedinthenotestotablel. Thereisaweak correlation between these mea-
sures and the Herfindahl index. Further inspection of the table reveal s unexpected industries near
thetop and bottom of thelist. Coal Mining and Pulp and Paper are natural resource- or endowment-
based industries. Their position near the top is consistent with scale returns as well as with the
Heckscher-Ohlin model. We also constructed Krugman's (1991) popul ation-scaled Herfindahl in-
dex. By this measure natural resource-based industries topped the list of regionally concentrated
industries. Clay and Cement Products bottom out the list because of high transport costs. Thus,
scale returns in its simplest form explains some of the regional concentration of production, but

endowments, trade restrictions, and transport costs also contribute.

2. Theory and Estimating Equation

2.1. The Vanek Prediction with Increasing Returnsto Scale

Vanek’sfactor content prediction transparently structuresthe problem of inferring unavailable cost
and scale-elagticity information from available trade flow data. In this section we review the well-
known observation that Vanek’s factor content prediction may hold for both constant and increas-
ing returns to scal e technol ogies (Helpman and Krugman 1985). We then follow Trefler (1996) in

deriving adefinition of thefactor content of trade that istheoretically consistent with existing data.



Leti =1,..., Nindex countriesand f = 1,..., F'index factors. Let V;; be the endowment of
factor f incountry . Inany international cost comparison, whichisour main aim here, inputs must
be measured in internationally comparable units of quality or productivity. Let 7¢; be the produc-
tivity of factor f in country : relative to the United States. V;; = mp;Vy; is country +’s endowment
measured in productivity-adjusted units. Let V= ¥;7;V}; be the productivity-adjusted world
factor endowment. Let s; bei’s share of world income. Country 7 is said to be abundant in factor
f if its share of productivity-adjusted world endowments exceeds its share of world consumption:
V}i/ Vi > sior Vi — s;Vf, > 0.

Let C;; be country i’s consumption of final goods produced in country j. Let Cy; = ¥,C;; be
the world’s consumption of final goods produced in country 5. Country i’s imports of final goods
from j arejust C;;. However, it is useful to introduce additional notation for imports: M, = Cj;
fori # j and Mj; = 0. Exports of final goodsare X7 = X°,,; Cj;. Let M and X! be country i's
imports and exports of intermediate inputs, respectively. The ‘¢’ and ‘y’ superscripts distinguish
between final consumption and intermediate inputs. All the vectorsin this paragraph are G x 1
vectorswhere GG isthe number of goods.

Let A;; bethel x G choice-of-techniquesvector. A typical element givesthe amount of factor
f required both directly and indirectly (in an input-output or general equilibrium sense) to produce
onedollar of agood. Let A%, = 77 Ay, be the productivity-adjusted choice-of-techniques vector.

TheVanek predictionisapredictionof theform Vy; —s;3,Vy; = Fy; where Fy; issomemeasure

of the factor content of trade. To move towards such a prediction we assume that factor markets



clear nationally. This assumption alone implies the following equation:

Vii—siViw = Fpi+ ey 1

where
i = XjA3;(Cyj — 5iCyy) 2
F}, = [A3 X7 — A7 MG| + [A3 (XY — MY) — 5:5; A%, (XY — MY)]. 3)

Appendix B providesasimplederivation of equation (1). Asidefrom using factor market-clearing,
thederivationispurely algebraic and based entirely on manipulation of input-output identities. For
our purpose, which isto consistently estimate scale elasticities, we do not need to interpret equa-
tions (1)-(3). All wewill needisthat theresidualse ; satisfy afamiliar econometric orthogonality
condition. However, equation (1) does have an interpretation. Under the strong assumption that
eri = 0, equation (1) is the Vanek prediction. By way of an extended aside, we turn to this inter-
pretation.

Under the standard Heckscher-Ohlin-Vanek (HOV) assumptions, the A%, are internationally
identical and, with identical homothetic preferences and internationally common goods prices,
consumption satisfies the condition ¥,C;; = s;5,;Cy;. Hence, e, = 0 and the Vanek prediction
holds. Under the assumptions of many increasing returns to scale models, there will be interna-
tional speciaization of production. Even though the A%; will not be internationally identical, the

usual HOV consumption condition ,C;; = s,3,Cy; is again enough to generatee; = 0.1 In-

ILet country j' be the only producer. Then C;; vanishesfor j # j' and the usual HOV consumption condition



ternational specialization of production is associated with scale returns (Helpman and Krugman
1985, chapter 3), exogenous international technology differences (Davis 1995), failure of factor
price equalization (Deardorff 1979 and Davis and Weinstein 1998), or a mix of these (Markusen
and Venables 1998).

Moreintriguing is the possibility that the e ;; might vanish even without production specializa-
tion or internationally identical A%,. In modelswith taste for variety (Krugman 1979) or ideal-type
preferences (Helpman 1981), each country buys every final good from every other country in pro-
portion to its size. Mathematically, C;; = s,Cy; Vi, j. Thus, if two countries produce cheese, all
countries buy from both producers, not just one producer. Notethat C;; = s;Cy,; appliesonly to fi-
nal goods, not intermediateinputs. With C;; = s;Cy;, 7; = 0 and the Vanek prediction holds. The
observation that the Vanek prediction holds for alarge class of increasing returns to scale models
isone of the central insightsin Helpman and Krugman (1985).2

Thereis a potential disconnect between our industry-level empirical work and the models of
the previous paragraph which feature internal returns to scale. One issue is whether with internal
returns to scale there will be an industry-level relationship between output and output per unit of
input. The answer isyes. The only exception is the CES utility case, but as Lancaster (1984) and
many others have noted, one does not want to take this case seriously for empirical work. A sec-

ond issue is whether our industry-level data allow us to distinguish between internal and external

reducesto C,'j/ = S,'CWJ'I. Likewise, Efi reducesto A}j’ (C,']'/ — S,’ij/) =0.

2Note that in the absence of trade in intermediate inputs, the condition C;; = s;Cy; isjust the regression line
plotted in the top panel of figure 2 and examined so thoroughly by Harrigan (1996). This follows from the facts that
output @; equals world demand C',; and consumption C;; equalsimports M;;. Plugging @; = Cw; and Cs; = M;;
into Cy; = s;Cw; yields M;; = s;Q;. Thus, C;; = 5;Cyw; isimplicit in much of the literature on monopolistic
competition and gravity equations.

10



returnsto scale. Heretheanswer isno. Thisisthepoint of the‘al that’ in our title and of the * What
is Scale? section below. At first glance it seems unusual that we do not need to distinguish be-
tween internal and external returnsto scale. After all, they are very different in their implications
for market structure, the location of production, and trade patterns. The remarkable insight that
pervades Helpman and Krugman (1985) isthat the form of scale returns has only very modest im-
plications for the factor content of trade. Thus, while predictions about the location of production
and the pattern of trade are often complicated, model-dependent, and/or just plain indeterminate
in this class of models, predictions about the factor content of trade are relatively straightforward.
Thisis a key reason for why we have chosen the factor content route.

To conclude our discussion of the consumption condition, the interpretation of equation (1) as
aVanek prediction requirese ;; = 0. However, consistent estimation of scale elasticitiesrequiresa
weaker condition, namely, afamiliar econometric orthogonality condition involving the ‘residual’
€ ri- We return to this point below.

Weturn next totheinterpretation of F;; asthefactor content of trade. Withey; = 0, Vi, — sV,
isthe productivity-adjusted factor content of +'strade. It followsthat sois F};. Thequestion arises
as to why the equation (3) expression for Fy; is so unfamiliar. In the absence of traded interme-
diates, equation (3) reduces to the usual definition F}; = A}, X7 — 3; A%, M eg., Helpman and
Krugman (1985), equation 1.11. That is, producer-country choice of techniques are used to calcu-
late the required factor inputs. With traded intermediates there is a subtle problem associated with
the measurement of A;. Current practice by all national statistical agenciesisto construct Ay; by

lumping together the inter-industry purchases of domestically produced and imported intermediate

11



inputs. One needs somehow to net out the imported intermediates. The second term in equation
(3) isthe theoretically correct way of doing this.

In equation (3) it appears as if we are using net trade for the factor content of intermediates
and gross trade for the factor content of final goods. Nothing could be more misleading. The two
bracketed terms in equation (3) are not decomposable in this way. Intermediate input terms such
as A%, M} enter equation (3) for the entirely different reason of netting out imported intermediates.

Appendix B develops this point. A more complete discussion appears in Trefler (1996).

2.2. Isolating Scale and Exogenous | nter national Productivity Differences

The Vanek prediction of equation (1) is an implicit relation between trade flows and costs. (By
Shephard’slemmathe Ay; are derivatives of cost functions.) It remainsto relate coststo the scale
of output. Recall that A; = (a1, ..., arei) Wherea,; istheamount of factor f needed to produce
one unit of good ¢ in country i. Since a,; is derived from cost minimization it depends on inter-
mediate input prices, factor input pricesw; = (w1, ..., wr;), and industry g output ),;. Theaimis
to show how this dependence can be restricted in away that identifiestherole of @),;. To motivate
the analysiswe start with the simple case of homothetic production functionsand no intermedi ates.
These are reintroduced in the next section.

