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To dissect common human diseases such as obesity and diabetes, a systematic approach is needed to study how genes
interact with one another, and with genetic and environmental factors, to determine clinical end points or disease
phenotypes. Bayesian networks provide a convenient framework for extracting relationships from noisy data and are
frequently applied to large-scale data to derive causal relationships among variables of interest. Given the complexity
of molecular networks underlying common human disease traits, and the fact that biological networks can change
depending on environmental conditions and genetic factors, large datasets, generally involving multiple perturbations
(experiments), are required to reconstruct and reliably extract information from these networks. With limited
resources, the balance of coverage of multiple perturbations and multiple subjects in a single perturbation needs to be
considered in the experimental design. Increasing the number of experiments, or the number of subjects in an
experiment, is an expensive and time-consuming way to improve network reconstruction. Integrating multiple types of
data from existing subjects might be more efficient. For example, it has recently been demonstrated that combining
genotypic and gene expression data in a segregating population leads to improved network reconstruction, which in
turn may lead to better predictions of the effects of experimental perturbations on any given gene. Here we simulate
data based on networks reconstructed from biological data collected in a segregating mouse population and quantify
the improvement in network reconstruction achieved using genotypic and gene expression data, compared with
reconstruction using gene expression data alone. We demonstrate that networks reconstructed using the combined
genotypic and gene expression data achieve a level of reconstruction accuracy that exceeds networks reconstructed
from expression data alone, and that fewer subjects may be required to achieve this superior reconstruction accuracy.
We conclude that this integrative genomics approach to reconstructing networks not only leads to more predictive
network models, but also may save time and money by decreasing the amount of data that must be generated under
any given condition of interest to construct predictive network models.
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Introduction

Normal physiology, disease processes, and response to drug
treatment all involve complex interactions among genes and
between genes and environmental factors. New high-through-
put functional genomics technologies such as gene expression
microarrays provide an enormous amount of data on how
genes respond to genetic and environmental perturbations.
Network and pathway methods, in which nodes represent
genes and edges (links) between two nodes indicate a
relationship between the corresponding genes, provide a
useful framework for extracting and organizing information
from such data. One of the primary aims in reconstructing
reliable gene networks is to predict which genes respond
directly to a stimulus (primary gene changes), as opposed to
those genes that respond to changes in the primary genes
(secondary gene changes).

Some network reconstruction methods are based on
pairwise relationships among genes, while others, such as
Bayesian network reconstruction methods, explicitly examine
interactions involving more than two genes, attempting to
separate direct from indirect influences. For example, an

edge between two genes may indicate that the corresponding
expression traits are correlated in a population of interest, or
it may indicate that changes in the activity of one gene led to
changes in the activity of the other gene [1]. Ideally, a network
will allow us to predict the system’s response (or the
probability of various responses) to any given perturbation.
Here we represent biological networks of genes as Bayesian

networks [2], which have successfully represented some
biological systems [3,4]. The edges in Bayesian networks have
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direction, and the topology of a Bayesian network defines
certain relationships among the nodes. That is, given the
states of the parent nodes—the nodes with edges that point to
a node of interest—you can predict (probabilistically) the
state of a node of interest. Cycles—paths that return to a
starting node—are not allowed, meaning that certain types of
feedback cannot be represented by Bayesian networks.
Ideally, we would like to find the network that best explains
the observed data, in the sense of maximizing a probability
function on the network given the data (see Methods), but this
presents several problems. First, the number of possible
networks grows rapidly with the number of genes under
consideration. This makes it impossible to examine all
possible networks, so heuristic searches are used. Second,
even if we could examine all possible networks, we face an
underdetermined problem: the number of samples available
in most microarray experiments is much smaller (often
orders of magnitude smaller) than the number of genes, so
many networks explain the observed data equally well. In
particular, because Bayesian networks represent multivariate
probability distributions (see Methods), the direction of many
of the edges in such networks can be changed without
affecting how well the model fits the data (Markov equiv-
alence). Thus, both the data and the reconstruction method
limit our ability to make inferences about causal relations
among genes.

