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Abstract. Rather than use a shared key directly to cryptographically
process (e.g. encrypt or authenticate) data one can use it as a master key
to derive subkeys, and use the subkeys for the actual cryptographic pro-
cessing. This popular paradigm is called re-keying, and the expectation
is that it is good for security. In this paper we provide concrete security
analyses of various re-keying mechanisms and their usage. We show that
re-keying does indeed “increase” security, effectively extending the life-
time of the master key and bringing significant, provable security gains
in practical situations. We quantify the security provided by different re-
keying processes as a function of the security of the primitives they use,
thereby enabling a user to choose between different re-keying processes
given the constraints of some application.

1 Introduction

Re-keying (also called key-derivation) is a commonly employed paradigm in com-
puter security systems, about whose security benefits users appear to have vari-
ous expectations. Yet the security of these methods has not been systematically
investigated. Let us begin with some examples that illustrate usage, commonly
employed implementations, and motivation for re-keying, and see what security
issues are raised. We then go on to our results.

Re-keyed encryption. Say two parties share a key K, and want to encrypt
data they send to each other. They will use some block cipher based mode of
operation, say CBC. The straightforward approach is to useK directly to encrypt
the data. An often employed alternative is re-keyed encryption. The keyK is not
used to encrypt data but rather viewed as a master key. Subkeys K1,K2,K3, . . .
are derived from K, by some process called the re-keying process. A certain
number l of messages are encrypted using K1 and then the parties switch to K2.
Once l messages have been encrypted under K2 they switch to K3 and so on.

Examples of re-keying methods. Many different re-keying methods are pos-
sible. Let us outline two of them. In each case F (·, ·) is a map that takes a k-bit
key κ and k-bit input x to a k-bit output F (κ, x). (This might be implemented
via a block cipher or a keyed hash function.) The parallel method consists of
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setting Ki = F (K, i) for i = 1, 2, . . .. The serial method sets k0 = K and then
sets Ki = F (ki−1, 0) and ki = F (ki−1, 1) for i = 1, 2, . . .. Many other methods
are possible, including hybrids of these two such as tree-based re-keying [1].

Why re-key? Common attacks base their success on the ability to get lots of
encryptions under a single key. For example differential or linear cryptanalysis
[10,17] will recover a DES key once a certain threshold number of encryptions
have been performed using it. Furthermore, most modes of operation are sub-
ject to birthday attacks [3], leading to compromise of the privacy of a scheme
based on a block cipher with block size k once 2k/2 encryptions are performed
under the same key. Typically, the birthday threshold is lower than that of the
cryptanalytic attacks.

Thus, if encryption is performed under a single key, there is a certain max-
imum threshold number of messages that can be safely encrypted. Re-keying
protects against attacks such as the above by changing the key before the thresh-
old number of encryptions permitting the attack is reached. It thus effectively
extends the lifetime of the (master) key, increasing the threshold number of
encryptions that can be performed without requiring a new exchange of keys.

Questions. Although re-keying is common practice, its security has not been
systematically investigated. We are interested in the following kinds of questions.
Does re-keying really work, in the sense that there is some provable increase in
security of an application like re-keyed encryption described above? That is,
can one prove that the encryption threshold —number of messages of some
fixed length that can be safely encrypted— increases with re-keying? How do
different re-keying processes compare in terms of security benefits? Do some offer
more security than others? How frequently should the key be changed, meaning
how should one choose the parameter l given the parameters of a cryptographic
system?

High level answers. At the highest level, our answer to the most basic ques-
tion (does re-keying increase security?) is “YES.” We are able to justify the pre-
vailing intuition with concrete security analyses in the provable security frame-
work and show that re-keying, properly done, brings significant security gains in
practical situations, including an increase in the encryption threshold. Seen from
closer up, our results give more precise and usable information. We quantify the
security provided by different re-keying processes as a function of the security of
the primitives they use. This enables comparison between these processes. Thus,
say a user wants to encrypt a certain amount of data with a block cipher of a
certain strength: our results can enable this user to figure out which re-keying
scheme to use, with what parameters, and what security expectations.