Homotheticity implies separability of average costs:

ACqi(wi, Qgi) = cgi(wi) ¢gi(Qyi) (4)

wherec; isaconstant returns unit cost function and ¢, is adecreasing function that captures scale

12



effects.

The productivity-adjusted factor price correspondingto V; = 7z Vy; iswy; /7. Toseethisby
way of example, if Hong Kong workers were half as productive as U.S. workers (7, ux = %) then
the Hong Kong productivity-adjusted wage would be twice the observed wage (w nk /7 uk =
2wy, nx). We assume that after adjusting for international factor productivity differences, there are

no other sources of international differencesin the c,;. That is,®

ng'(wu‘, PP wFi) = Cg,Us(wu/Wu, e wFi/WFz')- ©)

Putting equation (5) into equation (4), theimplied input demand per unit of output is given by*

acg,US (wli/le', <y sz/WFz) ¢gi(ng’)
Nwyi/my;) i

argi(Wi, Qgi) = : (6)

We do not observe the derivative in equation (6). Further, when we moveto ageneral equilibrium
interpretation of thea,;, the a,; will each depend on cost derivatives not just inindustry g, but in
all industries. The data requirements will be enormous. We need to cut through this.

It is a commonplace among economists that factor prices are primarily determined by factor

productivity. Following Trefler (1993), we take this observation very seriously by assuming that

3The proof of the equality is as follows. Let y; be an input vector, let f,;(-) be a constant returns production
function, and define IT; = diag(my;, ..., mr;). Our assumption, couched in terms of f,; rather than ¢, is that
Foii) = fo,us(Migs). Then egi(w;) = miny, {wiyi|foi(ys) = 1} = ming, {w;ll; Ty;|fyus(Miys) = 1} =
miny, . {w;IT; 'yus| f,us(yus) = 1} = ¢,,us(w;II; ) where the second last equality follows from the fact that the
change of variable yys = II;y; is an invertible function of y;.

4The proof isasfollows. Let TCy; = AC,,;Q,; betotal costs. afy; = (0TCyi/0wy;)/ Qi OF, Using equation (4),
afgi = BgiOcyi(w;)/Owy;. From equation (5), dcgi(w;)/Owys; = wﬁlacg,us(H;lwi)/a(wﬁ/w,ci). Equation (6)
follows.

13



factor prices are completely determined by factor productivity. That is, wy; /7 = wyus/mrus =
wy,ys for all factors f and all countries <. Thisfactor price assumption is not used in the empirical
production function literature. Itsrole hereisin alowing usto move from industry-level analyses
to the general equilibrium analysis of an economy’s factor input requirements.

Substituting wy; /7 r; = wy,us into equation (6) and manipulating yields®

argi(Wi, Qgi) = Argus _ Pgi(Qge)

T fi ¢g,US (Qg,Us) ' )

where ar, us = arq,us(wus, Qg,us). Thus, we have dramatically reduced the amount of interna-
tional datarequiredto calculate ay;. Further, one can now see that we have forced all the interna-
tional sample variation in factor requirements to operate via the exogenous inter national produc-

tivity term;; and the scale term ¢y; (Qy:)-

2.3. A Generalization

We now introduce intermediate inputs and non-homotheticities. Let d,; be the amount of primary
factor input f demanded per unit of industry g output. Since our empirical results are not sensitive
to the choice of functional form for ¢,;, we avoid excessive generality by introducing the form
that appears most frequently in the empirical sections. Thisis ¢, = (Qg)~*. In the empirical
work we also sometimes allow «, to vary across countries and factors. The extramath that stems

from letting o, depend on z and f is not complicated. See Antweiler and Trefler (1997). With

SWith 7y us = 1 and wy; /7y = wy us, equation (6) becomesay,i = (¢gi/7fi)0cq us(wus) /0wy us. Setting
i = USyields dcy us(wus) /Owy,us = afg,us/Pg,us. Plugging this back into the last sentence’s expression for a;
yields equation (7).

14



bgi = (Qgi) ™, thefactor demand counterpart to equation (7) is

d Qi \ ™™
dpgi = f"’“( : ) ®)

Turning from primary factor inputs to intermediate inputs, let by,,; be the amount of intermedi-
ate input A demanded per unit of industry ¢ output. Unlike primary factors, we assume that inter-
mediate inputs are costlessly traded internationally. Thus, each intermediate input has a common,
quality-adjusted price internationally. We have extensively examined the empirical possibility of
scal e effects associated with intermediate inputs. See Antweiler and Trefler (1997). However, this
substantially complicatesthe model without offering any additional empirical insights. Asaresult,
we simplify the exposition by assuming that there are no scale effects associated with intermedi-
ate inputs. For example, two cars require twice as many tires as one car. With this, equation (7)

becomes

bhgi = brg,us 9

Note that the system of input demands in equations (8)-(9) is hon-homothetic. Duality resultsin
Epstein (1982) ensure that the system is supported by an underlying production function.

Our parameter of interest is the elasticity of scale p,. We treat it as being independent of 4
because we will be estimating it by pooling across countries. 1, depends on the share of primary

factor inputsin total costsd,. Specifically,®

5The proof is as follows. Omitting g and i subscripts, total costs are TC= 2y wrdrQ + 30, prbr@. From
equations (8)-(9) together with wfi/ﬂfi = wy,us, TC= Ef wf,USdf,USQ(Q/QUS)_a + zh prbr,us@. Note
that l/p = 8ln(TC)/31n(Q) = (1 - a) Zf wf,Usdf,Us(Q/QUS)iaQ/TC + thhbh’usQ/TC = (1 —
Q) Ef wfde/TC + thhth/TC. Further, 8 = Ef U)fde/TC. Hencel/u=(1-0a)d+(1—6) =1—ab.
Equation (10) follows.

15



g = (1—ayf,)"". (10)

With intermediate inputs, a r,; must be defined as the total factor requirements (direct plusin-
direct in an input-output sense) needed to bring one unit of good ¢ to final consumers. In matrix
notation total factor requirementsare defined in theusual input-outputway as A; = Dy;(I—B;)™!
where Dy; = (df1, ..., djgi) @d B; isthe G x G-matrix whose (h, g) element iSby,,;. \We can now

state the main result of this section about how A%, varies with output and observed data

Theorem 1. Input demand equations (8)-(9) imply

A%i(w) = mpAsi = Dyys ®(Qs, Qus; i) (I — Bus)™ (12)

wherepy = (u1, . . . ) and ®(Q;, Qus; 1) iIsaG x G diagonal matrix whose gth element is

( Qgi )(1—U9)/(H999)
Qg,US

The proof is straightforward.” Theorem 1 provides a parameterization of scale effects that is con-

sistent with our general equilibrium trade theories.

“Start with WfiAfi = ﬂ'f,’Dfi(I - Bi)_l. From equations (8) and (10), Wfidfgi = dfg7Us(Qgi/Qg7Us)_a9 =
dfg7US(Qg,'/Q%Us)(l_“g)/(”gag). Hence, Ti'f,’_sz' = _Df7U5@. From equation (9), (I — Bi)_l = (I — BUs)_l.
Hence7rf,~Afi = _Df7US(I3‘(I - BUs)_l asrequired.
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2.4. The Estimating Equation

At this point we introduce time subscripts ¢. From equation (1) we are interested in

Hfz’t(ﬂ) = Tpit Vi — St TrjeVije — F;it(:u) = Efit (12)

wheree ;;; isgivenby equation(2), F;, (1) isgivenby equation (3), and A};, inequation (3) isgiven
by equation (11). Notethat » does not vary with time. We find no evidence of thisempirically (see
Antweller and Trefler 1997) and so forego the additional notation.

H;(1) aso depends on the 7y, With 71 countries, 11 factors, 5 years, and the normaliza-
tion myus: = 1, there are 3,850 7;;. Rather than estimate them, we use 74y = wyi/wy,us, and
plug in data for wy;/wyus,: Wherever my;, appearsin equation (12). For labour factors, wy;; is
the average manufacturing wage (from the same source as the output data). For capital we use the
Penn World Table price of capital (Summers and Heston 1991). For cropland we use gdp gener-
ated by cropsin 1985 per hectare of cropland. For pasture, we use gdp generated by livestock in
1985 per hectare of pasture. Data are from the Food and Agricultural Organization of the United
Nations (1992, tables 1.4 and 1.6). For forestry, data limitations force us to assume ry;, = 1. For
energy (coal reserves, oil and gas reserves, and hydroel ectric potential), endowments and output
are either measured in joulesin the source data or we have converted them to joules using interna-
tionally recognized converters. Sincethe conversion to joulesis country-specific and already takes
into account international quality differences, the correct assumption for energy iss; = 1.

Three data issues remain before we can examine equation (12). First, following Conway

(2000), s;; is based on PPP-adjusted income. See appendix A. Second, D; s and Bys in equation
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(11) and 6, in equation (10) use U.S. data. The source data are described in appendix A. Third,
we need to know the share of trade that is intermediate inputs trade. For example, we observe
X§ + X7, but not X¢, or X}, separately. Appendix C details our method for alocating trade into
itsintermediate and final goods components. We wereinitially concerned that our estimates of 1,
would be sensitiveto our allocation method. Thisturnsout to be amisplaced concern. To persuade
thereader of this, appendix C also reports estimates of scalefor many different all ocation methods.

