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1 Introduction

Consider the problem of approximating a locally unique solution x∗ of the
nonlinear equation

F (x) = 0, (1.1)

where F : D ⊆ X −→ Y is a Fréchet-differentiable operator defined on
a convex subset D of X. Here X and Y are Banach spaces. Higher order
multi-point methods are studied in the literature (see [1–4, 12, 13, 15]) for
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approximating the solution x∗ of (1.1). But, very often the computational
cost of these higher order method is very high [5–11, 14–16]. Numerous
researchers have tried to obtain a general law to accelerate the convergence
for all the iterative methods which use Newton iteration as a predictor [5–11].
Kou et al. [11] and Cordero et al. [5–7] introduced the following construction
(when X = Y = Rn),

zk = φ(xk, yk),

xk+1 = zk − F ′(yk)−1F (zk),

where yk = xk − F ′(xk)−1F (xk) and φ is the iteration function. Using the
above construction Kou et al. [11] and Cordero et al. [5–7] improved the
order of the given iterative method from p to p+2. Further, for using extended
Newton iteration as a predictor and accelerating the order of convergence the
following construction is introduced in [16]:

yk = xk − aF ′(xk)−1F (xk),

zk = φ(xk, yk),

xk+1 = zk −

{
2

[
1

2a
F ′(yk) +

(
1− 1

2a

)
F ′(xk)

]−1
− F ′(xk)−1

}
F (zk).

Using the above construction Xiao and Yin [16] improved the order of the
given iterative method from p to p+ 2.

In the present paper, we consider the following construction considered
in [16] to improve the order of convergence of the method from p to p+ 2m,

yn = xn − F ′(xn)−1F (xn)

zn = φ1(xn, yn)

z(1)n = zn − φ(xn, yn)F (zn) (1.2)
...

z(m−1)n = z(m−2)n − φ(xn, yn)F (z(m−2)n )

xn+1 = z(m)
n = z(m−1)n − φ(xn, yn)F (z(m−1)n ),

where both φ functions are small as in method (1.2), φ1 : D × D −→ X
is an iteration function with convergence order greater or equal to two, φ :
D × D −→ L(X) given by φ(xn, yn) = 1

3
{4[3F ′(yn) − F ′(xn)]−1 + F ′(xn)}

and m ≥ 2 is an integer. Our goal is to weaken the assumptions in [16], so
that the applicability of the method (1.2) can be improved.

In earlier studies such as [5–11, 14–16], higher order methods are consid-
ered for approximating the solution x∗ of (1.1). But the convergence analysis
of these methods requires assumptions of the form (see e.g [16]):
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‖F ′′′(x)− F ′′′(y)‖ ≤ L‖x− y‖, x, y ∈ D, L ≥ 0 (1.3)

or

‖F ′′′(x)− F ′′′(y)‖ ≤ w(‖x− y‖), x, y ∈ D, (1.4)

where w(z) is a nondecreasing continuous function for z > 0 and w(0) = 0.

Notice that F ′′ and F ′′′ do not appear in method (1.2). Hence, the results
in the earlier studies using them cannot apply. A motivational example of
(1.1) that does not satisfy (1.3) or (1.4) is the following:

F (x) =

{
x3 lnx2 + x5 − x4, x 6= 0
0, x = 0,

(1.5)

where F : [−3
2
, 1
2
] −→ R. We have that

F ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2

F ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x

and

F ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Then, obviously, function F ′′′ is unbounded on D. In this paper, we extend
the applicability of method (1.2) by using hypotheses only on the first deriva-
tive that appear on it.

The rest of the paper is organized as follows. In Section 2 we present
the local convergence analysis. We also provide a radius of convergence,
computable error bounds and uniqueness result, not provided in the earlier
works on this method. Special cases and numerical examples are given in the
last section.

2 Local convergence analysis

The local convergence analysis of method (1.2) is based on some scalar func-
tions and parameters. Let m ≥ 2 be an integer, λ > 1 be a parameter w0, w, v
be continuous, non-negative, non-decreasing functions defined on the interval
[0,+∞).

