
Citation: Iglesias Perez, S.; Criado, R.

Increasing the Effectiveness of

Network Intrusion Detection Systems

(NIDSs) by Using Multiplex

Networks and Visibility Graphs.

Mathematics 2023, 11, 107. https://

doi.org/10.3390/math11010107

Academic Editors: Angel

Martín-del-Rey, Roberto Casado Vara

and Lixiang Li

Received: 26 October 2022

Revised: 24 November 2022

Accepted: 30 November 2022

Published: 26 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Increasing the Effectiveness of Network Intrusion Detection
Systems (NIDSs) by Using Multiplex Networks and
Visibility Graphs
Sergio Iglesias Perez 1,* and Regino Criado 1,2,3,*

1 Data, Complex Networks and Cybersecurity Sciences Technological Institute, University Rey Juan Carlos,
28028 Madrid, Spain

2 Departamento de Matemática Aplicada, Ciencia e Ingeniería de los Materiales y Tecnología Electrónica,
ESCET Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Mostoles, Spain

3 Center for Computational Simulation, Universidad Politécnica de Madrid, 28223 Madrid, Spain
* Correspondence: s.iglesiasp.2019@alumnos.urjc.es (S.I.P.); regino.criado@urjc.es (R.C.)

Abstract: In this paper, we present a new approach to NIDS deployment based on machine learning.
This new approach is based on detecting attackers by analyzing the relationship between computers
over time. The basic idea that we rely on is that the behaviors of attackers’ computers are different
from those of other computers, because the timings and durations of their connections are different
and therefore easy to detect. This approach does not analyze each network packet statistically. It
analyzes, over a period of time, all traffic to obtain temporal behaviors and to determine if the IP is an
attacker instead of that packet. IP behavior analysis reduces drastically the number of alerts generated.
Our approach collects all interactions between computers, transforms them into time series, classifies
them, and assembles them into a complex temporal behavioral network. This process results in the
complex characteristics of each computer that allow us to detect which are the attackers’ addresses.
To reduce the computational efforts of previous approaches, we propose to use visibility graphs
instead of other time series classification methods, based on signal processing techniques. This new
approach, in contrast to previous approaches, uses visibility graphs and reduces the computational
time for time series classification. However, the accuracy of the model is maintained.

Keywords: cybersecurity; NIDS; complex networks; time series; visibility graphs

MSC: 05C82

1. Introduction

Nowadays, the amount of worldwide information among connected devices is grow-
ing exponentially. This growth provides us with a field where the availability of information
in an adequate form provides a huge differential for the detection of appropriate shreds of
evidence within an increasing amount of data. IoT is one of the most important disciplines
where this increase happens. Gartner, the world’s leading research and advisory company,
predicts a great amount of interconnected IoT endpoints. Cybersecurity must answer the
requirements stemming from this increase in new devices. Network modeling provides a
conceptual framework for describing the the relationships between systems and measures
them in a meaningful way [1–5]. During the last two decades, a branch of science was
born; it was known as complex network theory. This science has a main goal of exploiting
the current availability of big data to extract a representation of the underlying complex
systems and mechanisms [6–13]. Complex network theory tries to explore complex systems
to find new forms to analyze them [14–16]. In the model, a complex network is used
to represent the scenario, where the nodes are the different components of the system,
while the edges represent the links between them. So, the attacker navigates through the

Mathematics 2023, 11, 107. https://doi.org/10.3390/math11010107 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11010107
https://doi.org/10.3390/math11010107
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2994-6281
https://orcid.org/0000-0001-7954-6169
https://doi.org/10.3390/math11010107
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11010107?type=check_update&version=2

Mathematics 2023, 11, 107 2 of 24

computer network to extract and to capture valuable information contained in the system.
Each hop from one node to another has its own cost, depending on the ease of accessing
a new computer. In any case, this myriad of IoT endpoints (5.81 billion units of new IoT
devices as describe in Figure 1) requires effective cybersecurity processes.

Figure 1. IoT endpoint market evolution, 2018–2020.

Cybersecurity is one of the disciplines that has grown the most in recent years, trying to
cover new needs arising in the new digital environments and the IoT of large corporations.
In the United States, cybercrime costs businesses more than $3.5 billion a year in Internet-
related crimes and damages, according to a 2019 FBI report. The increasing number of
computers and endpoints connected to the Internet renders a more complex playground
to detect attackers. These losses show the real need to improve detection, protection,
and reaction tools in large corporations where the current solutions don’t solve their real
security needs. Cybersecurity spending will reach up to $123 B in 2020, and the security
and risk management of cybersecurity is predicted to grow to 2.4%, down from a projected
growth rate at the beginning of this year of 8.7%, according to Gartner’s security and risk
management spending forecast.

In this situation, one of the most important challenges is to detect any security gap
inside the network as soon as possible. One of the most commonly used indicators to
measure the time spent for SOC analysts to detect an attacker in the network is called MTTD
(Mean Time to Detection). However, the evolution of the MTTD is increasing in recent years,
as Cost of a Data Breach Report 2020 describes (https://www.ibm.com/security/digital-
assets/cost-data-breach-report/, access on 20 September 2022). The actual trend is that the
MTTD is increasing to 207 days over the last few years, as we can see in Figure 2.

Mathematics 2023, 11, 107 3 of 24

Figure 2. Mean Time To Detect Average by year.

To reduce this indicator, a large number of security arrangements are deployed in
the networks. One of them is the NIDS. The Network Intrusion Detection System can be
described as a device, a software application that monitors a network or computer for
malicious activity or policy violations. NIDS inspects every network packet and payloads
against a huge number of rules. These rules usually find some payload flag or information,
similar to an antivirus, detecting some attack pattern, as we can see in the examples
described in Listing 1. Every rule is made by inspecting every packet generated in an attack
and finding some characteristic behavior, and so it must be developed by security analyst
experts located in 24 × 7 security labs. After development, these rules are sent to large
corporations using subscription services that update the ruleset periodically to detect new
attack patterns.