We summarize by noting some differences between our general equilibrium approach and ex-
isting partial equilibrium approachesto estimating scale returnsin a cross-country setting. On the
input side, data on industry-level inputs are notoriously bad or non-existent e.g., labour inputs by
educational attainment. While partial equilibrium approaches must use such data, our approach al-
lows usto use national-level aggregates. These aggregates aretypically morereliable. In addition,
our approach easily allows usto model international differencesin input productivitiesi.e., the ;.
On the output side, we are able to shift some of the burden off of gross output data and onto trade
flow data. Real gross output data suffer anumber of serious problems, especially for poorer coun-
tries. In contrast, trade flow dataare more accurate, measured in dollars, and with the approximate
assumption of equal pricesacross countries, correspond more directly to physical quantities. Thus,
the general equilibrium approach allows usto exploit alternative and somewhat more reliable data

Sources.
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3. Reaults

We re-write equation (12) as our final estimating equation

——— = N + Nt (13)

where the following holds. H;:(u) is defined in equation (12). The oy;; are generalized least
sguares (GLS) corrections with factor-year and country-year components. Appendix D describes
the o, in detail. €y, of equations (2) and (12) is now written as the sum of two components,
€ it/ 0 it = Ai+npi. The\; arecountry fixed effects and then s, areindependently and identically
distributed disturbances with mean zero. We estimate equation (13) using maximum likelihood
(ML), non-linear least squares (NLS), and non-linear two-stage least-squares (NL2SLS) estima-

tors. These are reviewed in the next section.

3.1. Preliminary Estimation

To fix ideas about the specification we start with the strong assumption that all industries exhibit
the same degree of scale economies. Wewill relax this shortly. We pool acrossall 71 countries, all
11 factors, and al 5 yearsto give us 3, 905 observations. The 5 yearsare 1972, 1977, 1982, 1987,
and 1992.

Table 2 reportsthe estimated scale elasticitiesfor avariety of estimators. We start with the ML
and NLS estimators. They are distinguished by their use of exogeneity assumptions. In general

equilibrium almost everything is endogenous including endowments of physical and human capi-
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tal. Minimizing endogeneity biaswould seem to require treating the most mis-measured variables
asleft-hand side variables. (Thisisinformally supported by Klepper and Leamer 1984). National
endowments and the data used to construct the 7y, strike us as fitting the bill. For example, the
capital stock data and quality-adjusted measures of education stocks are troublesome. Therefore,
for the purposes of ML and NLS estimation, we treat 7 ;. Vyir — s 7 r: Ve @S aleft-hand side
variableand F};, (1) asaright-hand sidevariable. Fromrow (1) of table 2, theML estimateis 1.051
and the NL S estimate is 1.050. The other estimated parameters of the model are the variance and
GLS parameters. These appear in appendix table A.3. Although not reported in table 2, similar
results obtain without the 7 ;; or fixed effects. Thery;; = 1 ML estimateis 1.043 and the no-fixed
effect ML estimate is 1.054. See Antweller and Trefler (1997) for additional specifications.

One null hypothesis is that there exists scale returns (H, : ¢ > 1) and that the Helpman-
Krugman variant of the Vanek factor content predictionis‘true.’ Anexplicit alternative hypothesis
isthat there are constant returnsto scale (H, : 1 = 1), inwhich case our model reducesto the usual
Heckscher-Ohlin-Vanek factor content prediction. The ML ¢-statistic of 13.41 isfor the hypothe-
sisu = 1. Thet-statistic tells us that the data favour the Hel pman-Krugman, increasing-returns
framework over the Heckscher-Ohlin-Vanek model. Thisisa novel and important general equilib-
riumresult.

The ML estimatetreats F;, (1) as exogenous. We examine endogeneity by using instrumental
variablesmethods. The'Z = F};, (1) columns use astandard Amemiya (1974) NL2SL S esti-
mator with F'f;, (1) instrumented by itslagged value F7; , (). (The NL2SLS minimand appears

in appendix E.) The longer isthe lag 7, the more likely is the instrument to be orthogonal to the
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error. Recalling that we have datafor 1972, 1977, 1982, 1987, and 1992, the longest possiblelagis
20 years. However, thelonger the lag, the fewer are the observations|eft for estimation. Giventhe
poor small-sample propertiesof IV estimators (Nelson and Startz 1990), we prefer to use a 15-year
lag. Inthis case, (F7; g7, F; ) iSinstrumented by (F7; 7o, Ff; 77). Row (2) reports the results for
15-year lags. Thisleavesuswith 2 x 71 x 11 = 1,562 observations. The NL2SL S estimate of
1.095 is significantly larger than the NL S estimate of 1.044 in that the estimators’ 1% confidence
intervalsare non-overlapping. Thisisthebasisfor aHausman exogeneity test. Whilethe Hausman
statistic is negative, it seems likely that exogeneity would be rejected by a refined test that takes
into account the correlation between the two estimators. We have not attempted this.

We also considered a larger instrument set constructed from polynomials of the instrument
F}i .- Inrows (2)-(4), the instrument set is {(F};, ,)*}/_, where K = 1inrow (2), K = 3
inrow (3),and K = 5 inrow (4). Seethe‘' K’ columnin table 2. Asis apparent, the results are
insensitive to the size of the instrument set.

Table 2 also reports results for different lag lengths. In rows (5)-(7), we consider the shorter
lag length of 10 years (2, 343 observations). In rows (8)-(10), we consider the longer |ag length of
20 years (781 observations). The results are insensitive to the choice of lag length.

NL2SL S with our lagged instrument set is dominated in efficiency terms by NL2SL S with an
instrument set based on 8ﬁ;it /Ou. The 8ﬁ;it /O arethefitted values of 0F;, /0 from aprelimi-
nary NL2SL S procedure. (See Jorgenson and Laffont 1974 and Amemiya 1975. Details appear in
appendix E.) The estimates appear in the columns‘Z = aﬁ;it /0’ . Asis apparent, the estimates

aethesameasforthe‘Z = F};, . (u) instrument set. Note that for K = 1, the two NL2SLS
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estimates are mathematically equivalent.

The bottom line from table 2 is that there is evidence of modest scale economies at the aggre-
gatelevel no matter how one tackles estimation. The elasticity estimate of 1.051 iswell within the
bounds of what has been reported in the U.S. time series literature (e.g., Basu 1995 and Basu and
Fernald 1997). Against our conclusion of statistically significant scale returns must be weighed the
economically small size of the estimated .. A 1% rise in output is associated with a 0.05% fall in
average costs. Further, a country operating at a tenth of U.S. levels has only 14% higher average
costs.2 Of course, in dynamic models such as those displaying endogenous growth and especially
hysteresis, » = 1.051 can have important consequences.

The factor demand implications of . = 1.051 are much larger than the average cost impli-
cations. From equation (8), the elasticity of factor demand per unit of output is «. From the last
footnote, 1 = 1.051 impliesa = 0.18. That is, a1% risein output leadsto a0.18% fall in demand
for primary inputs per unit of output. Further, a country operating at a tenth of U.S. output levels
uses 51% (= .10~'® — 1) more productivity-adjusted factor inputs per unit of output. Thus, from
the per spective of factor endowments theory even this small scale estimate is very important. We

will seethat it has some implications for the ‘ mystery of missing trade’ (Trefler 1995).

8Dropping g and i subscripts, 0.05% followsfromthefactthat dln AC/0InQ = 8InTC/0InQ—-1=1/p—1=
—0.05. 14% is calculated as follows. From AC(Q) = Xjwsds + Zpprbs and equations (8)-(9), AC(Q) =
(Q/Qus)™*Tjwyrusdyus + Zapnbn,us. Using us = Zjwyusdyus/AC(Qus) yields AC(Q)/AC(Qus) =
(Q/Qus) 0+ (1 — ). With§ = 0.274 (see appendix A) and = 1.051, equation (10) impliesa = 0.18. Hence
AC(Q)/AC(Qus) = 1.14.
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3.2. Industry-Level Analysis

Genera equilibrium estimation is complicated. We have found it computationally infeasible to
simultaneously estimate separate scale elasticitiesfor al 34 industries. Fortunately, there are other

pathsto interesting results. Consider the following iterative three-step procedure:

1. Rank industriesby thesizeof their scale elasticities. Inthefirst iteration thisranking is based
on external information. In subsequent iterationsit is taken from the output of the previous

iteration.

2. Pick aparticular industry g, place al industries higher in the ranking in one group and all
industries lower in the ranking in another group. Industry ¢ sitsin a separate, third group.
Use ML to estimate equation (13) subject to the restriction that all industries within a group
share acommon scale elasticity. Thisyields scale estimates iy ;i Br.ow, and fi(g) for the

high, low, and ¢ groups, respectively.®

3. Repeat step 2 for each ¢g. Thisyields a set of scale estimates {i(g) 311. Returnto step 1

using {f1(g)}5%, to rank industries.