Suppose equation

w0(t) = 1 (2.1)
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has a minimal positive zero r0. Define functions g and hg, on the interval
[0,r0) by,

g(t) =

∫ 1

0
w((1− θ)t)dθ
1− w0(t)

,

and

hg(t) = g(t)− 1.

Next, we shall show the existence of zeros for certain scalar functions
appearing in the proof of Theorem 2.1 relying on the intermediate value
theorem. We have that hg(0) = −1 < 0 and hg(t) → +∞ as t → r−0 . By
the intermediate value theorem, function hg has zeros in the interval (0, r0).
Denote by rg the smallest such zero.

Let p1 be a continuous, non-negative, non-decreasing function on the
interval [0, rg) such that

p1(ρ0)ρ
λ−1
0 > 1 (2.2)

for some ρ0 ∈ (0, rg). Let hp1(t) = p1(t)t
λ−1−1.We have that hp1(0) = −1 < 0

and hp1(ρ0) > 0. Denote by ρ1 the smallest zero of function hp1 on the interval
(0, ρ0).

Define functions q and hq on the interval [0, r0) by q(t) = 1
2
(2w0(g(t)t) +

w0(t)) and

hq(t) = q(t)− 1.

We have hq(0) = −1 < 0 and hq(t) → +∞ as t → r−0 . Denote by rq the
smallest zero of functions hq on the interval (0,r0).

Case 1:

rq ≤ ρ1. (2.3)

Define function p on the interval [0, rq) by p(t) = 1
3
( 2
1−q(t) + 1

1−w0(t)
).

Notice that p(0) = 1 and p(t)→ +∞ as t→ r−0 .

Define functions ψ1 and hψ1 on the interval [0, rq) by ψ1(t) = (1 +

p1(t)
∫ 1

0
v(θg(t)tλ)dθ)g(t)tλ−1 and hψ1(t) = ψ1(t)− 1. We have that hψ1(0) =

−1 < 0 and hψ1(t)→ +∞ as t→ r−q . Denote by rψ1 the smallest zero of func-
tion hψ1 on the interval [0, ρq). Let m ≥ 1 be an integer and j = 2, 3, · · · ,m.
Define functions ψj and hψj

on [0, rq), ψj(t) = (1+p(t)
∫ 1

0
v(θψj−1(t)t)dt)ψj−1(t)

and hψj(t) = ψj(t)− 1. We have that hψ2(0) = −1 < 0 and

hψ2(rψ1) = (1 + p(rψ1)
∫ 1

0
v(θψ1(rψ1)rψ1)dθ)ψ1(rψ1)− 1

= p(rψ1)
∫ 1

0
v(θrψ1)dθ > 0,
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since ψ1(rψ1) = 0. Denote by rψ2 the smallest zero of function hψ2 on the
interval (0, rψ1). Similarly, we have that hψj

(0) = −1 < 0 and

hψj
(rψj−1

) = p(rψj−1
)

∫ 1

0

r(θrψj−1)dθ > 0.

Denote by rψj
the smallest zero of function hψj on the interval (0, rψj−1

).
Define the radius of convergence r by

r = min{rg, ρ1, rψi
}, i = 1, 2, 3, . . . ,m. (2.4)

Then, we have that for each t ∈ [0, r)

0 ≤ g(t) < 1, (2.5)

0 ≤ g1(t)t
λ−1 < 1, (2.6)

0 ≤ ψj(t) < 1, (2.7)

0 ≤ w0(t) < 1, (2.8)

0 ≤ q(t) < 1, (2.9)

and
1 ≤ p(t). (2.10)

Case 2:
ρ1 < rq.

We have that hψ1(0) = −1 < 0 and

hψ1(ρ1) = (1 + p(ρ1)
∫ 1

0
v(θg1(ρ1)ρ

λ
1)dθ)g1(ρ1)ρ

λ−1
1 − 1

= p(ρ1)
∫ 1

0
v(θρ1)dθ > 0,

since g1(ρ1)ρ
λ−1
1 = 1. Denote again by rψ1 the smallest zero of function hψ1

on the interval (0, ρλ−11 ). Also we have again that hψj
(0) = −1 < 0 and

hψj
(rψj−1

) = p(rψj−1
)