Listing 1. snort NIDS rule examples.

a l e r t tcp $EXTERNAL_NET any −> $TELNET_SERVERS 23 \
(msg : "MALWARE−BACKDOOR w00w00 attempt " ;
flow : to_server , e s t a b l i s h e d ; content : "w00w00" ; metadata : r u l e s e t community ;
c l a s s t y p e : attempted −admin ; s id : 2 0 9 ; rev : 9 ;)
a l e r t tcp $EXTERNAL_NET any −> $TELNET_SERVERS 23 \
(msg : "MALWARE−BACKDOOR attempt " ;
flow : to_server , e s t a b l i s h e d ; content : " backdoor " , nocase ; metadata : r u l e s e t \
community ;
c l a s s t y p e : attempted −admin ; s id : 2 1 0 ; rev : 7 ;)
a l e r t tcp $EXTERNAL_NET any −> $TELNET_SERVERS 23 \
(msg : "MALWARE−BACKDOOR MISC r 0 0 t attempt " ; \

flow : to_server , e s t a b l i s h e d ; content : " r 0 0 t " ; metadata : r u l e s e t community ;
c l a s s t y p e : attempted −admin ; s id : 2 1 1 ; rev : 7 ;)
a l e r t tcp $EXTERNAL_NET any −> $TELNET_SERVERS 23 \
(msg : "MALWARE−BACKDOOR MISC rewt attempt " ;
flow : to_server , e s t a b l i s h e d ; content : " rewt " ; metadata : r u l e s e t community ;
c l a s s t y p e : attempted −admin ; s id : 2 1 2 ; rev : 7 ;)

Mathematics 2023, 11, 107 4 of 24

This ruleset creation has three main disadvantages:

• No zero-day attacks detection,
• Lots of false positive alerts because the rule only finds limited patterns in the packets,
• No contextual information about generated alerts

Because any generated alert must be analyzed to detect attackers in large corpora-
tions, any intrusion activity or violation is typically reported to an administrator or is
collected centrally using another cybersecurity tool called Security Information and Event
Management (SIEM). SIEM tries to reduce one of the disadvantages of NIDS and other
cybersecurity tools, and the contextual information, focusing on the correlation of existing
information within the generated alerts, giving the SOC analyst more information about
the environment where the alert was triggered. SIEM combines outputs from multiple
sources and uses alarm filtering techniques to distinguish malicious activity from false
alarms. These early detection systems need to send the least number of alarms possible to
the SOC cybersecurity team. A large number of false positives can reduce the effectiveness
of an entire cybersecurity department by focusing on non-critical investigations. Therefore,
an actual approach of inspecting every network packet, focusing only on the payload of
the packet and the network session information, is not enough to reduce the MTTD metric.

In this paper, our challenge is to reduce the number of days for the detection, focusing
on the behavior of the network-connected device, rather than evaluating every networking
event separately, because individual events don’t help us to detect them in the early stages
of the attacks.

We therefore present an approach that provides us with the benefits of both techniques
(time series and networks) by generating a graph that is contextualized with the information
extracted from the communications behavior detailed using UEBA techniques (User Entity
and Behavior Analytics).

To achieve this, we propose a new technique to develop NIDSs to focus on IP address
behavior, instead of focusing on a single network packet. Using temporal behavior multi-
plex networks, we can obtain the behavior of each computer and find anomaly computers,
generating alerts. In this paper, we use visibility graphs and Kmeans for clustering time
series quicker than previous research.

2. Materials and Methods

This section is devoted to presenting our new approach, taking as a starting point
the methodology developed in [17,18]. First, we suggest a possible NIDS architecture
that can be used to deploy this NIDS. Second, we describe the dataset that we use to
validate our method. Third, we describe, step-by-step, how we create and use the multiplex
temporal behavioral network with a new visibility graph-based approach. Finally, we
present the results.

3. Machine Learning Based on Intrusion Detection Systems

Nowadays, intrusion detection systems’ most important challenge is to increase their
accuracy in more complex networks, with more computers and more communications
taking place. As attack techniques become more sophisticated and more extended in time,
the meantime to detect the attacker increases due to the difficulty of filtering false positive
alarms from the real alerts generated for the attacker’s activity.

The most common type of NIDS is based on ruleset and protocol violation techniques.
There are also new approaches based on machine learning techniques to identify attacker
events. These new approaches try to solve two of the disadvantages of NIDSs: zero-day
attack detection and false-positive reduction in large corporations trying to give the SOC
analyst more accurate alerts to detect any attack in the early stages.

Mathematics 2023, 11, 107 5 of 24

3.1. Related Works

There are many ways to analyze the network packet within the machine learning,
based on intrusion detection systems. We can find several approaches based on each
machine learning technique discovered.

At a first step, we can split them according to how many algorithms are used. Most
common approach is to use only one algorithm. However, there are ones using a combina-
tion of algorithms [19,20].

In summary, we can reduce all the techniques in:

• Pattern classifiers;
• Single classifiers: K-nearest neighbor, support vector machines, artificial neural net-

works, etc.;
• Hybrid classifiers;
• Ensemble classifiers.

In addition to these techniques, in recent years, several new techniques have appeared,
such as reinforcement learning [21] or Convolutional LSTM Networks [22] or deep learn-
ing [23–25]. Other techniques are based on time series, such as [26–28], as well as complex
networks [29,30]. However, none of these approaches have provided a unique solution to
this problem.

Generally speaking, any supervised or unsupervised technique is valid for use in
developing an NIDS.

However, all of these approaches are focusing on the same target: find the best accuracy
in the model. There is no different approach between them.

In our case, we propose a deeper technique to acquire the behavioral information.
To meet the challenge, we have relied on defining patterns of computer behavior

through a temporal behavior multiplex network, and then looking for combinations that
are unusual for attacker detection. There are other approaches, such as link prediction [31],
which could be equally interesting for the detection of unusual computer behavior. Both
approaches are complementary and could be a field for further research.

3.2. NIDS Architecture

We propose a new method for alert generation. An actual NIDS checks every network
packet with a ruleset or machine learning algorithm; our approach collects network traffic
in a period. After collecting all of this information, it activates alerts with the possible
attacker IP addresses in the period. In Figure 3, we show the basic architecture for collecting
network traffic and from it, triggering alerts.

With this approach, we take more information about the behaviors of the computers,
rather than checking every network packet at the same time.

Mathematics 2023, 11, 107 6 of 24

Figure 3. IDS architecture.

3.3. Dataset

The first challenge of most real cases is that the data arranged in log files that store
the information sequentially. These files have little information on each event, so their
aggregation into a network will allow us to obtain a greater amount of information.

As we have to create time series from the interactions between each IP address, it is
necessary, for this technique to be used, there must be enough events that are relevant to
each IP address.

