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Abstract

Base editing is a recently developed approach to genome editing that uses a fusion protein 

containing a catalytically defective Streptococcus pyogenes Cas9, a cytidine deaminase, and an 

inhibitor of base excision repair to induce programmable, single-nucleotide changes in the DNA of 

living cells without generating double-strand DNA breaks, without requiring a donor DNA 

template, and without inducing an excess of stochastic insertions and deletions1. Here we report 

the development of five new C→T (or G→A) base editors that use natural and engineered Cas9 

variants with different protospacer-adjacent motif (PAM) specificities to expand the number of 

sites that can be targeted by base editing by 2.5-fold. Additionally, we engineered new base editors 

containing mutated cytidine deaminase domains that narrow the width of the apparent editing 

window from approximately 5 nucleotides to as little as 1 to 2 nucleotides, enabling the 

discrimination of neighboring C nucleotides that would previously be edited with comparable 

efficiency, thereby doubling the number of disease-associated target Cs that can be corrected 

preferentially over nearby non-target Cs. Collectively, these developments substantially increase 

the targeting scope of base editing and establish the modular nature of base editors.
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CRISPR-Cas9 nucleases have been widely used to mediate targeted genome editing2. In 

most genome editing applications, Cas9 forms a complex with a single guide RNA (sgRNA) 

and induces a double-stranded DNA break (DSB) at the target site specified by the sgRNA 

sequence. Cells primarily respond to this DSB through the non-homologuous end-joining 

(NHEJ) repair pathway, which results in stochastic insertions or deletions (indels) that can 

cause frameshift mutations that disrupt the gene. In the presence of a donor DNA template 

with a high degree of homology to the sequences flanking the DSB, gene correction can be 

achieved through an alternative pathway known as homology directed repair (HDR)3,4. 

Unfortunately, under most non-perturbative conditions HDR is inefficient, dependent on cell 

state and cell type, and dominated by the formation of indels3,4. As most of the known 

genetic variations associated with human disease are point mutations5, methods that can 

more efficiently and cleanly make precise point mutations are needed.

We recently described base editing, which enables replacement of a target base pair with a 

different base pair in a programmable manner without inducing DSBs1. The first examples 

of base editing use a fusion protein between a catalytically inactivated (dCas9) or nickase 

form of Streptococcus pyogenes Cas9 (SpCas9), a cytidine deaminase such as APOBEC1, 

and an inhibitor of base excision repair such as uracil glycosylase inhibitor (UGI) to convert 

cytidines into uridines within a five-nucleotide window specified by the sgRNA1. Our third-

generation base editor, BE3, converts C:G base pairs to T:A base pairs, including disease-

relevant point mutations, in a variety of cell lines with higher efficiency and lower indel 

frequency than what can be achieved using other genome editing methods1. Subsequent 

studies have validated the base editing approach to genome editing in a variety of 

settings6,7,8,9,10.

Efficient editing by BE3 requires the presence of an NGG PAM that places the target C 

within a five-nucleotide window near the PAM-distal end of the protospacer (positions 4–8, 

counting the PAM as positions 21–23)1. This PAM requirement substantially limits the 

number of sites in the human genome that can be efficiently targeted by BE3, as many sites 

of interest lack an NGG 13- to 17- nucleotides downstream of the target C. Moreover, the 

high activity of BE3 results in conversion of all Cs within the editing window to Ts, which 

can potentially introduce undesired changes to the target locus1. Here we report new C:G to 

T:A base editors that address both of these limitations and thereby substantially expand the 

targets suitable for base editing.

We hypothesized that any Cas9 homolog that binds DNA and forms an “R-loop” complex11 

containing a single-stranded DNA bubble could in principle be converted into a base editor. 