Re-keyed CBC encryption. As a sample of our results we discuss CBC en-
cryption. Suppose we CBC encrypt with a block cipher F having key-length
and block-length k. Let’s define the encryption threshold as the number Q of
k-bit messages that can be safely encrypted. We know from [3] that this value is
Q ≈ 2k/2 for the single-key scheme. We now consider re-keyed CBC encryption
under the parallel or serial re-keying methods discussed above where we use the
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same block cipher F as the re-keying function. We show that by re-keying every
2k/3 encryptions —i.e. set the subkey lifetime l = 2k/3— the encryption thresh-
old increases to Q ≈ 22k/3. That is, one can safely encrypt significantly more
data by using re-keying. The analysis can be found in Section 3.

Overview of approach and results. Re-keying can be used in conjunction
with any shared-key based cryptographic data processing. This might be data
encryption, under any of the common modes of operation; it might be data au-
thentication using some MAC; it might be something else. We wish to provide
tools that enable the analysis of any of these situations. So rather than analyze
each re-keyed application independently, we take a modular approach. We iso-
late the re-keying process, which is responsible for producing subkeys based on
a master key, from the application which uses the subkeys. We then seek a gen-
eral security attribute of the re-keying process which, if present, would enable
one to analyze the security of any re-keying based application. We suggest that
this attribute is pseudorandomness. We view the re-keying process as a stateful
pseudorandom bit generator and adopt a standard notion of security for pseu-
dorandom bit generators [11,18]. We measure pseudorandomness quantitatively,
associating to any re-keying process (stateful generator) G an advantage func-
tion Advprg

G,n(t), which is the maximum probability of being able to distinguish n
output blocks of the generator from a random string of the same length when the
distinguishing adversary has running time at most t. We then analyze the paral-
lel and serial generators, upper bounding their advantage functions in terms of
an advantage function associated to the underlying primitive F . See Section 2.

To illustrate an application, we then consider re-keyed symmetric encryption.
We associate a re-keyed encryption scheme to any base symmetric encryption
scheme (e.g. CBC) and any generator. We show how the advantage function
of the re-keyed encryption scheme can be bounded in terms of the advantage
function of the base scheme and the advantage function of the generator. (The
advantage function of an encryption scheme, whether the base or re-keyed one,
measures the breaking probability as a function of adversary resources under
the notion of left-or-right security of [3].) Coupling our results about the parallel
and serial generators with known analyses of CBC encryption [3] enables us to
derive conclusions about the encryption threshold for CBC as discussed above.
See Section 3.

Security of the parallel and serial generators. Our analysis of the
parallel and serial generators as given by Theorems 1 and 2 indicates that their
advantage functions depend differently on the advantage function of the under-
lying primitive F . (We model the latter as a pseudorandom function [13] and
associate an advantage function as per [5].) In general, the parallel generator
provides better security. This is true already when F is a block cipher but even
more strikingly the case when F is a non-invertible PRF. This should be kept
in mind when choosing between the generators for re-keying. However, whether
or not it eventually helps depends also on the application. For example, with
CBC encryption, there is no particular difference in the quantitative security
providing by parallel and serial re-keying (even though both provide gains over
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the single-key scheme). This is due to the shape of the curve of the advantage
function of the base CBC encryption function as explained in Section 3.

Forward security. Another possible motivation for re-keying is to provide
forward security. The goal here is to minimize the amount of damage that might
be caused by key exposure due, for instance, to compromise of the security of the
underlying system storing the secret key. (Forward security was first considered
for session keys [15,12] and then for digital signatures [7].) Under re-keying,
the adversary would only get the current subkey and state of the system. It
could certainly figure out all future subkeys, but what about past ones? If the
re-keying process is appropriately designed, it can have forward security: the
past subkeys will remain computationally infeasible for the adversary to derive
even given the current subkey and state, and thus ciphertexts that were formed
under them will not be compromised. It is easy to see that the parallel generator
does not provide forward security. It can be shown however that the serial one
does. A treatment of forward security in the symmetric setting, including a proof
of the forward security of the serial generator and the corresponding re-keyed
encryption scheme, can be found in [9].