One of the biggest challenges is to find a dataset that lets us compare our ideas with
the ideas that are published in other papers. For this purpose, we have decided to use
a dataset that is well known in the field of intrusion detection systems. In our case, we
are going to use the Bot-IoT dataset [32] because it meets the requirements we need for
our approach:

• A dataset format based on network flows and their features,
• Long-term monitoring: to understand the the behavior of every network communica-

tion, we need information over time,
• A labeled dataset,
• Wide usage in previous research to be compared with.

This dataset fulfils all our requirements:

1. It collects every flow from a network. The dataset contains more than 72,000,000 records;
2. It labels which communication is an attack;
3. It provides us with a great number of features describing it from every network flow

between two IP address, as we can see in Table 1.

Mathematics 2023, 11, 107 7 of 24

Table 1. List of features located in the proposed dataset.

Title 1 Title 2

ts src_ip
src_port dst_ip
dst_port proto
service duration

src_bytes dst_bytes
conn_state missed_bytes

src_pkts src_ip_bytes
dst_pkts dst_ip_bytes

dns_query ns_qclass
dns_qtype dns_rcode
dns_AA dns_RD
dns_RA dns_rejected

ssl_version ssl_cipher
ssl_resumed ssl_established
ssl_subject ssl_issuer

http_trans_depth http_method
http_uri http_version

http_request_body_len
http_response_body_len http_status_code

http_user_agent http_orig_mime_types
http_resp_mime_types weird_name

weird_addl weird_notice
label type

In addition, we must not forget that this a reference for the evaluation of IDS.

3.4. Temporal Behavior Multiplex Network

In this paper, we propose an improved approach to creating a multiplex network
of temporal behavior to forecast any time-based use case, based on the earlier published
technique proposed in previous papers [17,18]. However, this new approach uses a different
technique to acquire the temporal behaviors of the assets. In this case, we propose to use
visibility graphs.

The main reason for modifying the technique proposed in a previous paper is to
find more accuracy and less computational effort in optimizing the previously proposed
technique, as we will discuss below.

We follow the same workflow described before in the previous research Figure 4.
First of all, we have to collect all of the network packet information inside the temporal
behavior multiplex network, and after this, to extract complex features from the network to
predict if an IP address is an attacker or not, using a controlled machine learning algorithm.
However, in this new approach, we propose to use the visibility graphs, Kmeans to time
series classification, instead of the KShape algorithm.

To create the temporal behavior multiplex network, first of all, we create a time series,
collecting the iterations between two nodes. This time series gives us information about
the evolution over time of the relation between them, using the number of bytes per hour
as a slot, as we can see in the first part of Figure 5.

The second step consists in creating a classification of these times series. For this
purpose, we decide to use a combination of visibility graphs and the Kmeans unsupervised
algorithm. With this, we create time series clusters. Each cluster describes a similar
relationship between two computers.

Mathematics 2023, 11, 107 8 of 24

Figure 4. Research workflow.

Mathematics 2023, 11, 107 9 of 24

Figure 5. Time series to visibility graph conversion.

The final step is to fill the multiplex network. This multiplex network will have many
layers as clusters of the time series we have. Each edge connecting two computers will be
placed in the layer, depending on the cluster of the time series created from the information
of the edge. For example, if the time series created with the bytes per hour between two
computers is located in cluster #5, the edge between these two nodes will be placed in layer
#5 of the multiplex network.

Mathematics 2023, 11, 107 10 of 24

The ultimate goal of the creation of this multiplex network is to put it together in the
same layer with similar traffic patterns. That is, all computers trying to surf the Internet will
be located in the same layer. Each node will have edges in one or more layers describing its
relationship with the rest of the network.

The first item is to collect all temporal information about the relationship between
the assets inside a temporal behavior complex network. We describe in the following
paragraphs how to create it.

First of all, we consider a weighted network as a single layer network defined using
the form

G = (N, E, W)

where N is defined as a set of nodes N = n1, n2, .., ni and E the set of edges connecting the
nodes as N = n1, n2, .., ni, and W is defined as the weight of every edge based on a discrete
function based on timeW = w1, w2, .., wi.

As a temporal approach, each edge E ∈ e can be defined as a discrete function based
on tWt = w1(t), w2(t), .., wi(t).

The time series described as a discrete function needs three characteristics to be
defined:

• Start time: Defined first date to create the time series.
• Finish time: Last date taken into account for the time series creation.
• Frequency: Slot time where the discrete function is used. Normally, the frequency is

based on days, weeks, seconds, or years.

Based on the previous characteristics, we describe the weight of every edge as:

w(t) =
f inishtime⋃

i=starttime

n

∑
j=0

numberevents

Each edge can be defined as a time series or a discrete function with a number of
elements equals to the number of periods inside the time reference between the start time
and the finish time. For example, in our case, based on the start time (1 January 2019), finish
time (30 June 2019), and daily frequency, we consider 181 elements in each edge. Each
element is the sum of occurrences in the analyzed slot, as we can see in Figure 5.

3.5. Visibility Graphs

In previous research where we have presented temporal behavior complex net-
works [17,18], we used the KShape algorithm to classify all of the time series created
in every edge. This algorithm is based on the “shape” of the time series. Using the fast
Fourier transformation, it determines the classification of the time series depending on the
distance between them. This approach gave us the ability to use a complex capability to
classify a time series in a way that networks cannot.

The KShape process is very similar to the Kmeans technique. In both cases, the algo-
rithm iterates finding the best approach to classifying assets. The algorithm iterates until
no time series change in the recommended cluster or max iteration has occurred. In each
iteration, the algorithm tries to find a mean point, called the centroid, for every cluster.
After this, it tries to determine the best cluster for every time series.

One of the major drawbacks of the time series ranking algorithms based on a time
series comparison is the deterioration of performance as the number of time series to be
analyzed increases.

In order to solve this problem, we have looked for alternative solutions that allow
us to solve the same problem but without the existing complexity limitations. In this
case, as the challenge consists of classifying time series in a more computationally efficient
way, we have looked for other ways of representing the time series. With new forms of
representation, it is easier to use other classification techniques than the ones already used
to date (Kshape).

Mathematics 2023, 11, 107 11 of 24

In this research, we have proposed the use of visibility graphs [33] (Visibility graph
and Horizontal visibility graph) in order to obtain a new way of representing time series.
Each time series is defined as a network where each step is a node and it is connected to all
steps that are visible from it. However, if any step value is bigger than its next not-visible
steps, then no edge will appear between them, as we can see in Figure 5.

In this figure, we focus on the bytes sent between two computers. Each record is the
number of bytes between two network computers, starting on 23 April 2019 at 13:00:0
and finishing on 27 April 2019 at 08:00:00. This approach gives us about 100 records as a
time series.