These new base editors would expand the number of targetable loci by allowing non-NGG 

PAM sites to be edited. The Cas9 homolog from Staphylococcus aureus (SaCas9) is 

considerably smaller than SpCas9 (1,053 vs. 1,368 residues), can mediate efficient genome 

editing in mammalian cells, and requires an NNGRRT PAM12. We replaced the nickase 

form of SpCas9 with that of SaCas9 in BE3 to generate APOBEC1–SaCas9n–UGI (SaBE3), 

and transfected HEK293T cells with plasmids encoding SaBE3 and sgRNAs targeting six 

human genomic loci (Fig. 1a). After 3 d, we used high-throughput DNA sequencing (HTS) 

to quantify base editing efficiency. SaBE3 enabled C to T base editing of target Cs at a 

variety of genomic sites in human cells, with very high conversion efficiencies 
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(approximately 50–75% of total DNA sequences converted from C to T, without enrichment 

for transfected cells) (Fig. 1b). The efficiency of SaBE3 on NNGRRT-containing target sites 

in general exceeded that of BE3 on NGG-containing target sites1. Perhaps due greater 

solvent exposure of the strand not paired with the guide RNA13, SaBE3 can also result in 

detectable base editing at target Cs at positions outside of the canonical BE3 activity 

window (Fig. 1b). In comparison, BE3 showed greatly reduced editing for the same non-

NGG target sites (0–11% editing), consistent with the known PAM requirement of SpCas9 

(Supplementary Fig. 1a)14. These data show that SaBE3 can mediate base editing at sites not 

accessible to BE3.

We sought to further expand the targeting range of base editors by applying recently 

engineered Cas9 variants that expand or alter PAM specificities. Joung and coworkers 

recently reported three SpCas9 mutants that accept NGA (VQR-Cas9), NGAG (EQR-Cas9), 

or NGCG (VRER-Cas9) PAM sequences15 as well as an engineered SaCas9 variant 

containing three mutations (SaKKH-Cas9) that relax its PAM requirement to NNNRRT16. 

We replaced the SpCas9 portion of BE3 with these four Cas9 variants to produce VQR-BE3, 

EQR-BE3, VRER-BE3, and SaKKH-BE3, which should target NGAN, NGAG, NGCG, and 

NNNRRT PAMs respectively. We transfected HEK293T cells with plasmids encoding these 

constructs and sgRNAs targeting several genomic loci for each new base editor, and 

measured C to T base conversions using HTS.

SaKKH-BE3 edited sites with NNNRRT PAMs with efficiencies up to 62% of treated, non-

enriched cells (Fig. 1b,c). As expected, SaBE3 was unable to efficiently edit targets 

containing PAMs that were NNHRRT (where H = A, C, or T) (Fig. 1c). VQR-BE3, EQR-

BE3, and VRER-BE3 exhibited more modest, but still substantial base editing efficiencies of 

up to 50% of treated, non-enriched cells at genomic loci with the expected PAM 

requirements with an editing window similar to that of BE3 (Fig. 1d–f). Base editing 

efficiencies of VQR-BE3, EQR-BE3, and VRER-BE3 in general closely paralleled the 

reported PAM requirements of the corresponding Cas9 nucleases; for example, EQR-BE3 

was unable to efficiently edit targets containing NGAH PAM sequences (Fig. 1e). Consistent 

with the known PAM requirements of SpCas914, BE3 was unable to efficiently edit sites 

with NGA or NGCG PAMs (0–3% efficiency) (Supplementary Fig. 1b). To confirm that the 

five new base editors functioned in multiple mammalian cell types, we assessed their 

performance in U2OS cells and observed robust editing, albeit with slightly lower editing 

and/or transfection efficiency. (Supplementary Fig. 2a). Collectively, the properties of 

SaBE3, SaKKH-BE3, VQR-BE3, EQR-BE3, and VRER-BE3 establish that base editors 

behave in a modular fashion that facilitates our ability to repurpose Cas9 homologs and 

engineered variants for base editing.