Sincethechoiceof initial rank doesnot matter, we defer description of thischoicetothe’ Sensitivity

Analysis’ section. In that section we aso note that there are no algorithm convergence issues.
Table 3 reportsthe fi(g) for the specification with 71 countries, 11 factors, and 5 years. In the

tableindustriesare classified into four groups. Theincreasing returnsto scale (IRS) group contains

those industries with i(g) that are significantly greater than unity at the 1% level. (Instrumentsis

9Since the lowest ranked industry can never be in the g group, its elasticity is given by uzow for the case where
both the low and g groups each have only 1 industry. A similar detail appliesto the highest ranked industry.
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an exception, but we include it because it is significant in every other specification examined in
the ‘ Sengitivity Analysis section.) We distinguish between manufacturing and natural resources
because the natural resource scale estimates may reflect not only scale, but also Heckscher-Ohlin
misspecification. The constant returnsto scale (CRS) group containsthoseindustrieswith 7i(g) that
are insignificantly different from unity at the 1% level. In afew cases, such as electricity where
fi(g) = 1.04 and t = 0.67, being in the CRS group really means that scale returns are imprecisely
estimated. The ‘Non-Robust’ group collects industries for which scale is not robustly estimated.
Robustness will be made precise in the * Sensitivity Section’ section below.

Table 3 shows a number of striking patterns. First, the constant returnsto scale industries are
al sensible. These include Apparel, Leather, and Footwear. Second, the industries estimated to
display scalereturns are adso all sensible. These include Pharmaceuticals, Electric and Electronic
Machinery, and Non-Electrical Machinery.

To get a handle on magnitudes, consider a scale elasticity of 1.15. Thisimpliesthat a1% rise
inoutput leadsto a0.13% fall in average cost. Further, acountry operating at atenth of U.S. levels
faces 55% higher average costs. These are large numbers.

How do our results compare to existing partial equilibrium production function-based esti-
mates? Tybout (2000) surveyed studies for many developing countries and found little evidence
of scalereturns. Thisis akey finding. He partly attributed it to the fact that “small firmsin de-
veloping countries tend not to locate in those industries where they would be at substantial cost
disadvantagerelative to larger incumbents” (Tybout 2000, page 19). This squares readily with our

finding of constant returnsto scalein all low-end manufacturing industries. The evidence of scale
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from middle-income countries is less clear cut. Using Chilean plant-level data for 8 industries,
Levinsohn and Petrin (1999) estimated scale returns from value-added production functions that
arenever lessthan 1.20 and reach as high 1.44. Using Mexican plant-level data, Tybout and West-
brook (1995) obtained almost no evidence of scale for large plants. It is not immediately clear
that our results are inconsistent with Tybout and Westbrook: we find constant returnsfor many in-
dustries and increasing returns primarily for industries not examined by them. For rich countries,
Harrigan (1999) found no evidence of scale in cross-country regressions. However, many other
OECD country studies point clearly to the existence of scale returns. Paul and Siegel (1999) es-
timated industry-level scale returns in the range of 1.30 for many U.S. manufacturing industries.
Estimates closer to our mode of 1.15 are common in OECD studies e.g., Fuss and Gupta (1981)
for Canada and Griliches and Ringstad (1971) for Norway. Thus, our general equilibrium results

are consistent with some, though not all of the existing partia equilibrium benchmarks.

3.3. Grouped Results

A drawback to the approach of the last section is that we did not simultaneously estimate each
industry’s scale elasticity. The estimation algorithm is only partially simultaneous. Further, we
did not deal with endogeneity. To address these issues we follow table 3 in classifying industries
into three groups: IRS, CRS, and Non-Robust.'® We then estimate the mode! under the assumption
that scale elasticities are the same within each group, but different between groups. Note that the

IRS group includes both manufacturing and natural resource-based IRSindustries. Disaggregation

10The classification of industriesinto these 3 groupsis dightly different from that reported in table 3. Thisisaminor
point; however, we cannot properly explain it until after we have laid out the criteria for being in the ‘ Non-Robust’
group. Seethe‘Sensitivity Analysis' section below.
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of the IRS group into manufacturing and natural resources adds little to the analysis.

The top panel of table 4 reports the results for the usual specification with 71 countriesand 11
factors. The NL2SL S estimator uses the preferred instrument set from row 3 of table 2. That is, it
usesthe Ff; , () instrument set witha K = 3 polynomial order and a 15-year lag length. This
leaves us with only the years 1987 and 1992. We do not report any of the other specifications that
appeared in table 2 since thiswould be too repetitive. Instead, we report the results for the sample
consisting only of our 23 OECD members. (Seetable A.1 for alist of these countries and the end
of appendix A for adiscussion of how the world is defined with 23 countries.) From the bottom
panel of table 4, the 23-country resultsare very similar to the 71-country results, though somewhat
less significant. The reduced significance arises from having eliminated an important source of
sample variation, namely, trade with non-OECD countries such as Hong Kong and Singapore. For
23 countries, the Hausman x? test statistic of 490 strongly supportsthe hypothesis of endogeneity.

The conclusions from table 4 are clear. The IRS group is always estimated to have significant
scalereturns. Asintable 2, the NL2SL S estimate islarger than its ML counterpart which assume
exogeneity. The CRS group is always estimated to have a scale elasticity that is insignificantly
different from unity. For the Non-Robust group, almost by definition, the conclusion depends on
the estimation method. Overall, thetable4 resultsare wholly consistent with the estimatesreported
in tables 2-3. By implication we must abandon empirical modelsthat treat all industriesasif they
were subject exclusively to either constant or increasing returns. Both play an important role for

under standing the sources of compar ative advantage.
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3.4. What is Scale?

As discussed in the introduction, we are using scale (and *all that’) to mean something more than
just plant-level economies. For one, scale likely includes industry-level externaities. By way of
example, growth of the Petroleum Refining industry was accompanied by the development of a
host of specialized inputs including specialized engineering firms, industry-sponsored institutes,
and specialized machinery manufacturers. Paul and Siegel (1999) argued that more than half of
the relationship between cost and scale in U.S. manufacturing is due to such industry-level exter-
nalities. To the extent that this holds worldwide, it implies that a portion of what we are calling
‘scale’ isactually industry-level externalities.

Also, scalelikely includes aspects of dynamic international technology differences. Intable 3,
theindustrieswith thelargest scal e estimates are often those where technical change has been most
rapid e.g., Pharmaceuticals. New goods often engender new process technologies and these new
processtechnol ogies are often embodied in larger plants. AsRosenberg (1982, 1994) hastirelessly

argued:

“Inthisrespect itismuch more common than it ought to be to assumethat the exploita-
tion of the benefits of large-scal e production is a separate phenomenon independent of
technological change. In fact, larger plants typically incorporate a number of techno-
logical improvements...” (Rosenberg 1994, page 199)

Whileit isimportant conceptually to distinguish between scale and dynamic technical change, the
fact that technical changeisthe hand maiden of scale makes this distinction empirically problem-
atic. Even with the unusually detailed McKinsey data, Baily and Gersbach (1995) were forced
to lump international technology differences together with scale as inseparable sources of global
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competition. In short, for the most dynamic industries, available datado not alow usto distinguish
between scale and scale-biased technical change. Thisisacritical areafor future research.

Isit possible that our scale estimates also capture more traditional or static international tech-
nology differences? At the most obvious level the answer is no. Our 7s; explicitly capture the
most important static international technology differences. A more subtle approach to answering
the question is as follows. Suppose that country i is particularly efficient at producing a good in
the sense of having alarge ratio of output to employment. By Ricardian comparative advantage,
the country will expand output of the industry. Looking across countries for asingle industry, the
larger isthe level of industry output, the larger is the ratio of output to employment. The careless
researcher will incorrectly attribute this correlation to increasing returns to scale. Obviously we
have not been careless. However, to dispel any possible confusion we make the following obser-
vations.

Thefirst observation draws on an analogy between our general equilibrium econometric work
and the econometrics of production functions.!' Static international technology differences can
be thought of as unobserved productivity shocks that effect decisions about both inputs and out-
puts. They thereforeinduce endogeneity biasin regressions of output on inputs (e.g., Grilichesand
Mairesse 1995). The techniques commonly used to control for unobserved productivity shocks
are fixed effects and 1V estimators. These are exactly the econometric techniques we have used

throughout this paper. These techniques provided no evidence that our scale estimates are arti-

M\We hasten to add that the analogy with partial equilibrium production function estimation only goes so far. In our
genera equilibrium setting, observations have a factor dimension and data from all industries enter into each obser-
vation. See equation (13).
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facts of unobserved international productivity differences.'?

The second observation about the correct interpretation of our results comes from the cross-
industry distribution of our scale estimates. In the Ricardian interpretation, all relatively low-cost
producersare large producers. That is, static international technology differenceswill masquerade
asscaleeffectsin all industries, be it Pharmaceuticalsor Apparel. If so, we should have estimated
significant scale effects in every industry. We found nothing of the sort. To the contrary, we found
strong evidence of constant returnsto scale in many industries e.g., Apparel. We thus find the Ri-
cardian interpretation untenable.