3.5.1. Natural Visibility Graphs

In 2008, the first reference about natural visibility graphs appears. They were defined
in the paper [33] and were very quickly used in several pieces of research to transform time
series to networks. This transformation is very helpful to introduce network theory in time
events as we do in this paper, characterizing a time series as a network.

In the following sections, we will describe the method for the creation of a natural
visibility graph, as presented in the mentioned paper. For this, we first rely on the represen-
tation of a time series consisting of a limited number of integers representing the value of
the time series at each of the time-points at which the time series is analyzed. The natural
visibility graph will be based on creating edges between all the values of the series that are
visible to each other. Specifically, they will be seen if there is no greater value of the series
between them. In a mathematical way, based on a time series with a number of values
in several times: (t1, y1), (t2, y2), (t3, y3), . . . , (tn, yn), node 1 and node 2 are connected if a
node 3 is not between them, as follows:

y3 < y2 + (y1 − y2)
t2 − t3

t2 − t1

Using this approach, we can obtain a network representing a time series evolution to
analyze temporal behavior using a network, instead of a traditional time series representa-
tion.

This network, as commented in previous research, is:

• Connected: based on the definition of the visibility graph. Each node is connected
with the left and right node, at least.

• Undirected.
• Invariant: no escalation or translation can affect the generated visibility graph.

Based on the time series in Figure 5, two points of the time series are connected
through an edge if it is possible to connect them; that is, no peaks are between them. This
approach gives us information about the frequency and the behavior of the time series with
the benefits of using networks.

As a final result, each time series can be described as a natural visibility graph, as we
describe in Figure 6.

Mathematics 2023, 11, 107 12 of 24

Figure 6. Time series to visibility graph conversion.

3.5.2. Horizontal Visibility Graphs

Based on the same principles as the natural visibility graph, a new visibility graph
called the horizontal visibility graph was proposed a year after its definition. Both graphs
were proposed by the same team within a short period, based on the evolution of their
theories [34].

As the previous graph, this new approach is also based on the visibility of the nodes.
As we can see in Figures 7 and 8, the base of the creation of the graph is the same: each
record of the time series is defined as a node in the visibility graph. Two nodes defined as
t1, y1 and t2, y2 are connected if they have horizontal connections, that is, if we can draw a
line between them without any other record height limiting their visibility.

y1, y2 > yn for all n where 1 < n < 2

As in the previous natural visibility graph, this new type of graph is:

• Connected, as the NVG.
• Invariant to any translation or reescalation.
• Irreversible: using the HVG, several time series can create the same HVG so that it is

impossible to return from the graph to the time series. This is almost never a problem
because our purpose in this operation is to catch time series structural properties.
In the case where reversibility is needed, we have to use a weighted network, and to
define a reversible network is feasible.

• Undirected graph. Basically, no direction is made between the two nodes. However, it
is possible to create a directed graph using the temporal evolution of the time series,
that is, the edge direction is the direction where the time increases in the time series.

• The natural visibility graph is a more connected graph than the HVG.

As we can see in the example below, we create the same time series as usual in the
natural visibility graph, and we connect the adequate nodes. In the Figure 7, we can see
the 181 records of the time series, and they are focused on the first 50 records in Figure 8.
In the example, record 18 is connected to four nodes in the horizontal graph, which is much
lower than the connectivity it had in the natural visibility graph.

Mathematics 2023, 11, 107 13 of 24

Figure 7. Timeseries to visibility graph conversion.

Figure 8. Timeseries to visibility graph conversion. First 50 days.

Mathematics 2023, 11, 107 14 of 24

3.6. Edge Clustering

At this moment, in a weighted network, every edge has two network graphs: the
natural visibility graph and a horizontal graph. These two graphs give us the required
information about the temporal behavior of the network in Figure 9.

To create an edge clustering, we take two features for every graph:

• max_degree: We define the degree of the network as the number of adjacent edges
to the node. If we define a network as a set of nodes N = n1, n2, ..., ni and E the set
of edges connecting the nodes as E = e1, e2, ..., ei, with an adjacency matrix A, we can
define the max degree of the graph as

max_degree = max ∑
j

Aij

• density: We can define the density value as 0 when no edge exists on the graph. On the
other hand, the value is equal to 1 if we are describing a complete graph.

density =
2m

n(n− 1)′

where n is the number of nodes and m is the number of edges in G.

Figure 9. Visibilitygraph as edge.

For each edge, we have four features:

• Natural visibility graph max_degree,
• Natural visibility graph density,
• Horizontal visibility graph max_degree,
• Horizontal visibility graph density.

After starting from the time series created with the events over time between the
nodes, transforming them into both visibility graphs and obtaining the two characteristics
of each of the visibility graphs, we are ready for the groupings of these time series into
similar groups, which will give us similar temporal attributes in each one.

Mathematics 2023, 11, 107 15 of 24

As we do not know what is the best way to cluster them, we decide to use an unsuper-
vised machine learning algorithm to find the most convenient procedure to group them.
One of the most famous algorithms for this purpose is the Kmeans, which can classify
assests as we can see in Figure 10.

Figure 10. Classification in 6 clusters.

Kmeans is an unsupervised classification algorithm that organizes objects into k groups
based on their features. Clustering is performed by minimizing the sum of distances
between each object and the centroid of its group or cluster. The quadratic distance is
usually used.

The algorithm consists of three steps:

• Initialization: once the number of clusters, k, has been chosen, k centroids are estab-
lished in the data space; for example, by choosing them randomly.

• Assigning objects to centroids: each object in the data is assigned to its nearest centroid.
• Updating centroids: the centroid position of each group is updated by taking the

position of the average of the objects belonging to that group as the new centroid.

Steps 2 and 3 are repeated until the centroids do not move, or until they move below a
threshold distance in each step. The Kmeans algorithm solves an optimization problem,
the function to be optimized (minimized) being the sum of the quadratic distances of
each object to the centroid of its cluster. The objects are represented by d-dimensional
real vectors x1, x2, ..., xi, and the Kmeans algorithm constructs k groups where the sum of
distances of the objects, within each group G = G1, G2, ..., Gi to its centroid. The problem
can be formulated as follows:

min
G

E(µi) = min
G

k

∑
i=1

∑
xj∈Gi

‖xj − µi‖2

where G is the dataset whose elements are the objects xj represented by vectors, where each
of its elements represents a characteristic or attribute. We will have k groups or clusters
with their corresponding centroid µi.