We examined the off-target activity of the altered-PAM base editors in human cells. We 

selected two on-target loci for each new editor that have been previously analyzed for Cas9 

off-target cleavage and sequenced 7 off-targets for the SaBE3 constructs and 10 off-targets 

for the SpBE3 constructs15,16 (Supplementary Fig. 3a). Consistent with our previous study1, 

we detected off-target base editing by SaBE3 and SaKKH-BE3 at a subset of known Cas9 

off-target cleavage loci containing an appropriately placed target C and that conform to their 

PAM requirements (Supplementary Fig. 3b). In contrast, we observed substantially less off-
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target base editing from VQR-BE3 or EQR-BE3 at ten known off-target loci of VQR 

SpCas915, suggesting that these base editors may offer enhanced specificity (Supplementary 

Fig. 3c).

Next, we sought to develop base editors with altered activity window widths. All Cs within 

the 5-nucleotide activity window of BE3 are typically converted to Ts with comparable 

efficiency1. The ability to modulate the width of this window is useful when it is important 

to edit only a subset of Cs present in the activity window, such as cases in which the target C 

is adjacent to other Cs that if changed would result in undesired mutations to the gene of 

interest.

We previously noticed that the length of the linker between APOBEC1 and dCas9 modulates 

the number of bases that are accessible by APOBEC1 in vitro1. In HEK293T cells, however, 

varying the linker length did not significantly modulate the width of the editing window, 

suggesting that in the complex cellular milieu, the relative orientation and flexibility of 

dCas9 and the cytidine deaminase are not strongly determined by linker length 

(Supplementary Fig. 4). We hypothesized that truncating the 5′ end of the sgRNA might 

narrow the base editing window by reducing the length of single-stranded DNA accessible to 

the deaminase upon formation of the RNA-DNA heteroduplex. We co-transfected HEK293T 

cells with plasmids encoding BE3 and sgRNAs of different spacer lengths targeting several 

loci with multiple Cs in the editing window. Although for some target loci, truncated guide 

RNAs with 16- or 17-base spacers showed narrowed editing windows, we observed no 

consistent changes in the editing window width when using truncated sgRNAs with 15- to 

19-base spacers (Supplementary Fig. 5).

As an alternative approach, we envisioned that mutations to the deaminase domain might 

narrow the width of the editing window through at least two possible mechanisms. First, 

because the high activity of APOBEC1 likely contributes to the deamination of multiple Cs 

per DNA binding event1,17,18, mutations that reduce the catalytic efficiency of the deaminase 

domain of a base editor might prevent it from catalyzing successive rounds of deamination 

before dissociating or being displaced from DNA. Once any C:G to T:A editing event has 

taken place, the sgRNA no longer perfectly matches the target DNA sequence and re-

binding of the base editor to the target locus should be less favorable. Second, some 

mutations may alter substrate binding, the conformation of bound DNA, or substrate 

accessibility to the active site in ways that reduce tolerance for non-optimal presentation of a 

C to the deaminase active site. We sought to test both strategies to discover new base editors 

that distinguish among multiple cytidines within the original editing window.

Given the absence of an available APOBEC1 structure, we identified several mutations 

previously reported to modulate the catalytic activity of APOBEC3G, a cytidine deaminase 

from the same family that shares 42% sequence similarity of its active site-containing 

domain to that of APOBEC119. We incorporated the corresponding APOBEC1 mutations 

into BE3 and evaluated their effect on base editing efficiency and editing window width in 

HEK293T cells at two C-rich genomic sites containing Cs at positions 3, 4, 5, 6, 8, 9, 10, 12, 

13, and 14 (site A); or containing Cs at positions 5, 6, 7, 8, 9, 10, 11, and 13 (site B). For 

analysis purposes, we define the “editing window width” as the number of nucleotide 
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positions at a given site for which editing efficiency exceeds the half-maximal value for that 

target site. The editing window width of BE3 for the two C-rich genomic sites tested was 

approximately 4 (site A) and 6 (site B) nucleotides (Fig. 2a).