These limitations raise the question of whether and how
network reconstruction can be improved by including other
types of data. In segregating populations arising naturally or
from experimental crosses, genetic information (e.g., geno-
typic data) can provide important information about which
genes interact and can identify the relationships among
interacting genes [5]. Different alleles for a given gene are
often associated with systematic differences in transcript
abundances for the gene, as has been shown in several species
[5–9]. In the context of segregating populations, significant
differences between allele-specific transcript levels can be

detected as expression quantitative trait loci (eQTL) [9,10].
Gene expression traits driven by common eQTL provide the
structural information needed to identify which genes are
likely to influence other genes, and this information can be
used to bias the search for relationships among gene
expression traits and between gene expression and other
complex traits [1,9]. Importantly, the genetic data provide
information as to which of a pair of interacting genes is
causal (upstream) and which is reactive (downstream). There-
fore, links in the reconstructed networks that are based on
genotypic data have much stronger indications of causality
than links based only on correlation information.
We have previously demonstrated that a network recon-

structed using both gene expression and genetic information
allows better prediction of the effect of experimental
perturbation of a particular gene [5] than a network
reconstructed using gene expression alone. Here we more
formally assess the utility of integrating genotypic data to
reconstruct gene networks by simulating genetic and gene
expression data from biologically realistic networks and by
quantifying the improvement in network reconstruction
achieved using the combined data, compared with recon-
struction using gene expression data alone. By reconstructing
networks based on simulated datasets in which the number of
samples was allowed to vary, we are able to estimate the
incremental benefit of collecting additional data, in addition
to the benefit of incorporating genotypic data. We conclude
that our integrative genomics approach to reconstructing
networks not only leads to more predictive network models,
but may provide savings of time and money by decreasing the
amount of data that must be generated under any given
condition of interest to achieve a desired level of accuracy.

Results

Data were simulated following the scheme shown in Figure
1 (see Methods for details), using the Bayesian network
structure derived from the BXD cross [5] as the true network,
referred to here as the BXD network. The BXD network
comprises 2,169 nodes (genes) and 1,676 directed connec-
tions, with 639 genes represented as singleton nodes (nodes
with no connections to other nodes in the network). The
general features of the BXD network, such as in-degree, out-
degree, and connectivity distributions, are shown in Figure
S1. The in-degree (out-degree) of a node is equal to the
number of inward-directed (outward-directed) edges con-
nected to the node, while the connectivity of a node (its
degree) is equal to the number of edges connecting to the
node. We also created a simple structure, referred to as the
synthetic network, to allow comparison with previous results
on network reconstruction accuracy obtained using networks
with a small number of nodes. The synthetic network is an
agglomeration of isolated three-node substructures (Figure
S2). The synthetic structure has 2,160 nodes and 1,440
interactions, similar to the BXD network. More comprehen-
sive examination of the effect of network structure on
reconstruction accuracy and the use of genetic data is outside
the scope of this study and will be explored in future work.

Simulation of Genetic and Gene Expression Data
Figure 1 outlines the procedure used to simulate the

genetic and gene expression data, given a particular network
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Author Summary

Complex phenotypes such as common human diseases are caused
by variations in DNA in many genes that interact in complex ways
with a number of environmental factors. These multifactorial gene
and environmental perturbations induce changes in molecular
networks that in turn lead to phenotypic changes in the organism
under study. The comprehensive monitoring of transcript abundan-
ces using gene expression microarrays in different tissues over a
large number of individuals in a population can be used to
reconstruct molecular networks that underlie higher-order pheno-
types such as disease. The cost to generate these large-scale gene
activity measurements over large numbers of individuals can be
extreme. However, by integrating DNA variation and gene activity
data monitored in each individual in a given population of interest,
we demonstrate that the power to elucidate molecular networks
that drive complex phenotypes can be significantly enhanced,
without increasing the sample size. Using a biologically realistic
simulation framework, we demonstrate that molecular networks
reconstructed using the combined DNA variation and gene activity
data are more accurate than molecular networks reconstructed from
gene activity data alone, implying that adding DNA variation data
might allow us to use fewer subjects to produce molecular networks
that better explain complex phenotypes such as disease.