On each centroid update, from a mathematical point of view, we impose the necessary
extremum condition on the function G(µi) which, for the quadratic function before, is

∂E
∂µi

= 0⇒ µ(t+1) =
1

| G(t)
i |

∑
xj∈G(t)

i

xj

Mathematics 2023, 11, 107 16 of 24

and the average of the elements of each group is taken as the new centroid.
The main advantages of the Kmeans method are that it is a simple and fast method.

However, it is necessary to decide on the value of k, and the final result depends on the
initialization of the centroids.

With this algorithm, we can assign to each time series the best cluster, and therefore,
the cluster edges in several clusters.

The more clusters, the more information that we will store about the temporal charac-
teristics, as we will make a more accurate division of the behaviors.

3.7. Temporal Behavior Multiplex Network

Until this point, we have defined a weighted network where the edges are discrete
functions based on time. These functions can be described as time series from which
we have created two graphs: the natural visibility graph and the horizontal visibility
graph. From these graphs, we take two features from each: max_degree and density of
the networks.

With these characteristics, we have assigned finally to each time series a cluster
that groups the time series having the same characteristics through an unsupervised
classification system (KMeans).

In this last phase, we are going to transform our weighted graph into a multiplex
network from the information that we have obtained in previous steps. As we have
discussed at the beginning, graphs are the right tool to group a lot of information within
them. However, at the present time, the collection of temporal features within the graphs
has been rather limited.

In this case, we will deploy our weight network in N layers, where the layers N =
(n1 . . . nn) in N ∈ Kmeans(n). In each of these N layers, we will include the edges that are
part of the same unsupervised cluster made in previous steps.

Finally, we obtain a weighted and directed multiplex network G, with n layers L =
{`α; α ∈ {1, . . . , n}} on a set of nodes T = {1, . . . , N}. Each layer is defined as a weighted
directed graph `α = (Tα, Vα) on the same group of nodes Tα ⊂ T, and with a set of edges:

Vα = {vα
i,j; α ∈ {1, . . . , n}},

where vα
i,j represents the link that connects nodes x and y in `α, and wα is a function

wα : Vα −→ [0,+∞), such that for each edge eα
i,j ∈ Eα, the coefficient wα(vα

x,y) is called
weight of vα

x,y.

3.8. Forecasting Using Random Forest

After creating a temporal behavior multiplex network using python library net-
workx [35], we will use all the information inside the network to extract complex features
about the temporal evolution of the node interactions.

All the characteristics obtained from the graph are complex interpretations of the
interactions between the nodes in a condensed way with a small amount of information.

The most appropriate way is to find what is the best features to extract from the
temporal behavior multiplex network. After several experiments, we decided to select the
node degree from any node in each layer of the network. With this approach, the more layers
the network has, the more features we can obtain for the realization of the following phases.

With the extracted information about the nodes, we can use any supervised machine
learning algorithm to forecast any characteristic of the nodes. In our case, we have been
able to detect any attackers inside the network computers analyzed.

To achieve this, after several pieces of research with different machine learning algo-
rithms, we decided to use Random Forest. This is a fast algorithm and it is very accurate in
almost all cases.

Mathematics 2023, 11, 107 17 of 24

4. Results

First of all, as we have mentioned before, we create the time series with the time
information about the network flows that occurred between two nodes. As we describe in
the dataset section, we create a time series between the existing time slots:

• Start time: 23 April 2019 13:00:00,
• Finish time: 27 April 2019 08:00:00,
• Frequency: Hourly.

With these criteria, we obtain a time series with 91 slots where the number of bytes
sent between network computers is located.

For each time series, we create a natural visibility graph and a horizontal visibility
graph. From them, we take the network max degree and the density of the network.
With this information, we classify the edges into six clusters where each edge could appear.

Now, we create in the network as many layers as the number of clusters that have
been made in the time series, and we include each edge in the appropriate layer according
to the cluster in which it has been previously assigned. Finally, every edge with a cluster
attribute of value 3 will be located in layer 3 of the network.

As can be seen in Figure 11, all the nodes will exist in all the layers, but the edges will
only exist in the layer defined in the clustering of the time series.

Figure 11. Example of multiplex network with 6 layers.

This new attribute allows us to have more information in the network. With this new
view, we can analyze the relationship of the nodes with the layers to detect several types of
nodes. In a more complex approach, if the relationship between two nodes can be described
with several time series, that is, the source and destination bytes, the multiplex network
will have as many dimensions as the number of types of relationships.

Next, we show the number of nodes and edges existing in every layer (Table 2).

Mathematics 2023, 11, 107 18 of 24

Table 2. Distribution of nodes and edges in layers.

Cluster Number of Edges Number of Nodes

0 25,093 24,336
1 4207 3952
2 166 166
3 392 377
4 409 411
5 102 106

As we can see, the number of edges and nodes can vary, indicating different behaviors
in every layer. For example, cluster 1 describes nodes with more interactions than other
clusters as 2. In Tables 3–8, we show the top five connected nodes in every layer, giving us
complex information about the connectivity of every node in each layer.

Table 3. Top 5 nodes in the layer from Cluster 0 edges.

Node Connected Edges

192.168.1.194 9257
192.168.1.190 5728
192.168.1.152 5284
192.168.1.184 3358

192.168.1.2 256

Table 4. Top 5 nodes in the layer from Cluster 1 edges.

Node Connected Edges

192.168.1.190 3503
192.168.1.195 138
192.168.1.180 123
192.168.1.30 101
192.168.1.31 89

Table 5. Top 5 nodes in the layer from Cluster 2 edges.

Node Connected Edges

192.168.1.190 113
192.168.1.195 20
192.168.1.180 18
192.168.1.193 9
192.168.1.30 4

Table 6. Top 5 nodes in the layer from Cluster 3 edges.

Node Connected Edges

192.168.1.190 296
192.168.1.195 25
192.168.1.180 24
192.168.1.30 14
192.168.1.31 13

Mathematics 2023, 11, 107 19 of 24

Table 7. Top 5 nodes in the layer from Cluster 4 edges.

Node Connected Edges

192.168.1.190 354
192.168.1.195 18
192.168.1.180 14
192.168.1.193 8
192.168.1.30 5

Table 8. Top 5 nodes in the layer from Cluster 5 edges.

Node Connected Edges

192.168.1.190 71
192.168.1.195 21
192.168.1.31 3
192.168.1.180 3

192.168.1.1 3

The layers allow the nodes to be provided with additional information to the previ-
ously existing information.