Mutating residues that are essential for deaminase activity, such as R118A, led to dramatic 

loss of base editing efficiency (Supplementary Fig. 6). However, we identified other 

mutations that narrowed the editing window while maintaining substantial editing efficiency 

(Fig. 2a, Supplementary Fig. 6). W90 in APOBEC1, corresponding to W285 in 

APOBEC3G, is predicted to be crucial for the formation of a hydrophobic active site in 

APOBEC117,18. APOBEC3G mutant W285A has undetectable deaminase activity17,18, and 

BE3 W90A similarly shows almost no base editing activity (Supplementary Fig. 6). We 

hypothesized that W90Y or W90F might decrease the hydrophobicity of the active site while 

maintaining catalytic activity. Indeed, W90Y and W90F only modestly decreased base 

editing activity while narrowing the editing window width at sites A and B to 3 or 2 

nucleotides, respectively (Fig. 2a, Supplementary Fig. 6). These results demonstrate that 

mutations of the cytidine deaminase domain can narrow the width of the base editing 

window.

Next we sought to test if mutations to residues involved in APOBEC1 substrate binding 

could also alter the editing window width. R126 in APOBEC1 is predicted to interact with 

the phosphate backbone of ssDNA18. Previous studies have shown that mutation of the 

corresponding residue to Ala in APOBEC3G (R320A) decreases apparent activity by at least 

5-fold in a rifampin resistance assay18. Interestingly, when introduced into APOBEC1 in 

BE3, R126A and R126E maintained activity comparable to that of BE3 at the most strongly 

edited central positions (C5 and C6 for site A, C6 and C7 for site B), while decreasing 

editing activity at other positions (Fig. 2a, Supplementary Fig. 6). Both of these two 

mutations narrowed the width of the editing window at site A and site B to 3 nucleotides 

(Fig. 2a, Supplementary Fig. 6). R132 is also near R126 and could influence single-stranded 

DNA accessibility. R132E led to a decrease in editing efficiency but also narrowed the width 

of the editing window to 3 nucleotides for both sites A and B. (Supplementary Fig. 6).

We combined W90Y/F, R126E, and R132E, the three mutations that narrowed the editing 

window without drastically reducing base editing activity, into doubly and triply mutated 

base editors. Combining the R126E and W90F mutations modestly narrowed the editing 

window compared to the W90F mutant, while combining W90F with R132E resulted in a 

dramatic loss of activity (Supplementary Fig. 6). The double mutant W90Y+R126E, 

however, resulted in a base editor (YE1-BE3) with BE3-like maximal editing efficiencies, 

but substantially narrowed editing window width of approximately 2 nucleotides for both 

site A and site B. (Fig. 2a). The W90Y+R132E base editor (YE2-BE3) exhibited modestly 

lower editing efficiencies, but also narrowed the editing window width to approximately 2 

nucleotides for both site A and site B (Supplementary Fig. 6). The R126E+R132E double 

mutant (EE-BE3) showed similar maximal editing efficiencies and editing window width as 

YE2-BE3 (Supplementary Fig. 6). The triple mutant W90Y+R126E+R132E (YEE-BE3) 

exhibited 2.9-fold lower average maximal editing yields but very little editing beyond the C6 

position and an editing window width of approximately 2 and 1 nucleotides for site A and 

site B, respectively (Supplementary Fig. 6). These data taken together indicate that 
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mutations in the cytidine deaminase domain can strongly affect editing window widths, in 

some cases with minimal or only modest effects on editing efficiency.

Next we compared the base editing outcomes of BE3, YE1-BE3, YE2-BE3, EE-BE3, and 

YEE-BE3 in HEK293T cells targeting four well-studied human genomic sites that contain 

multiple Cs within the BE3 activity window1. These target loci contained target Cs at 

positions 4 and 5 (HEK293 site 3), positions 4 and 6 (HEK293 site 2), positions 5 and 6 

(EMX1), or positions 6, 7, 8, and 11 (FANCF). BE3 exhibited little preference for editing 

any of the Cs within the activity window of position 4–8 (< 1.2 fold average base preference 

for HEK293 sites 2, 3, and EMX1). In contrast, YE1-BE3 exhibited a 1.3-fold preference for 

editing C5 over C4 (HEK site 3), 2.7-fold preference for C6 over C4 (HEK site 2), 2.0-fold 

preference for C5 over C6 (EMX1), and 1.5-fold preference for C6 over C7 (FANCF) (Fig. 