Related work. Another approach to increasing the encryption threshold, dis-
cussed in [6], is to use a mode of encryption not subject to birthday attack
(e.g. CTR rather than CBC) and implement this using a non-invertible, high se-
curity PRF rather than a block cipher. Constructions of appropriate PRFs have
been provided in [6,16]. Re-keying is cheaper in that one can use the given block
cipher and a standard mode like CBC and still push the encryption threshold
well beyond the birthday threshold.

Re-keying requires that parties maintain state. Stateless methods of increas-
ing security beyond the birthday bound are discussed in [4].

2 Re-keying Processes as Pseudorandom Generators

The subkeys derived by a re-keying process may be used in many different ways:
data encryption or authentication are some but not all of these. To enable mod-
ular analysis, we separate the subkey generation from the application that uses
the subkeys. We view the re-keying process —which generates the subkeys— as
a stateful pseudorandom bit generator. In this section we provide quantitative
assessments of the security of various re-keying schemes with regard to notions of
security for pseudorandom generators. These application independent results are
used in later sections to assess the security of a variety of different applications
under re-keying.

Stateful generators. A stateful generator G = (K,N ) is a pair of algorithms.
The probabilistic key generation algorithm K produces the initial state, or seed,
of the generator. The deterministic next step algorithmN takes the current state
as input and returns a block, viewed as the output of this stage, and an updated
state, to be stored and used in the next invocation. A sequence Out1,Out2, . . .
of pseudorandom blocks is defined by first picking an initial seed St0 ← K and
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then iterating: (Out i,St i)← N (St i−1) for i ≥ 1. (When the generator is used for
re-keying, these are the subkeys. Thus Out i was denoted Ki in Section 1). We
assume all output blocks are of the same length and call this the block length.

We now specify two particular generators, the parallel and serial ones. We fix
a PRF F : {0, 1}k×{0, 1}k → {0, 1}k. (As the notation indicates, we are making
the simplifying assumption that the key length, as well as the input and output
lengths of each individual function F (K, ·) are all equal to k.) In practice, this
might be instantiated via a block cipher or via a keyed hash function such as
HMAC [2]. (For example, if DES is used, then we set k = 64 and define F (K, ·)
to be DES(K[1..56], ·).)
Construction 1. (Parallel generator) The F -based parallel generator
PG[F ] = (K,N ) is defined by

Algorithm K
K

R← {0, 1}k
Return 〈0,K〉

Algorithm N (〈i,K〉)
Out ← F (K, i)
Return (Out , 〈i+ 1,K〉)

The state has the form 〈i,K〉 where K is the initial seed and i is a counter,
initially zero. In the i-th stage, the output block is obtained by applying the K-
keyed PRF to the (k-bit binary representation of the integer) i, and the counter
is updated. This generator has block length k.

Construction 2. (Serial generator) The F -based serial generator SG[F ] =
(K,N ) is defined by

Algorithm K
K

R← {0, 1}k
Return K

Algorithm N (K)
Out ← F (K, 0)
K ← F (K, 1)
Return (Out ,K)

The state is a key K. In the i-th stage, the output block is obtained by applying
the K-keyed PRF to the (k-bit binary representation of the integer) 0, and the
new state is a key generated by applying the K-keyed PRF to the (k-bit binary
representation of the integer) 1. This generator has block length k.

Pseudorandomness. The standard desired attribute of a (stateful) generator is
pseudorandomness of the output sequence. We adopt the notion of [11,18] which
formalizes this by asking that the output of the generator on a random seed
be computationally indistinguishable from a random string of the same length.
Below, we concretize this notion by associating to any generator an advantage
function which measures the probability that an adversary can detect a devia-
tion in pseudorandomness as a function of the amount of time invested by the
adversary.