Each one of the networks represents the behavior of the network of equipment ana-
lyzed differently, so it will provide additional information to the study.

The main advantage of using visibility graphs is to reduce the process time, as we can
see in Figure 12. Kshape [36] based on matrix comparison: the longer time series, the more
time of computation. On the other hand, the new approach with visibility graphs maintains
time regardless of what cluster number we have.

Figure 12. Process time comparison between Kshape and visibility graphs.

4.1. Node Features Acquisition

As we have described above, the cluster that each edge is located in is added as an
attribute to the created network.

The next step is to obtain the necessary information from the multiplexed network to
create a machine learning intrusion detection system. In this case, as we need to predict if
an IP address (node) is an attacker, we obtain the number of neighboring nodes in each
layer as a metric.

Mathematics 2023, 11, 107 20 of 24

For each of the multiplex networks, we will obtain the number of edges to which the
node is connected in each of the layers of the network. In our example, in the case of the
network with six segments, each node will have a number of edges to which it is connected.

4.2. Attackers Detection

In this final section, based on the features generated on the temporal behavior complex
network, we try to detect the attacker’s IP address with a supervised algorithm.

First of all, we present the evaluation metric that we select to validate the success of
our model. It is a very relevant decision because it is important to compare it with previous
research projects. Using the same evaluation metrics, we can compare our technique with
other approaches made so far.

In the second section, we will describe how we develop a supervised machine learning
algorithm using the node features generated above to classify every node into an attacker’s
or non-attacker’s IP address.

4.2.1. Evaluation Metrics

Our proposed approach is evaluated on the dataset in terms of accuracy. This metric
is widely used for model validation in a lot of research projects, so we can compare it with
them to ratify our approach. The accuracy is defined as the total number of observations
correctly defined concerning the total number of observations.

Accuracy =
TP + TN

TP + TN + FP + FN
.

To understand the accuracy, another two definitions must be mentioned. In our
case, a true positive is an outcome where the model correctly predicts the attacker’s IP
address. Similarly, a true negative is an outcome where the model correctly predicts the
non-attacker’s IP address.

4.2.2. Supervised IP Address Detection

To predict the attacker’s IP addresses, we create a supervised algorithm. As we know
what are the attacker IP addresses, we take all of the variables obtained in the temporal
behavior complex network and create a supervised algorithm with them.

We decide to use the Random Forest algorithm to solve this classification problem. We
select it because computational cost and effectiveness are very balanced. In our case, this
equilibrium gives us a simple way to compare several hyperparameters’ selections without
incurring high computational costs.

In our case, this approach gives us the chance to reduce the original 72 million events
to a classification algorithm with a shorter number of features for each node. This huge
decrease in dimension is thanks to the temporal behavior complex network.

As with every classification problem, we follow the standard phases to fit the model
with the actual dataset.

• Cross-validation: to avoid overfitting problems. It is very important to use cross-
validation to obtain stable accuracy in the model. CV consists of randomly dividing
the data into N groups; all groups except one trains the model, and the last tests it. This
process is repeated N times, and their average accuracy is selected as the final accuracy.
In our case, we use the class StratifiedKFold from the python sklearn package. We
use this class instead of KFold because it preserves the percentage of samples for each
class. Our case is a high imbalance dataset, and so it is very relevant to maintain the
class balance. By default, the number of folds is set to 5, but we decide to increase
them to 10 to obtain a more accurate prediction.

• Train-test: We divide the dataset into two different parts. The first one (train) is
used to fit the model, and the other (test) is used to validate the fitted model. The
StratifiedKFold class gives us, in our case, 10 train datasets and 10 test datasets to
create a model for each pair.

Mathematics 2023, 11, 107 21 of 24

• The Random Forest algorithm has several hyperparameters to select. We use a grid
search technique to select the best result for our project. One of the most relevant
parameters to tune is the number of estimators. In our case, after comparing between
several values, we decided to use 100 as the best number of estimators.

Once this is achieved, we use a Random Forest model with 100 estimators to make a
predictive model. As we have 10 different models, we use their mean accuracy to validate
the mean accuracy of the model. All of these steps are described in Algorithm 1.

Algorithm 1 Cross Validation.

nums plits← 10
sk f ← Strati f iedKFold(n_splits = num_splits)
for train_index, test_index in skf.split(X, y) do

X_train, X_test← X[train_index], X[test_index]
y_train, y_test← y[train_index], y[test_index]
cl f ← RandomForestClassi f ier(n_estimators = 100)
cl f . f it(Xtrain, ytrain)
y_pred = cl f .predict(X_test)
accuracy.append(metrics.accuracy_score(y_test, y_pred))

end for

This model predicts the detection of IP attacker addresses with a multiplex network of
four layers with an accuracy of 99.8%.

4.2.3. Comparison with the Previous Approach

We can compare our accuracy (99.8%) with previous research projects. This dataset is
widely used and so there are a lot of references to compare with, such as [37–41]. Following
Table 9 gives us the evaluation of these research projects to compare with our result.

Table 9. Accuracy for previous approaches.

Research Accuracy

Koroniotis et al. [37] 88.3/99.9
Shafiq et al. [38] 97.8/99.99

Khraisat et al. [39] 99.97
Churcher et al. [40] 74/99
Zeeshan et al. [41] 96.3

5. Discussion
5.1. Conclusions

In this work, we present a new approach for the deployment of NIDS in large cor-
porations based on the analysis of the behavior of the network IP address instead of the
traditional detection techniques based on the analysis of every network event packet in the
network. This new approach gives us two advantages compared to the traditional NIDS:

• Reducing the number of alerts generated by the NIDS to be analyzed by the SOC
analyst: The accuracies of the actual NIDS and machine learning approaches are very
high; however, analyzing every network packet gives us a lot of alerts due to the large
number of events crossing the networks, and in most cases, these alerts with a correct
context about the IP address and the behavior of the relation between them makes it
easier for the SOC analyst to discard them. However, this action redirects the focus on
the correct alert where the behavior gives us the reason to analyze this relationship in
depth.

• Reducing the computational requirements, decreasing the analysis to time slots instead
of every network event. For example, if a behavior analysis is made every 5 min, we
can change the depth of analysis of every packet in this slot of time to the behavior

Mathematics 2023, 11, 107 22 of 24

analysis for the relations of the existing IP address. This reduces the potential alert
from thousands to hundreds.

Furthermore, the combination of the time series and the complex networks gives us a
new technique to for analyzing the behavior of every relation between two IP addresses
and detecting the malicious behavior that the SOC analyst must analyze.