2b). YE2-BE3 and EE-BE3 exhibited greater positional specificity, averaging 2.4-fold 

preference for editing C5 over C4 (HEK site 3), 9.8-fold preference for C6 over C4 (HEK 

site 2), 2.9-fold preference for C5 over C6 (EMX1), and 2.5-fold preference for C7 over C6 

(FANCF) (Fig. 2b). YEE-BE3 showed the greatest positional selectivity, with a 2.9-fold 

preference for editing C5 over C4 (HEK site 3), 31-fold preference for C6 over C4 (HEK 

site 2), 7.6-fold preference for C5 over C6 (EMX1), and 8.0-fold preference for C6 over C7 

(FANCF) (Fig. 2b). We then assessed editing of YE1-BE3, EE-BE3, YE2-BE3, and YEE-

BE3 in U2OS cells, and found similar alteration of base editing window widths 

(Supplementary Fig. 2b) as we observed in HEK293T cells. These findings establish that 

mutant base editors with narrowed editing windows can discriminate between adjacent Cs, 

even when both nucleotides are within the BE3 editing window.

We analyzed by HTS the product distributions of the above four mutants and BE3 to assess 

their apparent processivity. BE3 generated predominantly T4-T5 (HEK site 3), T4-T6 (HEK 

site 2), and T5-T6 (EMX1) products in treated HEK293T cells, resulting in, on average, 7.4-

fold more products containing two Ts, than products containing a single T (Fig. 2c). In 

contrast, YE1-BE3, YE2-BE3, EE-BE3, and YEE-BE3 showed substantially higher 

preferences for singly edited C4-T5, C4-T6, and T5-C6 products at these sites (Fig. 2c). 

YE1-BE3 yielded products with an average single-T to double-T product ratio of 1.4. YE2-

BE3 and EE-BE3 yielded products with an average single-T to double-T product ratio of 4.3 

and 5.1, respectively (Fig. 2c). Consistent with the above results, the YEE-BE3 triple mutant 

strongly favored single-T products by an average of 14-fold across the three genomic loci. 

(Fig. 2c). Interestingly, for the target site in which only one C is within the target window 

(HEK293 site 4, at position C5), all four mutants exhibited comparable editing efficiencies 

as BE3 (Supplementary Fig. 7). These findings together indicate that these BE3 mutants 

have decreased apparent processivity and can favor the conversion of only a single C at 

target sites containing multiple Cs within the BE3 editing window. These data also suggest a 

positional preference of C5 > C6 > C7 ≈ C4 for these mutant base editors, although we note 

that this preference could differ depending on the target sequence.

To test if a narrow-window base editor maintains its editing window profile over time 

following a single treatment, we treated HEK293T cells with YE1-BE3, EE-BE3, YE2-BE3, 

or YEE-BE3 and analyzed by HTS the distribution of base editing within the protospacer 

sequence 3 d, 6 d, or 9 d after treatment. We observed no substantial change in the positional 
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distribution of base editing over 9 d at any of the four genomic loci tested (Supplementary 

Fig. 8)

Next, we examined the off-target activity of the base editors with narrowed activity 

windows. Our previous work established that BE3 exhibits off-target base editing activity at 

a subset of Cas9 off-target cleavage loci1. We assayed by HTS 21 known off-target loci 

corresponding to three on-target loci. We observed on average 3.6-fold less efficient off-

target base editing per on-target editing event of the BE3 mutants compared to BE3 for the 

21 off-target sites (Supplementary Fig. 9). This improvement in DNA specificity may arise 

from a reduction in the residence time of base editors at these off-target loci that further 

impedes deamination with catalytically impaired APOBEC1 domains.

Finally, we combined the two innovations described in this work. The window-modulating 

mutations in APOBEC1 were applied to VQR-BE3, allowing editing with a narrowed 

activity window and greater positional selectivity of target sites containing an NGA PAM 

(Supplementary Fig. 10a). Not all window-narrowing mutations could be productively 

combined with altered PAM base editors, however. When window-narrowing mutations 

were installed in SaKKH-BE3, for example, we observed a decrease in base editing 

efficiency without any obvious change in the width of the activity window, perhaps arising 

from differences in the substrate accessibility of this base editor compared with that of BE3 

and its variants (Supplementary Fig. 10b).