∫ 1

0

v(θrψj−1)dθ > 0,

by (2.10). Hence the radius of convergence can again be defined by (2.4)
Let U(a, ρ), U(a, ρ) stand respectively, for the open and closed balls in

X, with center a ∈ X and of radius ρ > 0. Next, we present the local
convergence analysis of method (1.2) using the preceding notation.
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Theorem 2.1. Let F : D ⊂ X → Y be a Fréchet differentiable operator and
λ > 1 be a parameter. Suppose that there exists x∗ ∈ D, non-negative, non-
decreasing functions p1, w0 such that (2.2) is satisfied, defined on the interval
[0,+∞) such that for each x ∈ D,

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X), (2.11)

‖z(x)− x∗‖ ≤ p1(‖x− x∗‖)‖x− x∗‖λ (2.12)

and

‖F ′(x∗)−1(F ′(x)− F ′(x∗)‖ ≤ w0(‖x− x∗‖), (2.13)

where z(x) = φ1(x, x − F ′(x)−1F ′(x)). Moreover suppose there exist con-
tinuous, non-negative, non-decreasing functions w, v defined on the interval
[0, r0) such that for each x, y ∈ D1 := D ∪ U(x∗, r0),

‖F ′(x∗)−1(F ′(x)− F ′(y)‖ ≤ w(‖x− y‖), (2.14)

‖F ′(x∗)−1F ′(x)‖ ≤ v(‖x− y‖), (2.15)

and

U(x∗, r) ⊆ D, (2.16)

where the radius of convergence is defined by (2.4). Then, the sequence {xn}
generated for x0 ∈ U(x∗, r)−{x∗} by method (1.2) is well defined in U(x∗, r),
remains in U(x∗, r) for each n = 0, 1, 2, . . . and converges to x∗. Moreover,
the following estimates hold

‖yn − x∗‖ ≤ g(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (2.17)

‖zn − x∗‖ ≤ p1(‖xn − x∗‖)‖xn − x∗‖λ ≤ ‖xn − x∗‖, (2.18)

‖z(i)n − x∗‖ ≤ ψi(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖. (2.19)

In particular, since z
(m)
n = xn+1

‖xn+1 − x∗‖ ≤ ψm(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.20)

where, the functions g, p and ψi are defined previously. Furthermore,for r̄0 ∈
[r, r0), the limit point x∗ is the only solution of equation F (x) = 0 in D2 =
D ∩ U(x∗, r̄) if w0(r̄0) < 1.

Proof. We shall show using mathematical induction that sequence {xn}
generated by (1.2) is well defined in U(x∗, r), remains in U(x∗, r) for each n =
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0, 1, 2, · · · and converges to x∗ so that estimates (2.17)-(2.20) are satisfied.
By (2.1), (2.8), (2.13) and the hypotheses x0 ∈ U(x∗, r)−{x∗}, we have that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗)‖ ≤ w0(‖x0 − x∗‖) ≤ w0(r) < 1. (2.21)

It follows from (2.21) and the Banach Lemma on invertible operators [1, 11,
13] that F ′(x)−1 ∈ L(Y,X), y0 is well defined by the first substep of method
(1.2) and

‖F ′(x0)−1F ′(x∗)‖ ≤
1

1− w0(‖x0 − x∗‖)
. (2.22)

We can write the identity,

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0). (2.23)

Using (2.5), (2.11)-(2.14), (2.22) and (2.23), we get in turn that

‖y0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖‖
∫ 1

0
F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗))

−F ′(x0)](x0 − x∗)dθ‖

≤
∫ 1
0 w((1−θ)‖x0−x

∗‖)dθ‖x0−x∗‖
1−w0(‖x0−x∗‖) ,

= g(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(2.24)

which shows (2.17) for n = 0 and y0 ∈ U(x∗, r).