5.2. Next Steps

In this paper, we describe a new approach for aggregating events to obtain a temporal
multiplex network, and we use a known dataset to validate the efficiency of the new
approach in a real challenge.

Based on this paper, there are several new studies to perform:

• Validating this type of data in large corporate environments.
• Changing unsupervised time series clustering techniques to supervised techniques.

This approach gives us a better understanding of the description of every cluster.
• Using other time series techniques to obtain more information about the behavior of

the relationship between the nodes.
• Using this new dataset in cybersecurity with the same approach to confirm the same

accuracy obtained in this paper.
• Using this approach to solve others’ real-world problems.
• Predicting with complex network capabilities rather than with Random Forest.

Author Contributions: Conceptualization, S.I.P. and R.C.; methodology, S.I.P.; formal analysis,
S.I.P. and R.C.; investigation, S.I.P.; resources, S.I.P.; data curation, S.I.P.; writing—original draft
preparation, S.I.P.; writing—review and editing, R.C.; supervision, R.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

NIDS Network Intrusion Detection System
UEBA User Entity Behavior Analytics
MTTD Mean Time To Detection
SIEM Security Information and Event Management
SOC Security Operation Control

References
1. Dorogovtsev, S. Complex Networks; Oxford University Press: Oxford, UK, 2010.
2. Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [CrossRef] [PubMed]
3. Boccaletti, S.; Bianconi, G.; Criado, R.; DelGenio, C.I.; Gómez-Gardeñes, J.; Romance, M.; Sendixnxa-Nadal, I.; Wang, Z.; Zanin, M.

The structure and dynamics of multilayer networks. Phys. Rep. 2014, 544, 1–122. [CrossRef]
4. Da Fontoura Costa, L.; Oliveira, O.N.; Travieso, G.; Rodrigues, F.A.; Villas Boas, P.R.; Antiqueira, L.; Viana, M.P.; Correa Rocha,

L.E. Analyzing and modeling real-world phenomena with complex networks: A survey of applications. Adv. Phys. 2011, 60,
329–412. [CrossRef]

5. Kivela, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer Networks. J. Complex Netw. 2014, 2,
203–227. [CrossRef]

6. Chapela, V.; Criado, R.; Moral, S.; Romance, M. Intentional Risk Management through Complex Networks Analysis; Springer
International Publishing: Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015.

7. Criado, R.; Moral, S.; Pérez, A.; Romance, M. On the edges’s PageRank and linegraphs. Chaos 2018, 28, 075503. [CrossRef]
[PubMed]

8. Estrada, E. Networks Science; Springer: New York, NY, USA, 2010.

http://doi.org/10.1038/35065725
http://www.ncbi.nlm.nih.gov/pubmed/11258382
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1080/00018732.2011.572452
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1063/1.5020127
http://www.ncbi.nlm.nih.gov/pubmed/30070492

Mathematics 2023, 11, 107 23 of 24

9. Latora, V.; Nicosia, V.; Russo, G. Complex Networks: Principles, Methods and Applications; Cambridge University Press: Cambridge,
UK, 2017.

10. Moral, S.; Chapela, V.; Criado, R.; Pérez, A.; Romance, M. Efficient algorithms for estimating loss of information in a complex
network: Applications to intentional risk analysis. Netw. Heterog. Media 2015, 10, 195–208.

11. Newman, M. Networks: An Introduction; Oxford University Press: Oxford, UK, 2010.
12. Zanin, M.; Romance, M.; Moral, S.; Criado, R. Credit Card Fraud Detection through Parenclitic Network Analysis. Complexity

2018, 2018, 5764370. [CrossRef]
13. Zanin, M.; Papo, D.; Romance, M.; Criado, R.; Moral, S. The topology of card transaction money flows. Phys. A 2016, 462, 134–140.

[CrossRef]
14. Partida, A.; Criado, R.; Romance, M. Identity and Access Management Resilience against Intentional Risk for Blockchain-Based

IOT Platforms. Electronics 2021, 10, 378. [CrossRef]
15. Partida, A.; Criado, R.; Romance, M. Visibility Graph Analysis of IOTA and IoTeX Price Series: An Intentional Risk-Based Strategy

to Use 5G for IoT. Electronics 2021, 10, 2282. [CrossRef]
16. Criado-Alonso, A.; Battaner-Moro, E.; Aleja, D.; Romance, M.; Criado, R. Using complex networks to identify patterns in specialty

mathematical language: A new approach. Soc. Netw. Anal. Min. 2020, 10, 69. [CrossRef]
17. Iglesias, S.; Moral-Rubio, S.; Criado, R. A new approach to combine multiplex networks and time series attributes: Building

intrusion detection systems (IDS) in cybersecurity. Chaos Solitons Fractals 2021, 150, 111143. [CrossRef]
18. Perez, S.I.; Moral-Rubio, S.; Criado, R. Combining multiplex networks and time series: A new way to optimize real estate

forecasting in New York using cab rides. Phys. A Stat. Mech. Its Appl. 2022, 609, 128306. [CrossRef]
19. Aburomman, A.; Reaz, M.B.I. Review of ids develepment methods in machine learning. Int. J. Electr. Comput. Eng. 2016, 6, 2432.

[CrossRef]
20. Tsai, C.-F.; Hsu, Y.-F.; Lin, C.-Y.; Lin, W.-Y. Intrusion detection by machine learning: A review. Expert Syst. Appl. 2009, 36,

11994–12000. [CrossRef]
21. Sethi, K.; Sai Rupesh, E.; Kumar, R.; Bera, P.; Venu Madhav, Y. A context-aware robust intrusion detection system: A reinforcement

learning-based approach. Int. J. Inf. Secur. 2020, 19, 657–678. [CrossRef]
22. Khan, M.A.; Karim, M.R.; Kim, Y. A Scalable and Hybrid Intrusion Detection System Based on the Convolutional-LSTM Network.

Symmetry 2019, 11, 583. [CrossRef]
23. Muna, A.H.; Moustafa, N.; Sitnikova, E. Identification of malicious activities in industrial internet of things based on deep

learning models. J. Inf. Secur. Appl. 2018, 41, 1–11. [CrossRef]
24. Tama, B.A.; Rhee, K.H. Attack Classification Analysis of IoT Network via Deep Learning Approach. Res. Briefs Inf. Commun.