To summarize this section, our scale estimates likely capture plant-level scale, industry-level
externalities, and scal e-biased technical change. However, theideathat our estimates of increasing
returnsto scale arereadlly static international technology differencesin disguise has about as much

lifeinit as old Ricardo himself.

4. Sensitivity Analysis

In assigning industries to the IRS and CRS groups, we have been using a stringent set of criteria
the inference of increasing or constant returns was required to be robust across a wide variety of
specifications. Industriesthat did not meet the criteriawere unceremoniously dumpedinto the Non-

Robust group. This section reviews the sensitivity analysis underlying our robustness criteria. In

12To the contrary, the IV estimates were sometimes larger than the ML estimates. This IV-ML ranking deserves
further consideration. In a production function setting, endogeneity bias is usually taken to mean that the coefficient
on labour is upward-biased and the coefficient on less variabl e inputs such as capital are downward biased (Olley and
Pakes 1996). It need not imply that the sum of the coefficients (i.e., the scale elagticity) is upward biased. Indeed,
Levinsohn and Petrin (1999) found that a modified Olley-Pakes solution to endogeneity bias raises the estimate of
scalein 3 of 8 Chilean industries examined. Thus, thereis nothing terribly unusua about our 1VV-ML ranking.
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the interests of space, the discussionisterse.

There arethreeissuesto be clarified before robustness can be fully defined. Thefirst dealswith
whether the results depend on theinitial ranking of industries used to kick off the section 3.2 esti-
mation algorithm. Consider table 5. Resultsin the ‘Initial Rank: Baseline’ column with 71 coun-
tries and 11 factors reproduce the table 3 results. A single asterisk indicates that 7i(g) is greater
than unity at the 1% level, two asterisksindicate ¢ > 5 and three asterisksindicate¢ > 10. The
baseline initial rank uses an initial ranking that is an average of industries’ capital-intensity and
skill-intensity ranks. Seethe last column of table 1. Resultsin the ‘Initial Rank: Alternative’ col-
umn use an initial ranking based on the scal e parameters reported in Paul and Siegel (1999).13 The
baseline and alternativeinitial ranks are very different. The correlationisonly 0.13. Itistherefore
re-assuring that the scale estimates produced by the two initial ranks are aimost identical. That is,
the table 3 results are insensitive to theinitial ranking.

The second robustness issue deals with parameter stability across a variety of specifications.
Table 3 reports results for the specification with 71 countries, 11 factors, and 5 years. For robust-
ness, we require similar results from a specification using only the 23 OECD countriesin our sam-
ple. We also require similar results from a specification that places more weight on capital and
labour and less weight on land and energy i.e., a specification with 7 factors (aggregate land, ag-
gregate energy, capital, and 4 types of labour). The last two columns of table 5 provide the scale

estimates for these two specifications.

13paul and Siegel (1999) work at ahigher level of aggregation (19 manufacturing industries). We therefore repeated
their scale elasticity values at the disaggregated level (27 manufacturing industries) where necessary. For industries
not covered by Paul and Siegel (7 non-manufacturing industries), we set the scale elagticities to unity. In the case of
ties we used information from the baseline initial rank.
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Looking across the four table 4 specifications, the following emerges. There is considerable
stability across specificationsfor the ‘ IRS - Manufacturing’ industries and somewhat | ess stability
for the ‘' IRS - Natural Resources' industries. The least amount of stability isfor the * Non-Robust’
category. It is composed of industries that display significant increasing returns in one specifica
tion and constant returns in another. By definition, the Non-Robust group displays the greatest
instability. Table 5 over-represents instability by omitting the CRS industrieslisted in table 3. By
definition of the CRS group, its member industries always display constant returns (insignificant
(g)). Hence scale estimates for this group are very stable across specifications.

Before turning to our last robustness issue we will need to comment on the convergence of
our section 3.2 algorithm. All the results reported in this paper are based on 10 iterations of the
algorithm. To examine convergence, at |east for the table 3 specification, we allowed the algorithm
toruntheextratwo weeksneeded to complete 20 iterations. Theresultswere unchanged fromthose
reported in table 3. Thus, we have restricted ourselvesto 10 iterations of the algorithm.

Thethird and last robustnessissue arises from the fact that the estimation algorithm converges
to acycling pattern for someindustries. For example, in the baselineinitial rank specification with
71 countriesand 11 factors, the Basic Chemicalsand Plastic Productsindustries either both display
increasing returns (asin odd iterations of our algorithm) or both display constant returns (asin even
iterations). Cycling could never happen in traditional industry-by-industry production function es-
timation and captures in an obvious way the fact that we are estimating scale returns in a general
equilibrium setting. In tables 3 and 5, the cycling industries are added to the Non-Robust group.

In the absence of cycling it does not matter whether we report the 9¢h or 10th iterations. Thus, for
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the IRS category we only report the 10t4 iteration. For those Non-Robust industries that cycle, it
does matter which iteration we report. In order to keep the table manageable, for the Non-Robust
group we report the average value of [i(g) across the 9th and 10¢h iterations.

The classification of industries is based on robustness across specifications. However, for a
given specification some of the Non-Robust industries properly belong in the CRS or IRS groups.
In table 5, these CRS and IRS industries are indicated by the absence of an entry and by a t, re-
spectively. These Non-Robust industries are classified accordingly in table 4. For example, in the
table 4 specification with 71 countries, Furniture and Fixturesis included in the CRS group.

We can now explain exactly how industries are classified. For each industry consider the 8
estimatesof y(g) that comefrom 4 specifications (the 4 column headingsin table 5) and 2 iterations
of our algorithm (the 9th and 10th iterations). If all 8 of these ji(g) are insignificant at the 1%
level then the industry is classified as CRS. If all 8 of these [i(¢g) always exceed unity and do so
significantly at least once, then theindustry is classified as IRS. If the industry fails to meet either
criteriathen it is classified as Non-Robust.1* This scheme ensures that only the most robust results
appear inthe CRSand IRS groups.

To conclude, table 5 pointedly illustrates two important features of our work. First, for about
athird of all industries, the data are simply not informative about scale economies. These are the
industriesthat appear in the Non-Robust group. Second, our criteriafor classifying an industry as

CRSor IRSisthat the inference about scale is the same across many different specifications. For

14This classification criterion is for manufacturing industries. For natural resource-based industries the criterion is
the same except that we omit from consideration the specification with 71 countries and 7 factors. With energy and
land endowments so heavily aggregated, the 7-factor data convey very little information about natural resource-based
industries. This can be seen from table 5.
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these industries, the inference about scale is remarkably robust.

5. Trade and Wages

We have been assuming that scal e effects are the same across factors. This masks non-homotheti-
cities such as skill-biased scale effects. With factor non-homotheticities scale is more difficult to
estimate, but the elasticity of unit factor demand oy = —01nay,/01n Q, remains astraightfor-
ward concept.’® To examine factor non-homotheticities we drop our prevailing assumption that
ayg isindependent of f and instead assumethat it isindependent of g.

Table6 reportsthe ML estimatesof o for the specificationwith 71 countriesand 5 years. There
are only 355 observations. We do not report the instrumental variables estimates sincein all cases
the Hausman test easily rejects endogeneity. The table evidences substantial non-homotheticities
across factors. A 1% rise in output leads to afall of 0.21% in the demand for high school drop-
outs per unit of output and arise of 0.21% in the demand for high school graduates. That is, the
ratio of skilled to unskilled labour rises by an enormous0.42% = (0.21 — (—0.21)). When further
disaggregated we see the same pattern magnified. Larger output is associated with skill-biased
demand. In their detailed study of the telecommunications industry, Denny and Fuss (1983) also
found skilled-biased output effects.

Skill-biased output effects have important implications for the trade-and-wages debate. To the

extent that trade leadsto specialization and greater output, it also leadsto relatively greater demand

Dropping g subscripts, the difficulty is that equation (10) must be replaced by p = 1/(1 — > apfy) wheredy
is the share of factor f in total costs. The complication is that whereas X6y = 0.274 can be read straight off of
input-output tables, § is not available for factorsindividually.

33



for skilled labour and henceto rising earningsinequality. Our skill-biased result also has implica
tions for the rise of ‘intramediate’ trade (see section 1.2) since it is consistent with the Feenstra

and Hanson (1996a,b) picture of offshore sourcing as a cause of rising earnings inequality.

6. The Case of theMissing Trade and Other Mysteries

The fully simultaneous model that we have presented is sparsely parameterized: it has only three
scale parameters. It isthus not surprising that we do not dramatically revitalize the HOV model.
Consider the specification with 71 countries, 11 factors, and 5 years from the first row of table 4.
We usethreestatisticsto evaluateit: (i) Trefler’s(1995) ‘missing trade’ statistic; (ii) the correlation
between the factor content of trade and its endowment predictor; and, (iii) the Bowen et al. (1987)
sign test. For the unmodified model (constant returnsand 7, = 1), the three stetistics are 0.003,
0.14, and 0.67, respectively. For the modified model with threegroupsand 7s;; # 1 (row 1 of table
4) the statistics are 0.117, 0.40, and 0.66, respectively. That is, there is a significant improvement
in the missing trade and correlation statistics. Much of the improvement in the correlation statis-
tic comes from introducing the ;. The improvement in the missing trade statistic comes from
both the 7¢;, and the scale parameters. It is clear why there is less missing trade. As noted at the
end of section 3.1, even small scale estimates trandate into large international differencesin the
factor inputs needed per unit of output. It is interesting that the missing trade statistic improves
most for skilled labour (secondary and post-secondary education) and not at all for workers with

no education.