Definition 1. (Pseudorandomness of a stateful generator) Let G =
(K,N ) be a stateful generator with block length k, let n be an integer, and
let A be an adversary. Consider the experiments
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Experiment Expprg-real
G,n (A)

St0 ← K ; s← ε
for i = 1, . . . , n do

(Out i,St i)← N (St i−1) ; s← s ‖Out i

g ← A(s)
return g

Experiment Expprg-rand
G,n (A)

s← {0, 1}n·k
g ← A(s)
return g

Now define the advantage of A and the advantage function of the generator,
respectively, as follows:

Advprg
G,n(A) = Pr[ Expprg-real

G,n (A) = 1 ]− Pr[ Expprg-rand
G,n (A) = 1 ]

Advprg
G,n(t) = max

A
{Advprg

G,n(A) } ,

where the maximum is over all A with “time-complexity” t.

Here “time-complexity” is the maximum of the execution times of the two ex-
periments plus the size of the code for A, all in some fixed RAM model of
computation. (Note that the execution time refers to that of the entire experi-
ment, not just the execution time of the adversary.) The advantage function is
the maximum likelihood of the security of the pseudorandom generator G being
compromised by an adversary using the indicated resources.

Security measure for PRFs. Since the security of the above constructions
depends on that of the underlying PRF F : {0, 1}k×{0, 1}k → {0, 1}k, we recall
the measure of [5], based on the notion of [13]. Let Rk denote the family of all
functions mapping {0, 1}k to {0, 1}k, under the uniform distribution. If D is a
distinguisher having an oracle, then

Advprf
F (D) = Pr[DF (K,·) = 1 : K R← {0, 1}k ]− Pr[Df(·) = 1 : f R← Rk ]

is the advantage of D. The advantage function of F is

Advprf
F (t, q) = max

D
{Advprf

F (D) } ,
where the maximum is over all A with “time-complexity” t and making at most
q oracle queries. The time-complexity is the execution time of the experiment
K

R← {0, 1}k ; v ← DF (K,·) plus the size of the code of D, and, in particular,
includes the time to compute FK(·) and reply to oracle queries of D.

Pseudorandomness of the parallel and serial generators. The fol-
lowing theorems, whose proofs can be found in Appendices A and B, show how
the pseudorandomness of the two generators is related to the security of the
underlying PRF.

Theorem 1. Let F : {0, 1}k×{0, 1}k → {0, 1}k be a PRF and let PG[F ] be the
F -based parallel generator defined in Construction 1. Then

Advprg
PG[F ],n(t) ≤ Advprf

F (t, n) .
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Theorem 2. Let F : {0, 1}k×{0, 1}k → {0, 1}k be a PRF and let SG[F ] be the
F -based parallel generator defined in Construction 2. Then

Advprg
SG[F ],n(t) ≤ n · Advprf

F (t+ logn, 2) .

The qualitative interpretation of the two theorems is the same: both the parallel
and the serial generator are secure pseudorandom bit generators if the PRF is
secure. The quantitative statements show however that the pseudorandomness
of n output blocks depends differently on the security of the PRF in the two
cases. For the parallel generator, it depends on the security of the PRF under n
queries. For the serial generator, it depends on the security of the PRF against
only a constant number of queries, but this term is multiplied by the number
of output blocks. Comparing the functions on the right hand side in the two
theorems will tell us which generator is more secure.

Examples. As an example, assume F is a block cipher. Since F is a cipher, each
map F (K, ·) is a permutation, and birthday attacks can be used to distinguish
F from the family of random functions with a success rate growing as q2/2k for
q queries (c.f.. [5, Proposition 2.4]). Let us make the (heuristic) assumption that
this is roughly the best possible, meaning

Advprf
F (t, q) ≈ q

2 + t
2k

(1)

for t small enough to prevent cryptanalytic attacks. Now the above tells us that
the advantage functions of the two generators grow as follows:

Advprg
PG[F ],n(t) ≈ n

2 + t
2k

and Advprg
SG[F ],n(t) ≈ nt

2k
.