Integration of Genotypic and Gene Expression Data



structure. First, we simulated an F2 intercross population of
1,000 individuals so that each individual in the population
had a unique genetic background derived from two inbred
mouse strains (Figure 1A). Second, we simulated the gene
expression profile for each individual in the population,
using the network structure and individual genotypes,
providing the constraints necessary to achieve correlated
expression and QTL structures in the simulated data (Figure
1B). See Methods for details.

We assumed a single eQTL for each head node in the
network, and these eQTLs were evenly distributed over the 19
chromosomes. Given the genetic map, genotypes, and
simulated expression values for the different genes, we used
standard interval mapping procedures [11] to map eQTL for
each of the simulated gene expression traits.

Cis-/Trans-Acting eQTLs and Network Simulation
In experimental crosses, the source of systematic pertur-

bations needed to reconstruct networks is identifiable:
variations in DNA can lead to changes in expression, which
are detected as eQTL. If DNA variation within the structural
gene itself affects the expression of the gene, then we say that
the DNA variation is cis-acting with respect to the gene and
gives rise to a cis eQTL. Because genes with cis-acting eQTL
directly reflect the source of systematic perturbations (DNA
variations), they appear as head nodes in the Bayesian
networks [5].

Gene expression values for the head nodes were con-
strained by the percent of total variation explained by genetic
(eQTL) effects (i.e., narrow sense heritability). The genetic
component of expression of all non-head nodes was then
derived from the head nodes and network structure, resulting
in the non-head nodes giving rise to trans eQTLs. Finally,

starting with the simulated expression values at the head
nodes and the conditional probabilities from the Bayesian
network, expression values for the rest of the nodes were
generated probabilistically, as described in Equations 1 and 2
(see Methods). These simulated data were used to construct a
Bayesian network, as shown in Figure 1C, and the constructed
network was then compared with the true network from
which the data were simulated.

Question I: How Faithfully Do We Reconstruct a
Biologically Realistic Network?
To address the question of reconstruction accuracy, we

simulated a dataset based on a known network, and compared
the reconstructed network with the known network. As noted
above, to make the simulations as biologically plausible as
possible, we based network structure, the relations among
different genes, and the degree of genetic heritability on the
previously described BXD network, which was reconstructed
from actual biological data collected in an F2 intercross
population.
The average genetic heritability for the head nodes with

cis-acting QTLs in the BXD data was 0.5. Correlation between
gene expression levels for interacting genes tended to be high
in this dataset (Figure S3A). The correlation distribution from
this dataset was used to simulate a set of data comprising 100
samples. QTLs were then mapped for each node using a
standard interval mapping method [11]. The distribution of
QTL peaks is shown in Figure S3B. The QTL peaks for head
nodes are evenly distributed along the chromosomes. The
QTL peaks for all nodes are clustered into several hot spots,
as was observed in the BXD data [9]. The ROC (receive
operating curve)-like plots shown in Figure 2 demonstrate
that a Bayesian network reconstructed with genetic informa-
tion is more accurate than one constructed without genetic
information. Each curve represents results from varying the
consensus threshold; that is, the threshold for the number of
individual MCMC networks in which an edge must be present
to be included in the final reconstruction. The improvement
in accuracy is relatively small for the full network (Figure 2A),
but quite pronounced for the top layer of the network, where
the top layer of the network is defined as the head nodes and
their children (Figure 2B). For example, the network
reconstructed with the genetics data achieved nearly 80%
precision when recall was 50%, compared with 35% for the
network reconstructed without genetic data.
If we ignore edge direction, we can compare the Bayesian

network to a correlation-based association network recon-
structed from the same data. The correlation-based network
was reconstructed as previously described [12] (see Methods
for details). As shown in Figure S7, the Bayesian networks
with and without the genetic information used as prior
information are more accurate than the correlation-based
association network, whether we consider only direct
connections (dashed lines) or an edge as correct if the
corresponding genes are connected by either one or two
edges in the true network (solid lines). In this more general
sense, the accuracy of the Bayesian network with genetic
information recovers 80% of the actual interactions, where
85% of the identified interactions are correct (at an edge
inclusion threshold of 30%; green dot in Figure S7).
From these simulations, we noted that the improvements