We can write by (2.11) that

F (x0) = F (x0)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (2.25)

Notice that x∗ + θ(x0 − x∗) ∈ U(x∗, r) for each θ ∈ [0, 1], since ‖x∗ + θ(x0 −
x∗)− x∗‖ = θ‖x0 − x∗‖ < r. In view of (2.15) and (2.25), we get that

‖F ′(x∗)−1F (x0) ≤
∫ 1

0

v(θ‖x0 − x∗‖)dθ. (2.26)

Notice that z0 is well-defined by (2.22) and the second sub-step of method
(1.2). By the second substep of method (1.2), for n = 0, (2.6) and (2.12), we
obtain that

‖z0 − x∗‖ = ‖φ1(x0, y0)− x∗‖

≤ p1(‖x0 − x∗‖)‖x0 − x∗‖λ

≤ ‖x0 − x∗‖ < 1,

(2.27)
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which shows (2.18) for n = 0 and z0 ∈ U(x∗, r). Next, we must show that
linear operator φ(x0, y0) is well- defined. Using (2.4), (2.9), (2.13) and (2.24),
we have in turn that

‖(2F ′(x∗))−1((3F ′(y0)− F ′(x0))− 2F ′(x∗))‖ (2.28)

≤ 1

2
[2‖F ′(x∗)−1(F ′(y0)− F ′(x∗))‖+ ‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖]

≤ 1

2
[2w0(‖y0 − x∗‖) + w0(‖x0 − x∗‖)]

≤ 1

2
[2w0(g(‖x∗ − x0‖)(‖x∗ − x0‖)) + w0(‖x∗ − x0‖)]

≤ 1

2
[2w0(g(r)r) + w0(r)] = q(r) < 1.

Hence we get that z
(i)
0 exist, i = 0, 1, 2, · · · ,m by method (1.2), φ(x0, y0)

exists and

‖φ(x0, y0)F
′(x∗)‖ ≤ 1

3

(
2

1− q(‖x0 − x∗‖)
+

1

1− w0(‖x0 − x∗‖)

)
= p(‖x0−x∗‖).

(2.29)

Using (2.26) for z
(i)
0 = x0, (2.4), (2.7), (2.29), we have in turn that

‖z(1)0 − x∗‖ = ‖z0 − x∗‖+ ‖φ(x0, y0)F
′(x∗)‖‖F ′(x∗)−1F (z0)‖

≤ (1 + ‖φ(x0, y0)F
′(x∗)‖

∫ 1

0
v(θ‖z0 − x∗‖)dθ)‖z0 − x∗‖

≤ (1 + p(‖x0 − x∗‖)
∫ 1

0
v(θg1(‖x0 − x∗‖)‖x0 − x∗‖λ)dθ)

×g1(‖x0 − x∗‖)‖x0 − x∗‖λ

= ψ1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,
(2.30)

and for j = 2, 3, · · · ,m

‖z(j)0 − x∗‖ ≤ (1 + p(‖x0 − x∗‖)
∫ 1

0
v(θ‖z(j−1)0 − x∗‖)dθ)‖z(j−1)0 − x∗‖

≤ (1 + p(‖x0 − x∗‖)
∫ 1

0
v(θψj−1(‖x0 − x∗‖)‖x0 − x∗‖)dθ)

×ψj−1(‖x0 − x∗‖)‖x0 − x∗‖

= ψj(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,
(2.31)
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Hence estimates (2.19)-(2.20) hold for n = 0. By simply replacing x0, y0, z0, z
(i)
0

by xk, yk, zk, z
(i)
k in the preceding estimates, we arrive at estimates (2.17)-

(2.20). Then, from the estimates

‖xn+1 − x∗‖ ≤ c‖xk − x∗‖ < r, (2.32)

where c = ψm(‖x0 − x∗‖) ∈ [0, 1), we deduce that lim
k→∞

xk = x∗ and xk+1 ∈

U(x∗, r). Finally to show the uniqueness part, let T =
∫ 1

0
F ′(x∗+θ(y∗−x∗))dθ

where y∗ ∈ D2 with F (y∗) = 0. Using (2.13), we obtain that

‖F ′(x∗)−1(T − F ′(x∗))‖ ≤
∫ 1

0
w0(θ‖x∗ − y∗‖)dθ

≤ w0(r̄0)dθ < 1,
(2.33)

Hence, we have that T−1 ∈ L(Y,X). Then, from the identity 0 = F (y∗) −
F (x∗) = T (y∗ − x∗), we conclude that x∗ = y∗. �

Remark 2.1. (a) In the case when w0(t) = L0t, w(t) = Lt, the radius
rA = 2

2L0+L
was obtained by Argyros in [1] as the convergence radius for

Newton’s method under condition (2.7)-(2.9). Notice that the conver-
gence radius for Newton’s method given independently by Rheinboldt
[13] and Traub [15] is given by

ρ =
2

3L
< r1.