Since t ≥ n, the two functions are roughly comparable, but in fact the first one
has a somewhat slower growth because we would expect that t� n. So, in this
case, the parallel generator is somewhat better.

Now assume F is not a block cipher but something that better approximates
a random function, having security beyond the birthday bound. Ideally, we would
like something like

Advprf
F (t, q) ≈ q + t

2k
(2)

for t small enough to prevent cryptanalytic attacks. This might be achieved by
using a keyed hash function based construction, or by using PRFs constructed
from block ciphers as per [6,16]. In this case we would get

Advprg
PG[F ],n(t) ≈ n+ t

2k
and Advprg

SG[F ],n(t) ≈ nt
2k
.

Thinking of t ≈ n (it cannot be less but could be more, so this is an optimistic
choice), we see that the first function has linear growth and the second has
quadratic growth, meaning the parallel generator again offers better security,
but this time in a more decisive way.

These examples illustrate how the quantitative results of the theorems can be
coupled with cryptanalytic knowledge or assumptions about the starting primi-
tive F to yield information enabling a user to choose between the generators.
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3 Re-keyed Symmetric Encryption

We fix a base encryption scheme. (For example, CBC mode encryption based
on some block cipher.) We wish to encrypt data using this scheme, but with
re-keying. Two things need to be decided. The first is how the re-keying is to be
done, meaning how the subkeys will be computed. This corresponds to making
a choice of stateful generator to generate the subkey sequence. The second is
the lifetime of each subkey, meaning how many encryptions will be done with
it. This corresponds to choosing an integer parameter l > 0 which we call the
subkey lifetime. Associated to a base scheme, generator and subkey lifetime, is
a particular re-keyed encryption scheme. We are interested in comparing the
security of the re-keyed encryption scheme across different choices of re-keying
processes (i.e. generators), keeping the base scheme and subkey lifetime fixed.
In particular, we want to compare the use of the parallel and serial generators.

Our analysis takes a modular approach. Rather than analyzing separately the
re-keyed encryption schemes corresponding to different choices of generators, we
first analyze the security of a re-keyed encryption scheme with an arbitrary
generator, showing how the advantage of the encryption scheme can be bounded
in terms of that of the generator and the base scheme. We then build on results
of Section 2 to get results for re-keyed encryption with specific generators. We
begin by specifying in more detail the re-keyed encryption scheme and saying
how we measure security of symmetric encryption schemes.

Re-keyed encryption schemes. Let SE = (Ke, E ,D) be the base (symmetric)
encryption scheme, specified by its key generation, encryption and decryption
algorithms [3]. Let G = (Kg,N ) be a stateful generator with block size k, where
k is the length of the key of the base scheme. Let l > 0 be a subkey lifetime
parameter. We associate to them a re-keyed encryption scheme SE [SE ,G, l] =
(K, E ,D). This is a stateful encryption scheme which works as follows. The initial
state of the encryption scheme includes the initial state of the generator, given
by St0

R← Kg. Encryption is divided into stages i = 1, 2, . . .. Stage i begins with
the generation of a new key Ki using the generator: (Ki,St i) ← N (St i−1). In
stage i encryption is done using the encryption algorithm of the base scheme
with key Ki. An encryption counter is maintained, and when l encryptions have
been performed, this stage ends. The encryption counter is then reset, the stage
counter is incremented, and the key for the next stage is generated. If the base
scheme is stateful, its state is reset whenever the key changes.

Formally, the key generation algorithm K of the re-keyed scheme is run once,
at the beginning, to produce an initial state which is shared between sender and
receiver and includes St0. The encryption algorithm E takes the current state
(which includes Ki,St i, a stage counter, the encryption counter, and a state for
the base scheme if the latter happens to be stateful) and the message M to be
encrypted, and returns ciphertext C ← EKi(M). It also returns an updated state
which is stored locally. It is advisable to include with the ciphertext the number
i of the current stage, so that the receiver can maintain decryption capability
even if messages are lost in transit. The D algorithm run by the receiver can
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be stateless in this case. (This is true as long as the goal is privacy against
chosen-plaintext attacks as we consider here, but if active attacks are considered,
meaning we want privacy against chosen-ciphertext attacks or authenticity, the
receiver will have to maintain state as well.)