realized using genetic data were smaller than improvements

Figure 1. The Data Simulation Scheme with Genetic and Network

Constraints

(A) A segregating population (an F2 intercross in this case) is simulated
using the QTL Cartographer software suite (Rqtl, Rcross, and Zmapqtl).
The QTL model for a trait is defined using the Rqtl program, and the
heritability of the QTL is defined using the Rcross program.
(B) The traits simulated by Rcross are used as the head nodes in the
simulated network. The remaining traits are simulated based on the
values of the head nodes according to the DAG structure and the set of
conditional probability density functions associated with this structure.
(C) After traits for all nodes in the network are simulated, they are
scanned for QTLs using the Zmapqtl program. The traits and the
associated QTL are then input into the network reconstruction program.
doi:10.1371/journal.pcbi.0030069.g001
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we had previously seen in actual biological networks
comprising only a handful of nodes and connections (e.g.,
simple three-node networks [1]). Therefore, a ‘‘synthetic
network,’’ an agglomeration of isolated three-node substruc-
tures (Figure S2), was used to investigate this discrepancy. The
synthetic structure comprised 2,160 nodes and 1,440 inter-
actions, similar to the BXD network, but its connectivity
structure was very different. For the synthetic structure, we
assumed that all head nodes (1/3 of the nodes) gave rise to cis-
acting eQTLs. For the simulated genetic data, heritability was
again set to 0.5, which is the mean heritability for all genes
with cis-acting eQTLs in the BXD cross. To simulate the data
for the synthetic network, a population size of 100 was used,
which again is similar to the size of the BXD cross (comprising
111 mice). The correlation coefficients between interacting
genes were drawn from a normal distribution with mean 0.45
and standard deviation 0.1. The correlation coefficient cutoff
for a random association in the network of this size is
approximately 0.45, so that one-half of the interaction
strengths is above the cutoff for random associations, while
the other half is below the cutoff.

Figure 3 shows that the genetic data had a much larger
effect on Bayesian network reconstruction accuracy for the
synthetic network than for the BXD network. The improve-
ment is substantial even if edge direction is ignored (dashed
lines), which demonstrates that genetic information not only
helps establish edge direction (causality), but also helps to
pull out relations between genes even when causality cannot
be unambiguously established. Interestingly, the network
based purely on correlation information is more accurate
than the Bayesian network constructed without genetic data,
but less accurate than the Bayesian network constructed with
the genetic data. The most reasonable explanation for this
relates to the discretization process applied to the expression
data. The continuous gene expression traits were discretized
into one of three possible states (upregulated, downregulated,
or not significantly upregulated or downregulated) guided by

k-means clustering (see Methods for details), before they were
input into the Bayesian network reconstruction program.
The discretization process results in information loss in the
input set of expression traits, and this loss in turn affects the
reconstruction accuracy. On the other hand, no such
information loss occurs in the input gene expression trait
data used in the correlation-based network reconstruction.
As can be seen from the ROC curves depicted in Figure S7,
when the overall interaction strength in the underlying data
was simulated to be high, the Bayesian network had an
advantage over the simple correlation-based methods. How-
ever, when the correlation strength is low, the information
loss due to discretization is larger than the gain realized from
the Bayesian network method. The information loss realized
in the discrete Bayesian network reconstruction notwith-
standing, the advantages of discrete Bayesian networks over
continuous Bayesian networks (where the continuous ex-
pression data are used in the reconstruction process) derives
from their ability to represent nonlinear interactions and
from increased processing efficiency, as described in Meth-
ods.
The increased effect of genetic data in the synthetic

structure is likely due to a greater proportion of the head
nodes giving rise to strong genetic effects (approximately 1/3
of the nodes instead of 1/20). Schadt et al. [1] demonstrated
that it is possible to order traits by comparing independent,
causal, and reactive models when the perturbation source
(polymorphism at a locus) is known, where the model best
supported by the data is chosen as the most likely relationship
between the traits of interest. Genetic information at a node
is most helpful in defining relationships with other genes
directly connected to that node, and in general becomes less
powerful as it is propagated through more nodes. Therefore,
with more head nodes we expect greater improvement given
the genetic information. The effect of genetic information
may also depend on network structure and remains to be
explored.