Technol. Evol. (ReBICTE) 2017, 3, 1–9. [CrossRef]
25. Viet, H.N.; Van, Q.N.; Trang, L.L.T.; Nathan, S. Using Deep Learning Model for Network Scanning Detection. In Proceedings of

the 4th International Conference on Frontiers of Educational Technologies, Moscow, Russia, 25–27 June 2018. [CrossRef]
26. Van, N.T.; Thinh, T.N.; Sach, L.T. A Combination of Temporal Sequence Learning and Data Description for Anomaly-based NIDS.

arXiv 2019, arXiv:1906.05277.
27. Anton, S.D.; Ahrens, L.; Fraunholz, D.; Schotten, H. Time is of the essence: Machine learning-based intrusion detection in

industrial time series data. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW),
Singapore, 17–20 November 2018; pp. 1–6. [CrossRef]

28. Wang, F.; Yang, S.; Wang, C.; Li, Q. A Novel Intrusion Detection System for Malware Based on Time-Series Meta-learning. In
Proceedings of the International Conference on Machine Learning for Cyber Security, Guangzhou, China, 8–10 October 2020;
Springer: Cham, Switzerland, 2020; pp. 50–64.

29. Staniford-Chen, S.; Cheung, S.; Crawford, R.; Dilger, M.; Frank, J.; Hoagland, J.; Zerkle, D. A graph based intrusion detection
system for large networks. In Proceedings of the 19th National Information Systems Security Conference, Baltimore, MD, USA,
22–25 October 1996.

30. Akoglu, L.; Tong, H.; Koutra, D. Graph-based anomaly detection and description: A survey. arXiv 2014, arXiv:1404.4679.
31. Shang, K.K.; Small, M.; Xu, X.K.; Yan, W.S. The role of direct links for link prediction in evolving networks. EPL (Europhys. Lett.)

2017, 117, 28002. [CrossRef]
32. Ashraf, J.; Keshk, M.; Moustafa, N.; Abdel-Basset, M.; Khurshid, H.; Bakhshi, A.D.; Mostafa, R.R. IoTBoT-IDS: A Novel Statistical

Learning-enabled Botnet Detection Framework for Protecting Networks of Smart Cities. Sustain. Cities Soc. 2021, 72, 103041.
[CrossRef]

33. Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuno, J.C. From time series to complex networks: The visibility graph. Proc. Natl.
Acad. Sci. USA 2008, 105, 4972–4975. [CrossRef] [PubMed]

34. Luque, B.; Lacasa, L.; Ballesteros, F.; Luque, J. Horizontal visibility graphs: Exact results for random time series. Phys. Rev. Stat.
Nonlinear Soft Matter Phys. 2009, 80, 046103. [CrossRef]

35. Hagberg, A.; Swart, P.; Chult, D.S. Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the
7th Python in Science Conference (SciPy2008), Pasadena, CA, USA, 19–24 August 2008; Varoquaux, G., Vaught, T., Millman, J.,
Eds.; Los Alamos National Lab: Los Alamos, NM, USA, 2008; pp. 11–15.

36. Paparrizos, J.; Gravano, L. k-Shape: Efficient and Accurate Clustering of Time Series. ACM SIGMOD Rec. 2016, 45, 69–76.
[CrossRef]

http://dx.doi.org/10.1155/2018/5764370
http://dx.doi.org/10.1016/j.physa.2016.06.091
http://dx.doi.org/10.3390/electronics10040378
http://dx.doi.org/10.3390/electronics10182282
http://dx.doi.org/10.1007/s13278-020-00684-1
http://dx.doi.org/10.1016/j.chaos.2021.111143
http://dx.doi.org/10.1016/j.physa.2022.128306
http://dx.doi.org/10.11591/ijece.v6i5.11622
http://dx.doi.org/10.1016/j.eswa.2009.05.029
http://dx.doi.org/10.1007/s10207-019-00482-7
http://dx.doi.org/10.3390/sym11040583
http://dx.doi.org/10.1016/j.jisa.2018.05.002
http://dx.doi.org/10.22667/ReBiCTE.2017.11.15.015
http://dx.doi.org/10.1145/3233347.3233379
http://dx.doi.org/10.1109/ICDMW.2018.00008
http://dx.doi.org/10.1209/0295-5075/117/28002
http://dx.doi.org/10.1016/j.scs.2021.103041
http://dx.doi.org/10.1073/pnas.0709247105
http://www.ncbi.nlm.nih.gov/pubmed/18362361
http://dx.doi.org/10.1103/PhysRevE.80.046103
http://dx.doi.org/10.1145/2949741.2949758

Mathematics 2023, 11, 107 24 of 24

37. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of
things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

38. Shafiq, M.; Tian, Z.; Bashir, A.K.; Du, X.; Guizani, M. CorrAUC: A malicious bot-iot traffic detection method in iot network using
machine learning techniques. IEEE Internet Things J. 2020, 8, 3242–3254. [CrossRef]

39. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.; Alazab, A. A novel ensemble of hybrid intrusion detection system for
detecting internet of things attacks. Electronics 2019, 8, 1210. [CrossRef]

40. Churcher, A.; Ullah, R.; Ahmad, J.; Rehman, S.U.; Masood, F.; Gogate, M.; Alqahtani, F.; Nour, B.; Buchanan, W.J. An experimental
analysis of attack classification using machine learning in iot networks. Sensors 2021, 21, 446. [CrossRef]

41. Zeeshan, M.; Riaz, Q.; Bilal, M.A.; Shahzad, M.K.; Jabeen, H.; Haider, S.A.; Rahim, A. Protocol Based Deep Intrusion Detection for
DoS and DDoS attacks using UNSW-NB15 and Bot-IoT data-sets. IEEE Access 2021, 10, 2269–2283. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.future.2019.05.041
http://dx.doi.org/10.1109/JIOT.2020.3002255
http://dx.doi.org/10.3390/electronics8111210
http://dx.doi.org/10.3390/s21020446
http://dx.doi.org/10.1109/ACCESS.2021.3137201

	Introduction
	Materials and Methods
	Machine Learning Based on Intrusion Detection Systems
	Related Works
	NIDS Architecture
	Dataset
	Temporal Behavior Multiplex Network
	Visibility Graphs
	Natural Visibility Graphs
	Horizontal Visibility Graphs

	Edge Clustering
	Temporal Behavior Multiplex Network
	Forecasting Using Random Forest

	Results
	Node Features Acquisition
	Attackers Detection
	Evaluation Metrics
	Supervised IP Address Detection
	Comparison with the Previous Approach

	Discussion
	Conclusions
	Next Steps

	References