Security measures for encryption schemes. Several (polynomial-time
equivalent) definitions for security of a symmetric encryption scheme under
chosen-plaintext attack were given in [3]. We use one of them, called left-or-right
security. The game begins with a random bit b being chosen. The adversary then
gets access to an oracle which can take as input any two equal-length messages
(x0, x1) and responds with a ciphertext formed by encrypting xb. The adversary
wins if it can eventually guess b correctly. We can associate to any adversary an
advantage measuring the probability it wins. We then associate to the base en-
cryption scheme —respectively, the re-keyed encryption scheme— an advantage
function Advind-cpa

SE (t, q,m) —respectively Advind-cpa

SE (t, q,m)— which measures
the maximum probability of the scheme being compromised by an adversary
running in time t and allowed q oracle queries each consisting of a pair of m-bit
messages. Intuitively, this captures security against a chosen-plaintext attack of q
messages. (The usual convention [3] is to allow messages of different lengths and
count the sum of the lengths of all messages but for simplicity we ask here that
all messages have the same length. Note that for the base encryption scheme,
all encryption is done using a single, random key. For the re-keyed scheme, it is
done as the scheme specifies, meaning with the key changing every l encryptions.
We omit details here, but precise definitions with this type of notation can be
found for example in [8].)

Security of re-keyed encryption. The qualitative interpretation of the
following theorem is that if the generator and base encryption scheme are secure
then so is the re-keyed encryption scheme. It is the quantitative implications
however on which we focus. The theorem says that the security of encrypting ln
messages with the re-keyed scheme relates to the pseudorandomness of n blocks
of the generator output and the security of encrypting l messages under the base
scheme with a single random key. The Advind-cpa

SE (t, l,m) term is multiplied by
n, yet there is a clear gain, in that the security of the base encryption scheme
relates to encrypting only l messages. The proof of Theorem 3 can be found in
the full version of this paper [1].

Theorem 3. (Security of re-keyed encryption) Let SE be a base encryption
scheme with key size k, let G be a stateful generator with blocksize k, and let l > 0
be a subkey lifetime. Let SE = SE [SE ,G, l] be the associated re-keyed encryption
scheme. Then

Advind-cpa

SE (t, ln,m) ≤ Advprg
G,n(t) + n · Advind-cpa

SE (t, l,m) .

Re-keyed encryption with the parallel and serial generators. Com-
bining Theorem 3 with Theorems 1 and 2 gives us information about the security
of re-keyed encryption under the parallel and serial generators.
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Corollary 1. (Security of re-keyed encryption with the parallel gener-
ator) Let SE be a base encryption scheme, let F : {0, 1}k×{0, 1}k → {0, 1}k be
a PRF, let PG[F ] be the F -based parallel generator defined in Construction 1,
and let l > 0 be a subkey lifetime. Let SE = SE [SE ,PG[F ], l] be the associated
re-keyed encryption scheme. Then

Advind-cpa

SE (t, ln,m) ≤ Advprf
F (t, n) + n · Advind-cpa

SE (t, l,m) .

Corollary 2. (Security of re-keyed encryption with the serial gener-
ator) Let SE be a base encryption scheme, let F : {0, 1}k × {0, 1}k → {0, 1}k
be a PRF, let SG[F ] be the F -based serial generator defined in Construction 2,
and let l > 0 be a subkey lifetime. Let SE = SE [SE ,SG[F ], l] be the associated
re-keyed encryption scheme. Then

Advind-cpa

SE (t, ln,m) ≤ n · Advprf
F (t+ logn, 2) + n · Advind-cpa

SE (t, l,m) .