Figure 2. Reconstruction Accuracy Based on 100-Sample Datasets Generated Using Parameters Similar to BXD Data

All accuracies are based on directed graphs unless indicated otherwise.
(A) Accuracy of reconstructions with and without genetic information used as prior information.
(B) Accuracy of reconstructions for the top-layer subnetwork, as defined in the text.
doi:10.1371/journal.pcbi.0030069.g002
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Question II: Is the Power to Detect Both Weak and Strong
Interactions Enhanced in the Presence of Strong (High-
Heritability) Genetic Information? Do Genetics Still
Improve Reconstruction Accuracy if Interactions Are
Weaker Overall?

If all interactions between genes were strong, it would be
relatively easy to distinguish the direct interactions from all
others. Most correlations in the BXD network were strong
(Figure S3), in part because the BXD network itself was
reconstructed from the observed data and is therefore biased
because it does not contain the weaker interactions that went
undetected (due to lack of power given the modest sample
size). To examine reconstruction accuracy in the presence of
weaker interactions, we simulated a dataset using the same
heritability (0.5) as in the BXD data, but with weaker
correlations between nodes. The correlation coefficients for
the gene–gene interactions were assumed to follow a normal
distribution with mean 0.33 and standard deviation 0.11. Ten
percent of the interactions were assumed to be nonlinear (i.e.,
they included a quadratic term); the correlations for the
nonlinear interactions were weaker, on average, than those
for linear interactions (although correlation is not an entirely
appropriate measure for the nonlinear interactions). In the
network as a whole, the improvement achieved by incorpo-
rating genetic information is small (Figure 4A). However, if
we look only at the top layer of the network, the improvement
is again much larger (Figure 4B). This is consistent with the
results obtained above for the synthetic network. We have
found that information on cis-acting eQTLs (excluding edges
into certain nodes) and information on trans-acting eQTLs
(increasing the likelihood of some edges over others) both
improve the quality of reconstruction (Figure 4).

Figure S4 shows that, as intuition suggests, stronger
interactions between two genes are more likely to be
recovered in the reconstructed network than weaker inter-

actions. It also shows that genetic information improves
reconstruction of both weak and strong interactions.

Question III: Is the Rate of Detection of Weak Interactions
Reduced When the Overall Heritability Signature is Low?
Above, we estimated the reconstruction accuracy involving

weak interactions and strong heritability (50%), based on the
overall heritability observed for genes in the BXD network.
However, these estimates of heritability suffer from the same
sort of upward bias as the correlation estimates, which are
biased towards stronger correlation results. In the human
population, it is rare to find a locus that explains 50% of
overall trait variability. Therefore, to assess the effect of
heritability on reconstruction accuracy, we simulated data in
which the overall genetic heritability was set to 25%, a
heritability threshold supported for genes giving rise to cis
eQTL in previous studies [9], and with the weaker distribu-
tion of correlations used above (mean 0.33, standard
deviation 0.11). Figure 5A shows the improvement in these
reconstructions when using genetic information; Figure 5B
shows that the effect of genetics is, similar to higher
heritability, much stronger for the top layer of the network
than for the network as a whole.
One important application of gene networks is to predict

genes that will respond to changes in activity of one or more
genes. We define the set of genes responding to a
perturbation event in a given gene as the ‘‘signature’’ of the
perturbed gene. For this type of application, we may be less
interested in the strict accuracy of each edge and instead
focus on whether genes that actually respond to a perturba-
tion event are ‘‘near’’ the perturbed gene in the network. In
this context, we consider an edge in the reconstructed
network as correct if there is a path in the true network of
length �2 between the perturbed node and the putative
responding gene. That is, an edge is correct if the perturbed
gene and responding gene are directly connected in the true
network, or if they are connected with respect to a third gene.
Figure 5C highlights that the genetic information improves
the accuracy of network reconstruction dramatically when
the data upon which the reconstruction is based obtains from
a modest number of samples (100 or 200), and that, as
expected, the effect of genetic information decreases for
larger numbers of samples. For example, for 200 samples,
nearly perfect precision was achieved (95%) at 50% recall
when the genetic information was used to reconstruct the
network, compared with 75% precision achieved when the
genetic information was not used. The effect of genetic
information using this measure of accuracy is stronger than
the effect when using the stricter criterion of Figure 5A.
Because networks are frequently used to predict which genes
will be upregulated or downregulated in response to a single
gene perturbation event, this measure of accuracy has
practical relevance [5,13].
Figure S5 shows recall for different numbers of samples,