7. Conclusions

Do scale economies contribute to our understanding of the factor content of trade? To answer
this question we examined Hel pman and Krugman’ svariant of the Vanek factor content prediction.
The prediction is particularly interesting in that it arises from alarge class of general equilibrium,
increasing returnsto scale models. To examine the prediction, we proposed an estimating equation
that istightly allied to thetheory. The equation embodiesthree determinantsof trade: endowments,
exogenousinternational productivity differences(ry;), and increasing returnsto scale. Admittedly,
thislist isincomplete. However, in our quest for truly general equilibrium estimates of scale, the
requirement of tractability forced us to limit our consideration to only these three determinants
of trade. This said, our empirical results strikingly demonstrate that scale economies must figure
prominently for any understanding of the factor content of trade.

We al so asked asecond question. What doesinternational tradereveal about the extent of scale
economies? Much less of our formal structure was needed to answer this second question. Con-
sistent estimation of scale economies primarily requires a standard orthogonality condition on the
e ; of equation (2). While the economics of this condition are not entirely clear, it is no surprise
that less structure is needed for estimator consistency. After al, the guiding empirical insight of
thispaper isthat trade movesfrom low-cost exportersto high-cost importers. By implication, trade
data must convey information about costs and scale elasticities.

Just as you cannot squeeze water from a stone, you cannot infer scale without extensive data.
To this end, we constructed a unique and comprehensive database on trade flows, output, and fac-

tor endowments for 71 countries over the 1972-92 period. Even with this detailed data, we were
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unable to completely disentangle the factors underlying our industry-level scale estimates. The
remaining entangled factors are plant-level scale, industry-level externalities and, for the most dy-
namic industries, scale-biased technical change. Thislist isthe‘al that’ of our title and a primer
for future research.

Our main conclusions are as follows. (i) We estimated that output expansion is strongly skill-
biased. Thishasimportant and hitherto unnoticed implicationsfor rising wageinequality. (ii) Pool-
ing across industries, we precisely estimated moderate scale elasticities (1 = 1.05). Thishasim-
portant implications for endogenous growth, particularly since our sample of countries spans the
entire development spectrum. (iii) At least athird of all goods-producing industries display con-
stant returnsto scale. For thisgroup, scale does not contribute to our understanding of international
trade. Another third of all goods-producing industries are characterized by increasing returns. The
modal range of scale elasticities for this group is 1.10-1.20. For this group scale is central to our
understanding of the factor content of trade.

Our results point to the importance of integrating constant and increasing returns to scale in-
dustries within a single general equilibrium framework. We showed how to implement this em-
pirically. Further, wefound that the Helpman-Krugman framework provides aremarkable lensfor
viewing the scale elasticities encoded in trade flows. Finally, our results highlight the importance

of scale and ‘all that’ as a source of comparative advantage.
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Appendix

A. Dataand Ther Sources

Data on endowments are constructed as follows. Capital stocks are from Summers and Heston
(1991). When available, we used the capital stock series. Otherwise, we used Leamer’s (1984)
double declining balance method applied to investment. Educational-attainment in the population
isfrom Barro and Lee (1993). We updated it to 1992. Energy is the sum of joule-equivalent re-
serves of hard coal, soft coal, crude oil, natural gas, and hydroelectric potential. Data are from the
World Resources I ngtitute diskette and other minor sources. Land isthe sum of cropland, pasture,
and forests as reported in FAO diskettes. All endowments are stocks, not flows.

For each country, industry, and year we have assembled data on international trade and produc-
tion. TableA.1liststhecountriesinthe database. (South Koreawasinadvertently omitted from our
group of 23 OECD countries.) Trade data are from the Stati stics Canada“World Trade Database.”
Production dataare from the UNIDO INDSTAT production data base, from the UN General Indus-
trial Statistics (including its earlier incarnations), and from other minor sources. Our 34 industries
completely cover the tradeables sector except for metal mining, non-metal mining, and miscella-
neous manufacturing. These three have no sensible production data because of aggregation prob-
lems. Asaresult they are included in the analysis, but are treated as constant returns to scale in-
dustries (i = 1) so that the estimating equations are independent of their data. We also applied the
same p = 1 constraint to the Crude Petroleum and Natural Gas industry for the 23-country results
intable4. Thismakeslittledifferenceto the results, but seemed the sensibleway to deal with trade
flowsgiventhat (i) the 23-country group omitsthe major oil producersand (ii) the 23-country i(g)
for Crude Petroleum and Natural Gasis . = 1.01. Manufacturing output was converted into 1987
U.S. dollarsusing IFS and PWT exchangerate data, PWT PPPs, and BEA industry-level pricein-
dexes. Agricultural output was converted using FAO data. Other non-manufacturing output was
in physical units.

TheU.S. choice-of-techniques matrices are from various sources. by, ys inequation (9) isfrom
the benchmark input-output tables (1972, 1977, 1982, 1987, and 1992). Thed, us in equation (8)
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are from many sources. For labour they come from the U.S. ‘employment and earnings’ series
combined with Current Population Surveys. For capital they primarily come from the U.S. *fixed
reproducible tangible wealth’ series. For al other factors they come from the usua unique-use
assumption. For example, the coal mining industry is the only industry that uses coal reserves.
The Ay ys were deflated by the theoretically correct method of double-deflating using BEA price
indexes. Thisisequivalent to putting both the input-output tables and the trade datainto 1987 U.S.
dollars.

For 6, in equation (10), we usethe 1982 U.S. value of 6, cal cul ated across our 34+3 industries.
From the U.S. input-output table, thisvalueisd, = 0.274.

s; 1Isdefined asfollows. Let RGDPC; bereal GDP per capitain constant dollars using the chain
index (1985 international pricesin the Penn World Tables). Let POP; be population from the Penn
World Tables. Let Y; =RGDPC, xPOP;. Let PM,;; be the value of i’s imports of good ¢ from
country j. LetTB; = ¥,%;(PM,; —PM,;) bei'stradebalance. Thens; = (Y;-TB;)/%;(Y; —
T'B;). Notethat the summation over countriesin the definition of 7'B; isthe sum over the N = 23
or N = 71 countriesin the database. The same point applies to all the summationsin the paper,

including summationsimplicitin X¥, X7, and M; .

B. Proof of Equation (1)

Recall that M} is country i’simports of foreign-produced intermediate inputs. Let Y;; bei’s use
of domestically produced intermediateinputs. Let Y; = Y;; + M;. The inter-industry shipments
matrix B; is constructed to identically satisfy Y; = B;Q; so that

B,Q;, =Y, + M}. (14)
In input-output analysis, gross output is defined as Q; = (Ci; + X¢) + (Y + X7). Substituting

eguation (14) into thisyields (I — B;)Q; = C;; + X+ X7 — M} . Premultiplying thislast equation
by A%; = mpiDyi(I — B;)~", simplifyingwith 7y D Q; = 74Vys = Vi, noting that M; = 0, and
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adding to theresult ¥, A%, Cy; — %A% M5 = 0 yields
Vi = Ff+ Ay (XY — MY) + 5;A%,C5 (15)

where Ff; = A}, X7 — ¥; A%, M. Summing equation (15) across countries ¢ and multiplying by
s; yields

SZ‘V;W = Sisz;j + SZE]A}](X;/ — M]y) + Sisz?jCWj' (16)

Subtracting equation (16) from equation (15) and using X; F'§; = 0 yields equation (1).

By the usual input-output logic, the delivery of one unit of final demand requires (I — B;) ™!
units of gross output. Since B; includes imported intermediates (see equation 14), the required
gross output includes foreign-produced intermediates. Ay; = Dy;(I — B;)~" isthusthe amount of
factor f that would have been used to produce the required gross output had the required output all
been produced domestically. Since, roughly speaking, M’ of it was produced abroad, using A¢;
inflatesthe factor content of trade by anamount A ¢; M. Theequation (3) factor content expression

corrects for this by including termslike — A M.

C. Tradein Intermediate | nputs

In this appendix we investigate the role of our assumption about the share of trade that istradein

intermediate inputs. Let M,;;, and My,

for final goods and intermediate inputs, respectively. We observe Mg,;; = M,
M¢,., or MY,

gij gijt-
in total trade, Ygijt = Mgijt/Mgijt-

be country 7’simports of good ¢g from country j inyear ¢
+ M3, but not

The problem is to choose an appropriate value for the share of intermediate inputs

We begin by noting that the bulk of world trade istrade in intermediate inputs so that we might
conservatively expect the v,,;; to exceed one half. Consider Canada-U.S. bilateral trade since we
aremost familiar with these data. Careful examination of these data revealsthat at least two thirds

of it isintermediates trade.!® This conclusion is consistent with the aggregate numbers. For the

16Government of Canada (1997) reportsthe average of imports and exports for the following categories. Consumer
goods account for 7% of trade. None of thisisintermediate inputs. Machinery and industrial goods account for 42%
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United States in 1987, intermediate inputs plus private investment as a percentage of gross output
was 53%. The percentageis higher for the goods-producing tradeabl e sector i.e., for the industries
that concern us. Thus, we expect ,;;. to exceed one half on average. We emphasize that one half
is a conservative number.