Example. For the base encryption scheme, let us use CBC with some block
cipher B: {0, 1}k×{0, 1}b→ {0, 1}b having block length b. We wish to compare
the security of encrypting q messages directly with one key; doing this with re-
keying using the parallel generator; and doing this with re-keying using the serial
generator. The re-keying is based on a PRF F : {0, 1}k×{0, 1}k → {0, 1}k having
block length k. Note that B and F can but need not be the same. In particular
B must be a cipher (i.e. invertible) in order to enable CBC decryption, but we
have seen that better security results for the re-keying schemes by choosing F
to be non-invertible and might want to choose F accordingly.

Let CBC denote the base encryption scheme. Let PCBC denote the re-keyed
encryption scheme using CBC as the base scheme, the F -based parallel genera-
tor, and subkey lifetime parameter l. Let SCBC denote the re-keyed encryption
scheme using CBC as the base scheme, the F -based serial generator, and subkey
lifetime parameter l. Since B is a cipher we take its advantage to be

Advprf
B (t, q) ≈ q

2

2b
+
t

2k
. (3)

We know from [3] that

Advind-cpa
CBC (t, q,m) ≈ q

2m2

b22b
+ 2 · Advprf

B (t, qm/b) ≈ 3q2m2

b22b
+

2t
2k
.

For simplicity we let the message length be m = b. Thus if q = ln messages of
length m are CBC encrypted we have

Advind-cpa
CBC (t, ln, b) ≈ 3l2n2

2b
+

2t
2k

Advind-cpa
PCBC (t, ln, b) ≈ Advprf

F (t, n) +
3l2n
2b

+
2nt
2k

Advind-cpa
SCBC (t, ln, b) ≈ n · Advprf

F (t+ logn, 2) +
3l2n
2b

+
2nt
2k

.

The first corresponds to encryption with a single key, the second to re-keying
with the parallel generator, and the third to re-keying with the serial generator.



556 Michel Abdalla and Mihir Bellare

Suppose we let F be a block cipher. (This is the easiest choice in practice.) We
can simply let F = B. In that case F obeys Equation (1) and we get

Advind-cpa
CBC (t, ln,m) ≈ 3l2n2 + 2t

2k

Advind-cpa
PCBC (t, ln,m) ≈ 3l2n+ n2 + 2nt

2k

Advind-cpa
SCBC (t, ln,m) ≈ 3l2n+ 2nt+ t

2k
.

The two generators deliver about the same advantage. To gauge the gains pro-
vided by the re-keying schemes over the single-key scheme, let us define the
encryption threshold of a scheme to be the smallest number of messages Q = ln
that can be encrypted before the advantage hits one. (Roughly speaking, this
is the number of messages we can safely encrypt.) We want it to be as high as
possible. Let’s take t ≈ nl. (It cannot be less but could be more so this is an
optimistic choice). In the single-key scheme Q ≈ 2k/2. In the re-keyed schemes
let us set l = 2k/3. (This is the optimal choice.) In that case Q ≈ 22k/3. This is
a significant increase in the encryption threshold, showing that re-keying brings
important security benefits.

We could try to set F to be a non-invertible PRF for which Equation (2) is
true. (In particular F would not be B.) Going through the calculations shows
that again the two generators will offer the same advantage, but this would be
an improvement over the single-key scheme only if k > b. (Setting k = 2b yields
an encryption threshold of 2b for the re-keyed schemes as compared to 2b/2 for
the single-key scheme.)

We saw in Section 2 that the parallel generator offered greater security than
the serial one. We note that this did not materialize in the application to re-
keyed CBC encryption: here, the advantage functions arising from re-keying
under the two generators are the same. This is because the term corresponding
to the security of the base scheme in Corollaries 1 and 2 dominates when the
base scheme is CBC.