with and without using genetic information, at three different
levels of precision: 60%, 80%, and 95%. At the two lower
levels of precision (Figure S5A and S5B), the effect of genetic
information is consistent, but small. For example, adding
genetic information allows us to save fewer than 100 mice for
a given level of recall. However, if we restrict to high-
precision edges (Figure S5C), the effect is more dramatic,
where now an experiment incorporating genetic data has the

Figure 3. The Accuracy of Reconstruction of the Synthetic Network,

Reconstructed with and without Genetic Information

The genetics information not only helps to infer the direction of the
relationships between nodes (solid lines), but also increases the power to
detect relationships when direction is ignored, as with the association
networks (dashed lines).
doi:10.1371/journal.pcbi.0030069.g003
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potential to reduce the number of mice required to achieve a
given level of recall by hundreds compared with what is
required when genetic data are not used. For example, a
recall of 25% is achieved using data from about 300 mice with
genetic information rather than the 600–700 mice needed to
achieve this same recall without genetic information. While
the simulations carried out here do not perfectly represent
the results that could be achieved in actual experiments, these
results do suggest that incorporating genetic data improves
the accuracy of reconstructed networks. Also, these results
may provide some guidance on the sample sizes that may be
required to achieve a certain level of accuracy in the
reconstructed network with or without genetic data. At a
given accuracy, incorporating genetic data may reduce the
number of mice required for an experiment, which is a good
in and of itself, and also saves time and money.

Robustness of the Reconstruction Procedure
The reconstruction algorithm employed in this study uses

an MCMC method, and as a result, different runs will
generate different results. To test the robustness of the
network reconstruction process, we compared the network
reconstruction accuracy for five independent reconstructions
from a single dataset comprising 100 samples (using fewer
samples provides the most stringent test of robustness). To be
included in a reconstructed network, an edge had to be
present in at least 80% of the networks found in the
individual MCMC runs. More than 85% of the edges found
in any single reconstruction are found in all five reconstruc-
tions, indicating that the reconstruction procedure is quite
robust. The recall and precision curves are therefore
extremely similar, nearly overlapping the corresponding
curves shown in Figure S6, both with and without the use of
genetic data. This analysis addresses only variability arising

from the stochastic nature of the reconstruction process.
Additional simulations will be needed to test how stable
reconstructions are to random variation in the gene
expression data, which would be expected in repeated
experiments measuring such data.

Discussion

In this study, we simulated a segregating F2 population
based on a biologically motivated Bayesian network (itself
reconstructed from biological data derived from an actual F2
intercross population). When the simulated genotype infor-
mation is not considered, the segregating population arising
from an F2 cross can be treated as a randomly genetically
perturbed population. We reconstructed networks in the
presence and absence of the genetic data, over a range of
population sizes. The results demonstrate that combining
genetic and gene expression data increases the accuracy of
network reconstruction. The size of the effect depends on the
structure of the network: genetic information is most helpful
in the ‘‘top layer’’ of the network. The effect of the genetic
data is greater in the synthetic network compared with the
biologically motivated network. This result is consistent with
the results of earlier studies based on smaller networks [1].
Roughly (and intuitively), the more nodes that exist with
strong genetic information, the more helpful the genetic
information will be. In our simulations, we find that when
high precision is required, the effect on reconstruction of
adding genetic data is comparable to the effect of large
increases in the amount of gene expression data available
(savings of one-third to one-quarter of the subjects required,
when experiments involve up to 1,000 samples). Because
fewer samples are needed, and because obtaining genetic data
from available samples is substantially less expensive than