The five base editors with altered PAM specificities described in this study together increase 

the number of disease-associated mutations in the ClinVar database that can in principle be 

corrected by base editing by 2.5-fold (Fig. 3a). Similarly, the development of base editors 

with narrowed editing windows approximately doubles the fraction of ClinVar entries with a 

properly positioned NGG PAM that can be corrected by base editing without comparable 

modification of a non-target C (Fig. 3b).

In summary, we have expanded substantially the targeting scope of base editing by 

developing base editors that use Cas9 variants with different PAM specificities, and by 

developing a collection of deaminase mutants with varying editing window widths. The 

modularity of base editing established in this study suggests that the advances described here 

should also be applicable to other fusions of Cas9 variants linked to nucleotide conversion 

enzymes.

ONLINE METHODS

Cloning

PCR was performed using Q5 Hot Start High-Fidelity DNA Polymerase (New England 

Biolabs). Plasmids for BE and sgRNA were constructed using USER cloning (New England 

Biolabs) from previously reported plasmids1. DNA vector amplification was carried out 

using NEB 10beta competent cells (New England Biolabs). Site-directed mutagenesis of 

APOBEC1 variants was done using blunt-end ligation. Briefly, a primer with an overhang 

containing the desired point mutation was used to amplify the appropriate vector plasmid by 
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PCR. KLD enzyme mix (New England Biolabs) was used to phosphorylate and circularize 

the PCR product prior to transformation.

Cell culture

HEK293T (ATCC CRL-3216) and U2OS (ATCC HTB-96) cells were cultured in 

Dulbecco’s Modified Eagle’s Medium plus GlutaMax (ThermoFisher) supplemented with 

10 % (v/v) fetal bovine serum (FBS), at 37 °C with 5 % CO2.

Transfections

HEK293T cells seeded on 48-well collagen-coated BioCoat plates (Corning) were 

transfected at approximately 70% confluency. 750 ng of BE and 250 ng of sgRNA 

expression plasmids were transfected using 1.5 μl of Lipofectamine 2000 (ThermoFisher 

Scientific) per well according to the manufacturer’s protocol. 500 ng of BE and 250 ng of 

sgRNA expression plasmids were transfected into U2OS cells using a Lonza 4D-

Nucleofector with the DN-100 program according to the manufacturer’s protocols.

High-throughput DNA sequencing of genomic DNA samples

Transfected cells were harvested after 3 d. The genomic DNA was isolated using the 

Agencourt DNAdvance Genomic DNA Isolation Kit (Beckman Coulter) according to the 

manufacturer’s instructions. Genomic regions of interest were amplified by PCR with 

flanking HTS primer pairs listed in the Supplementary Information. PCR amplification was 

carried out with Phusion hot-start II DNA polymerase (ThermoFisher) according to the 

manufacturer’s instructions. PCR products were purified using RapidTips (Diffinity 

Genomics). Secondary PCR was performed to attach sequencing adaptors. The products 

were gel-purified and quantified using the KAPA Library Quantification Kit-Illumina 

(KAPA Biosystems). Samples were sequenced on an Illumina MiSeq as previously 

described1.

Data analysis

Nucleotide frequencies were assessed using a previously described MATLAB script1. 

Briefly, the reads were aligned to the reference sequence via the Smith-Waterman algorithm. 

Base calls with Q-scores below 30 were replaced with a placeholder nucleotide (N). This 

quality threshold results in nucleotide frequencies with an expected theoretical error rate of 1 

in 1,000.

Analyses of base editing processivity were performed using a custom python script 

(Supplementary Note 1). This program trims sequencing reads to the 20 nucleotide 

protospacer sequence as determined by a perfect match for the 7 nucleotide sequences that 

should flank the target site. These targets were then consolidated and sorted by abundance to 

assess the frequency of base editing products.