We next turn to our choice of 7. Let Qqust, Yyuse, and Iyus, be U.S. gross output, in-
termediate inputs, and investment in industry g in year . \We assume that ,;;; equals v;;;, =
(Yust + Tgust) /Qgusi- 755 Fanges from 0.28 to 1.00 across our 34 industries and 5 years.

Table A.2 explores the sensitivity of our results to different choices of +,;;;. The first row of
the table reports the ML estimate zz for the model with 71 countries, 11 factors, 5 years, and our
baseline assumption yg,;; = ;- Itisthesame i asinthefirst row of table2. The second row uses
a7+ that is halfway between 7, ., and unity. The third row uses a-y,;;; that is halfway between
7Vy:;¢ @nd zero. Itisclear that such radical changesin the choice of ,,;;, make little difference to
our estimates of scale.

The remaining rows of table A.2 set v,;;; to a constant. It is our strong contention that -
averaged acrossindustries should exceed one half. From table A.2, allowing ,;;, to fall to one half
makes no difference to zi. Further, the loglikelihood value declines monotonically as v, moves
from unity to zero. This suggests, as expected, that the model fits the data better for large values
of y,44;¢- To conclude, our results are robust to a wide range of assumptions about the allocation of

trade between intermediate inputs and final goods.

D. GLS Variance Parameters

Theestimating equation (13) involvesaGL S correction o ;.. We parameterizeo s aso gy = ;04

where s;; is acontrol for country size and o, is acontrol for factor size. w is a parameter to be

of trade. All of thisisintermediate inputs. Automotive goods account for 29% of trade. From the Canadian 1988
input-output tables, under half of thisor 12% istradein parts. Partsareintermediateinputs. Assuming conservatively
that no finished automotive goods are intermediate inputs (e.g., treating trucks asfinal goods), only 12% of automotive
tradeisintermediateinputs. ‘ Other’ goods account for 23% of trade.  Other’ goodsis dominated by forestry products
whichinturnisprimarily used as intermediatesin the construction industry. We conservatively assume that only half
or 11% of ‘Other’ goods trade is intermediate inputs. The sum of 42% plus 12% plus 11% is 65%. That is, at |east
two-thirds of Canada-U.S. trade is intermediates trade.
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estimated. o, is defined as the cross-country variance of Hy; (1 = 1)/s;;° where Hy;; is defined
in equation (12). w, was chosen by an iterative procedure: pick an initial wg, estimate the model
to obtain an &, set wy equal to w, and repeat until w, convergesto . It quickly became clear that
the @ aways lie in the tight interval (0.82,0.93). Asaresult, we set w, equal to 0.9 for all the
estimates reported in the paper. (Setting wy to 0.80 or 1.00 makes no difference.) The for the ML
specificationsin tables 2 and 4 appear intable A.3. All of them are closeto 0.90. The& underlying
the table 3 estimates vary between 0.85 and 0.93 across the 34 industries.

For NLSand NL2SLS, onetypically replacesw with a consistent estimate. We chosew = 0.9.

Allowing the variance to vary additionally across factors and years or introducing factor fixed
effects makes no difference to the estimates. For one, the effect of scaling by oy, is that factors

have similar variances in each year. For another, H;( = 1) has azero mean for each factor.

E. Details of the NL2SL S Estimators

Lett = 1,...,t, bethe yearslost as a result of instrumenting using lagged regressors. We are
interested in ‘within’ estimators. Let z 7;, be any variable and let V be an operator that transforms
x i Dy subtracting off its mean across all factors f =1, ..., F andyearst = ¢, + 1,...,T. That s,
Vasie = Tpie — X pSpsio@ e [ (F (T —10)).

The NL2SLS estimator is based on Amemiya (1974). Consider the*Z = Fy;, . (u) esti-
mator. From equation (13), let Vn(u) be the FN(T — ty) x 1 vector formed by stacking the
Vinga(w) = V(Hp(w)/og). Let ZE(w) = V(Fhy o )/og) - (V(Fhy (0 /og)"
bethe 1 x K vector of instruments. Let ZX (1) be the corresponding FN (T — t5) x K matrix
of stacked instruments. The‘Z = Fy;, ()’ estimator minimizes Vn(u)' Py (1) Vn(p) where
PE(n) = ZX(ZK' 751 Z%'. Let uf bethe minimizer. Since Z¥ () isafunction of y, thein-
struments must be simultaneously estimated along with the rest of the model. That is, NL2SLSis
a 1-stage estimator, not a 2-stage one.

Consider the‘aﬁ’;it /o’ estimator. Let k£ bethe dimension of i, definethe gradient G (1) =
V((0F};/0u)/0yi), and let G (i) bethe FN(T — to) x k matrix of stacked G y;;(p). Inthe first
stage, instrument G X)) by ZX (u&) toobtain G = P ()G (u&). Inthesecond stage, minimize
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V() Pe(uX ) V(1) where Pg(uk) = G(G'G)~'G'. Denote the minimizer by X Intable 2,
wi dependson K only viapl<. Also, thetable 2 conclusionsarerobust to expanding theinstrument
set G to include polynomials and cross-products of G.7

t-statistics for the two NL2SL S estimators are based on the covariance matrices 6 (G (uky
Pg(ug)a(ug)) ' and? (G(u{‘)’Pg(ug‘)G(u{{)) " where isthemodel standard error (based
on unprojected residuals, of course). The Hausman test isbased on the difference betweenthe NLS
and NL2SL S estimates.

In table 2, the standard errors of the two NL2SLS estimators are similar and occasionally the ‘613’;“ /O stan-

dard errors are (unexpectedly) larger. When squares and cross-products of G areincluded in the instrument set, the
‘OF}, /0w’ standard errors are always lower, but not significantly so.
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Table 1. The Geographical Concentration of Production

Herfindahl Index Measures of Scale
Capital Skill Average

ISIC  Industry 1992 1992-1972 Intensity Intensity  Rank
385 Instruments .38 +.07 .04 42 22
210 Coa Mining .23 -03 A5 .18 24
342  Printing and Publishing A7 -03 .03 43 21
220  Oil and GasMining A5 -20 34 31 30
382  Machinery (Non-Electrical) A5 -04 .05 31 22
341  Pulp and Paper A3 -03 A1 21 23
384 Vehicles A3 -07 .06 .30 22
356 Plastic Products A2 -01 .04 .16 14
383  Electrical-Electronic Mach. A2 -05 .06 34 24
381 Meta Products A1 -04 .04 A5 13
331  Sawmill Products .10 -.05 .03 A2 10
332  Furniture and Fixtures .10 -04 .02 A1 7
351 Basic Chemicals .10 -03 14 .28 27
352  Pharmaceuticals .10 -02 .08 49 28
354  Petro. and Coal Products .10 -03 A2 42 29

GDP .10 -02
020 Crops .09 +.01 .07 .06 12
314 Tobacco .09 -01 14 .36 29
362 Glass Products .09 -05 .06 .16 19
411  Electricity .09 -03 1.00 1.00 35
010 Livestock .08 -01 .18 A1 21
031  Forestry .08 +.00 .02 J1 5
322 Appael .08 -07 .01 .06 2
353  Petroleum Refineries .08 -04 51 .62 34
353  Rubber Products .08 -05 .05 22 19
371 Iron & Stedl Basic Indus. .08 -04 A3 .19 23
372  Non-Ferrous Metal Prod. .08 -07 .09 .23 23
311 Food .07 -04 .06 A1 14
313 Liquors .07 -02 10 25 24
321 Textiles .07 -01 .03 10 7
361 Pottery and China .07 -.02 .02 21 14
032 Fishing .06 -.02 .03 A0 7
323 Leather .06 -01 .02 A1 5
324  Footwear .06 -.03 .01 10 4
369 Clay & Cement Products .06 —-.05 .05 A5 14
Corréelation with 1992 Herfindahl

Pearson -03 23 27

Rank .26 51 43

Notes. TheHerfindahl index isa1992 index of the cross-country dispersioninthelocation of output. Smaller
valuesmeanlessregional concentration. Capital intensity is1992 U.S. dataon each industry’s capital-labour
ratio. Skill intensity is 1992 U.S. data on the ratio of skilled workers (completed high school) to unskilled
workers (did not complete high school). The capital- and skill-intensity columnsare scaled so that el ectricity
isunity. Average rank isthe average of the ranks of capital intensity and skill intensity.
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Table 3. Eladticities of Scale by Industry

1(g) t

IRS - Manufacturing

Petroleum and Coal Products 1.403 35.70
Pharmaceuticals 1.306 17.52
Electric and Electronic Machinery  1.197 12.12
Petroleum Refineries 1.192 4.08
Iron and Steel Basic Industries 1.146 5.59
I nstruments 1.124 1.69
Machinery (Non-Electrical) 1113 6.14
IRS - Natural Resources

Forestry 1181 11.57
Livestock 1.075 9.54
Crude Petroleum and Natural Gas  1.050 6.52
Coal Mining 1.049 6.84

Constant Returnsto Scale

Apparel, Leather, Footwear, Food, Liquors, Sawmill
Products, Fishing, Agricultural Crops, Textiles, and
Electricity.