As an example, let us consider the function f(x) = ex − 1. Then
x∗ = 0. Set Ω = U(0, 1). Then, we have that L0 = e − 1 < l = e, so
ρ = 0.24252961 < r1 = 0.324947231.

Moreover, the new error bounds [1] are:

‖xn+1 − x∗‖ ≤
L

1− L0‖xn − x∗‖
‖xn − x∗‖2,

whereas the old ones are

‖xn+1 − x∗‖ ≤
L

1− L‖xn − x∗‖
‖xn − x∗‖2.

Clearly, the new error bounds are more precise, if L0 < L. Clearly, we
do not expect the radius of convergence of method (1.2) given by r to
be larger than rA.
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(b) The local results can be used for projection methods such as Arnoldi’s
method, the generalized minimum residual method (GMREM), the
generalized conjugate method (GCM) for combined Newton/finite pro-
jection methods and in connection to the mesh independence principle
in order to develop the cheapest and most efficient mesh refinement
strategy [1–4,13].

(c) The results can be also be used to solve equations where the operator
F ′ satisfies the autonomous differential equation [1–4,13]:

F ′(x) = P (F (x)),

where P is a known continuous operator. Since F ′(x∗) = P (F (x∗)) =
P (0), we can apply the results without actually knowing the solution
x∗. Let as an example F (x) = ex−1. Then, we can choose P (x) = x+1
and x∗ = 0.

(d) It is worth noticing that method (1.2) are not changing if we use the
new instead of the old conditions [16]. Moreover, for the error bounds
in practice we can use the computational order of convergence (COC)

ξ =
ln‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 1, 2, . . .

or the approximate computational order of convergence (ACOC)

ξ∗ =
ln‖xn+2−x∗‖
‖xn+1−x∗‖

ln‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 0, 1, 2, . . .

instead of the error bounds obtained in Theorem 2.1.

(e) In view of (2.13) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + w0(‖x− x∗‖)

condition (2.15) can be dropped and can be replaced by

v(t) = 1 + w0(t)

or
v(t) = 1 + w0(r0),

since t ∈ [0, r0).
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3 Numerical Examples

The numerical examples are presented in this section.

Example 3.1. Let X = Y = R3, D = Ū(0, 1), x∗ = (0, 0, 0)T . Define func-
tion F on D for w = (x, y, z)T by

F (w) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Choose ψ1(xn, yn) = yn − F ′(yn)−1F (yn), λ = 1, p1(t) = Lt

1−L0t
. Notice that

using conditions (2.11)-(2.15), we get w0(t) = L0t, w(t) = Lt, v(t) = L,

L0 = e− 1, L = e
1
L0 . The parameters are

rg = 0.3827, ρ1 = 0.2885, rψ1 = 0.2553, rψ2 = 0.1681 = r.

Example 3.2. Let X = Y = C[0, 1], the space of continuous functions
defined on [0, 1] and be equipped with the max norm. Let D = U(0, 1).
Define function F on D by

F (ϕ)(x) = ϕ(x)− 5

∫ 1

0

xθϕ(θ)3dθ. (3.1)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, w0(t) = L0t, w(t) = Lt, v(t) = 2, L0 = 7.5, L = 15.
The parameters for method are

rg = 0.0667, ρ1 = 0.0444, rψ1 = 0.0374, rψ2 = 0.0214 = r.

Example 3.3. Returning back to the motivational example at the introduc-
tion of this study, we have w0(t) = w(t) = 96.6629073t, v(t) = sup‖F (x∗)−1F (x)‖ =
0.7272 and v1(t) = sup‖F (x∗)−1F (x)‖ = 0.3411. Then the parameters are

rg = 0.0096, ρ1 = 0.0090 = r, rψ1 = 0.0091, rψ2 = 0.0199.
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