In summary we wish to stress two things: that security increases are possible,
and that our results provide general tools to estimate security in a variety of re-
keyed schemes and to choose parameters to minimize the advantage functions of
the re-keyed schemes.
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A Proof of Theorem 1

Let A be an adversary attacking the pseudorandomness of PG[F ] and t be the
maximum of the running times of Expprg-real

PG[F ],n(A) and Expprg-rand
PG[F ],n (A). We want

to upper bound Advprg
PG[F ],n(A). We do so by constructing a distinguisher D for

F and relating its advantage to that of A. D has access to an oracle O. It simply
computes s = O(1) ‖ . . . ‖O(n) and outputs the same guess as A on input s. We
can see that when the oracleO is drawn at random from the family F , the proba-
bility thatD returns 1 equals the probability that the experiment Expprg-real

PG[F ],n(A)

returns 1. Likewise, the probability that the experiment Expprg-rand
PG[F ],n (A) returns

1 equals that of D returning 1 when O is drawn at random from the family of
random functions Rk. As D runs in time at most t and makes exactly n queries
to its oracle, we get that

Advprg
PG[F ],n(A) ≤ Advprf

F (t, n) .

Since A was an arbitrary adversary and the maximum of the running times of
experiments Expprg-real

PG[F ],n(A) and Expprg-rand
PG[F ],n (A) is t, we obtain the conclusion

of the theorem.

B Proof of Theorem 2

Let A be an adversary attacking the pseudorandomness of SG[F ] and t be the
maximum of the running times of Expprg-real

SG[F ],n(A) and Expprg-rand
SG[F ],n (A). We want

to upper bound Advprg
SG[F ],n(A). We begin by defining the following sequence of

hybrid experiments, where j varies between 0 and n.

Experiment Hybrid(A, j)

St R← {0, 1}k ; s← ε
for i = 1, . . . , n do

if i ≤ j then Out i
R← {0, 1}k

else (Out i,St)← N (St)
s← s ‖Out i

g ← A(s)
return g

Let Pj be the probability that experiment Hybrid(A, j) returns 1, for j =
0, . . . , n. Note that the experiments Expprg-real

SG[F ],n(A) and Expprg-rand
SG[F ],n (A) are

identical to Hybrid(A, 0) and Hybrid(A, n), respectively. (Not syntactically,
but semantically.) This means that P0 = Pr[ Expprg-real

SG[F ],n(A) = 1 ] and Pn =

Pr[ Expprg-rand
SG[F ],n (A) = 1 ]. Putting it all together, we have

Advprg
SG[F ],n(A) = Pr[ Expprg-real

SG[F ],n(A) = 1 ]− Pr[ Expprg-rand
SG[F ],n (A) = 1 ]

= P0 − Pn . (4)
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We now claim that

Advprg
SG[F ],n(A) = P0 − Pn ≤ n · Advprf

F (t+ logn, 2) . (5)

Since A was an arbitrary adversary, we obtain the conclusion of the theorem. It
remains to justify Equation (5). We will do this using the advantage function of
F . Consider the following distinguisher for F .

Algorithm DO

j
R← {1, . . . , n} ; s← ε

for i = 1, . . . , n do

if i < j then Out i
R← {0, 1}k

if i = j then Outi ← O(0) ; St ← O(1)
if i > j then (Out i,St)← N (St)
s← s ‖Out i

g ← A(s)
return g

Suppose the oracle given to D was drawn at random from the family F . Then,
the probability that it returns 1 equals the probability that the expirement
Hybrid(A, j−1) returns 1, where j is the value chosen at random byD in its first
step. Similarly, if the given oracle is drawn at random from the family of random
functions Rk, then the probability that D returns 1 equals the probability that
the experiment Hybrid(A, j) returns 1, where j is the value chosen at random
by D in its first step. Hence,

Pr
[
DO | O R← F

]
= 1

n

∑n
j=1Pj−1

Pr
[
DO | O R← Rk

]
= 1

n

∑n
j=1Pj .

Subtract the second sum from the first and exploit the collapse to get
P0 − Pn

n
= 1

n

∑n
j=1Pj−1 − 1

n

∑n
j=1Pj = Advprf

F (D) .

Note that D runs in time at most t+O(log n) and makes exactly 2 queries to its
oracle, whence we get Equation (5). This concludes the proof of the theorem.
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