Bioinformatic analysis of the ClinVar database of human disease-associated mutations was 

performed in a manner similar to that previously described but with small adjustments 

(Supplementary Note 2)1. These adjustments enable the identification of targets with PAMs 

of customizable length and sequence. In addition, this improved script includes a priority 
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ranking of target C positions (C5 > C6 > C7 >C8 ≈ C4), thus enabling the identification of 

target sites in which the on-target C is either the only cytosine within the window, or is 

placed at a position with higher predicted editing efficiency than any non-target C within the 

editing window.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. SaBE3, SaKKH-BE3, VQR-BE3, EQR-BE3, and VRER-BE3 mediate efficient base 
editing at target sites containing non-NGG PAMs in human cells
a, Base editor architectures using S. pyogenes and S. aureus Cas9, and recently 

characterized Cas9 variants with alternate or relaxed PAM requirements12,13. b–f, HEK293T 

cells were treated with the base editor variants shown as described in the Methods. The 

percentage of total DNA sequencing reads (with no enrichment for transfected cells) with C 

converted to T at the target positions indicated are shown. The PAM sequence of each target 

tested is shown below the X-axis. The charts show the results for SaBE3 and SaKKH-BE3 at 
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genomic loci with NNGRRT PAMs (b), SaBE3 and SaKKH-BE3 at genomic loci with 

NNHRRT PAMs (c), VQR-BE3 and EQR-BE3 at genomic loci with NGAG PAMs (d) and 

with NGAH PAMs (e), and VRER-BE3 at genomic loci with NGCG PAMs (f). Values and 

error bars reflect the mean and standard deviation of at least two biological replicates.
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Figure 2. Base editors with mutant cytidine deaminase domains exhibit narrowed editing 
windows
a–c, HEK293T cells were transfected with plasmids expressing mutant base editors and an 

appropriate sgRNA. Three days after transfection, genomic DNA was extracted and 

analyzed by high-throughput DNA sequencing at the indicated loci. The percentage of total 

DNA sequencing reads (without enrichment for transfected cells) with C changed to T at the 

target positions indicated are shown for the EMX1 site, HEK293 site 3, FANCF site, 

HEK293 site 2, site A, and site B loci. a, Cytidine deaminase mutations narrow the width of 
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the editing window. See Supplementary Figure 6 for the characterization of additional 

mutations. b, Effect of cytidine deaminase mutations that narrow editing window width on 

genomic loci containing multiple Cs within the canonical BE3 editing window (positions 4–

8). Combining mutations has an additive effect on narrowing the editing window. YE1 = 

W90Y + R126E; EE = R126E + R132E; YE2 = W90Y + R132E; YEE = W90Y + R126E + 

R132E. c, YE1-BE3, YE2-BE3, EE-BE3, and YEE-BE3 alter the product distribution of 

base editing, producing predominantly singly-modified products, in contrast with BE3, even 

when multiple Cs are present in positions 4–8. Values and error bars reflect the mean and 

standard deviation of at least two biological replicates.
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Figure 3. Genetic variants in ClinVar that can be corrected in principle by the base editors 
developed in this work
The NCBI ClinVar database of human genetic variations and their corresponding phenotypes 

(see Ref. 5) was searched for genetic diseases that in theory can be corrected by base 

editing. a, The base editors with altered PAM specificities developed in this study 

substantially increases targetable loci among all pathogenic T→C or A→G mutations in the 

ClinVar database. b, Improvement in base editing targeting scope among all pathogenic 

T→C or A→G mutations in the ClinVar database through the use of base editors with 

narrowed activity windows. BE3 is assumed to edit Cs in positions 4–8 with comparable 

efficiency as shown in Fig. 2. YE1-BE3, EE-BE3, YE2-BE3, and YEE-BE3 are assumed to 

edit with a preference of C5 > C6 > C7 ≈ C4. The blue fractions denote the proportion of 

pathogenic T→C or A→G mutations that can be edited by BE3 without comparable editing 

of other Cs (left), or that can be edited by BE3 or by one of BE3 mutants without 

comparable editing of other Cs (right).
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