Non-Robust

Vehicles, Basic Chemicals, Pulp and Paper, Printing and
Publishing, Plastic Products, Non-Ferrous Metal Prod-
ucts, Metal Products, Rubber Products, Clay and Cement
Products, Glass Products, Pottery and China, Furniture
and Fixtures, and Tobacco.

Notes: Thistablereportsthe ML scale estimates for the specification
with 71 countries, 11 factors(listed in the noteto table 2), and 5 years.
The u(g) columnreportsthei(g) scale elasticities. t-statisticsare for
the hypothesis of constant returns (u(g) = 1).



Table 4. Scale Elasticitiesfor Groups of Industries

IRS Non-Robust CRS
u t u t n t
71 Countries
1972-92 ML 1.062 15.75 1.072 6.57 0.888 -1.67
1987-92 ML 1.060 9.06 1.075 4.0 0.775 -0.80

NL2SLS 1116 654 0.897 -0.02 0.700 -0.00

23 Countries
1972-92 ML 1.066 10.76 1.108 4.34 0.846 -1.98
1987-92 ML 1.057 6.16 1.081 150 0824 -1.33

NL2SLS 1101 5.8 0876 -0.01 0.813 -0.02

Notes: a. All specifications use the 11 factorslisted in the notesto table 2. The 23 countries
arethe OECD countriesin our sample. See appendix table A.1 for alist of these countries.
b. ML ismaximumlikelihood. NL2SL Sisnon-linear 2-stageleast squaresasreported inrow
3of table2. Thatis, itusesthe Z = F};,  (u) instrument set witha K = 3 polynomial
order and a 15-year lag. With a 15-year lag, only the years 1987 and 1992 are | eft.



Table 5. Sensitivity Analysis: 1(g) for Different Specifications

Countries N=T71 N=71 N=23 N=71
Factors =11 =11 =11 =7
Initial Rank Basdline Alternative Basdline Basdline
IRS - Manufacturing

Petroleum and Coal Products 1.40*** 1.40*** 1.38*** 1.38***
Pharmaceuticals 1.31%** 1.30%** 1.33*** 1.28***
Electric and Electronic Machinery ~ 1.20*** 1.20*** 1.18* 119
Petroleum Refineries 1.19* 1.19* 1.20 1.20*
Iron and Steel Basic Industries 1.15* 1.08 1.00 1.14*

I nstruments 1.12 1.15* 1.24* 1.22+*
Machinery (Non-Electrical) 1.11+ 1.10* 1.15* 1.12%

IRS - Natural Resources

Forestry 1.18** 1.18** 1.05* 1.18*
Livestock 1.08** 1.08** 1.15%* 1.02
Crude Petroleum & Natural Gas 1.05** 1.05** 1.01 1.06**
Coal Mining 1.05* 1.05* 1.05** 0.97
Non-Robust

Vehicles 1.02 1.02 1.09 0.97
Basic Chemicas 1.06 1.06 1.20f 1.02
Pulp and Paper 1.15 1.12 1.19f
Printing and Publishing 1.00 1.01

Plastic Products 1.11 1.08 1.28f 1.06
Non-Ferrous Metal Products 1.24%

Metal Products 1.02 1.00 1.02

Rubber Products 1.23f 0.99¢ 1.13 1.24f
Clay and Cement Products 1.07 1.03 1.03

Glass Products 1.02 1.02 1.00 1.02
Pottery and China 0.83 0.83 101

Furniture and Fixtures 0.76

Tobacco 1.08

Notes: a. Thistable reportsthe ML scale estimates 1i(g). There are 71 countriesin the sample, 23 of which are
OECD members. The 11 factors are listed in the note to table 2. The 7 factors aggregate the 3 land factors and
aggregate the 3 energy factors. All 5 years of data are used.

b. The*Baseline' initial rank columnsinitiatethe estimation algorithm with aranking based onindustries’ capital
and skill intensities. The ‘Alternative' initia rank column initiates the algorithm with a ranking based on scale
elaticities from Paul and Siegel (1999).

c. A * indicates significance at the 1% level (¢ > 2.58). ** and *** indicate ¢ > 5 and ¢ > 10, respectively.

d. For the IRS groups, the data are from the 10th iteration. For the Non-Robust group, the data are averages of
the 9th and 10th iterations. No t-statistics are reported for the Non-Robust group.

e. For the Non-Robust group an empty cell denotes constant returns (insignificant u(g)) in both iterations. A
denotes increasing returns (significant u(g)) in both iterations.



Table 6. The Elasticity of Factor Demand

Factor ay t

High School Not Compl eted 021 140
High School Completed -0.21 -2.08
No Education 0.83 9.65
Primary Education -0.08 -0.28
Secondary Education -0.05 -0.67

Post-Secondary Education -0.27 -1.34

Notes. This table reports the estimates of oy =
Olnayg,i/0In Qg i.e., the output elasticity of unit factor
demand. The estimates are ML results for a specification
with 71 countries, 5 years, and the single factor indicated
inthefirst column. Thereare 71 x 5 = 355 observations.



Table A.1: Countriesin the Database

GDP per GDP per
Country capita Country capita
*  United States 1.00 Brazil 0.22
Hong Kong 0.92 *  Turkey 0.21
*  Canada 0.91 CostaRica 0.20
*  Norway 0.87 Fiji 0.19
*  Japan 0.84 Colombia 0.19
*  Germany 0.82 Panama 0.19
* Audtrdia 0.81 Tunisia 0.17
*  Denmark 0.79 South Africa 0.17
*  Sweden 0.78 Ecuador 0.16
*  France 0.78 Suriname 0.14
*  Belgium 0.75 Jamaica 0.14
*  Netherlands 0.74 Dominican Rep. 0.13
*  Audtria 0.72 Guatemala 0.13
*  United Kingdom 0.71 Sri Lanka 0.12
* taly 0.71 Morocco 0.12
Singapore 0.71 Indonesia 0.12
* |celand 0.70 Peru 0.12
*  Finland 0.67 El Salvador 0.11
*  New Zealand 0.63 Egypt 0.10
Israel 0.55 Bolivia 0.10
*  Span 0.55 Philippines 0.09
* Ireland 0.54 PapuaNew Guinea  0.09
Barbados 0.43 Bangladesh 0.08
Venezuela 0.40 Pakistan 0.08
*  Greece 0.37 Honduras 0.08
Malta 0.35 India 0.07
*  Mexico 0.35 Zimbabwe 0.07
*  Portugal 0.34 Cameroon 0.06
Mauritius 0.34 Nigeria 0.05
South Korea 0.32 Ghana 0.05
Madaysia 0.32 Zambia 0.04
Argentina 0.30 M adagascar 0.03
Uruguay 0.29 Tanzania 0.03
Chile 0.27 Malawi 0.03
Syria 0.24 Ethiopia 0.02
Thailand 0.22

Notes: A * indicatesthat the country isamember of the OECD. There are 23 members
in our sample. GDP per capita is expressed relative to the United States. Most data
are for 1992. Where these were not available, 1988 data were used or, in the case of
Ethiopia, 1986 data.



Table A.2 Sensitivity to Assumptions
About Intermediate Inputs

’Ygijt 1Y t ||ke| | hOOd

Voit 1051 1341 -35461

(V3o +1)/2 1052 1472  -35453
(Vi +0)/2 1039 842 -35488

1.0 1.052 15.63 -35/447
0.9 1.053 15.01 -35452
0.7 1.051 13.04 -35,464
0.5 1.045 10.28 -35,479
0.3 1035 7.35 -35493
0.1 1.024 479 -35,503
0.0 1.024 479 -35,503

Notes: This table reports the ML estimates for the
specification with 71 countries, 11 factors, and 5
years. v,:5¢ isthe share of trade that is intermediate
inputs trade. The baseline choice of ~,;;; through-
out the paper is~y; ;- Itisdescribedinappendix C. t
isthet-statistic for the hypothesisof constant returns
to scale (u = 1). ‘Likelihood' is the loglikelihood
value.



Table A.3. GLS and Variance Parameter Estimates

w stder. o std.er.

Table 2
row 1 0.85 0.0061 0.68 0.025
row 2 0.84 0.0094 0.64 0.036
row 5 0.84 0.0078 0.67 0.031
row 8 0.82 0.0134 055 0.045
Table 4

N=171,F=11,1972-92 085 0.0061 0.69 0.025
N=71,F=11,1987-92 084 0.0094 0.64 0.037
N =23, F=11,1972-92 090 0.0138 0.92 0.056
N =123, F=11,1987-92 091 0.0228 0.95 0.095

Notes: This table reports the estimated GL S parameter w and the estimated
variance parameter o for the specificationsreportedin tables2 and 4. w and o
aredescribedin appendix D. IV and F' arethe number of countriesand factors,
respectively. ‘std. err.’ isthe standard error of the estimate.