Figure 4. Reconstruction accuracy with the genetic (dotted and solid lines) and without the genetic (dashed lines) information, using varying numbers

of samples, and based on an overall genetic signal similar to that found in the BXD network, but with weaker interactions (see text for details)

(A) Reconstruction accuracy for the entire network.
(B) Reconstruction accuracy for the subnetwork comprising only the top layer of the network. The dotted lines reflect reconstructions that utilized cis
QTL information as the only source of genetic information, whereas the solid lines reflect reconstructions that utilized all available genetic information.
doi:10.1371/journal.pcbi.0030069.g004
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obtaining new samples, the use of genetic data could be a
cost-effective way to improve network reconstruction.

Connections to Other Work
There are many ways to organize data and knowledge into

networks and pathways to reveal different levels of biological
detail. The simplest level of biological interpretation comes
from analyzing coherent gene sets, which we loosely define as
sets of genes involved in common biological functions,
responding to perturbations of interest, or correlating with
clinical end points of interest. Gene sets are useful for high-
level abstractions of biological systems, but do not provide
details of the interactions among genes and between genes
and external stimuli. For example, a gene set corresponding
to a single gene perturbation event does not indicate which

genes are primary responders to the perturbation and which
are secondary responders, reacting to changes in the primary
genes. At the other extreme are detailed mechanistic models,
such as those based on dynamical systems [14–16]. Such
models are currently only able to be constructed for relatively
small, focused problems, given the large amount of data
required to fit such models.
Network models fall between these two extremes. Associ-

ation networks such as protein–protein interaction networks
[17,18] or coexpression networks [12], examine pairwise
interactions among elements of a given system. From these
association networks, one can identify genes within the same
highly interconnected subnetworks (gene modules) and
determine how gene modules relate to specific biological
functions. However, association networks do not indicate the

Figure 5. Reconstruction accuracy with the genetic (dotted and solid lines, as described in the Figure 4 legend) and without the genetic (dashed lines)

information, using varying numbers of samples, and based on reduced heritability and a weak overall correlation structure compared with what we

observed in the BXD network (see text for details)

(A) Accuracies of networks reconstructed with and without genetic information.
(B) Accuracies of subnetworks consisting only of those nodes in the top layer of the network.
(C) Accuracies of networks in which a true edge was counted as correct if the corresponding nodes were connected either directly or by a path
involving two edges in the reconstructed network. It is clear the genetic data significantly enhance reconstruction accuracy.
doi:10.1371/journal.pcbi.0030069.g005
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direction of influence among genes. Probabilistic causal
networks, such as Boolean, Bayesian, and probabilistic
Gaussian networks, include edges with direction, and there-
fore can represent causal relationships among genes when
causality is known. The inclusion of this information can lead
to improved predictions of response to various perturbation
events [19,20]. Recently, significant research interest has
shifted to the use of Bayesian networks to study causal
interaction networks of biological systems based on gene
expression data from time series and gene knockout experi-
ments, protein–protein interaction data derived from pre-
dicted genomics features, and other direct experimental
interaction data [3,21].

Several studies have used simulations to examine network
reconstruction algorithms. For example, Smith et al. [22]
studied small networks (100 genes or fewer), and Yu et al. [23]
studied small dynamic networks. More recently, Van den
Bulcke et al. [24] proposed the SynTren scheme to combine
different constraints to simulate small networks based on
dynamic models. Our work is different from this previous
work in many respects, but most importantly we (1) applied a
unique constraint (genetics) on the data simulation, and (2)
studied larger networks, including one with structure and
parameters derived from biological data, allowing for more
biologically realistic networks. In future work, it might be
interesting to combine our data simulation scheme with
SynTren [24] to generate more realistic data.

Recently, a number of studies attempting to integrate gene
expression and genetic data have been published [1,5–
9,19,25–27]. These studies have highlighted a number of
advantages in integrating these data types to elucidate
complex traits such as common human diseases, resulting in
the identification of novel disease susceptibility genes. By
leveraging the fact that changes in DNA segregating in
experiment cross or human populations can lead to changes
in transcript abundances, which in turn can lead to changes
in clinical or physiological phenotypes, these approaches
provide a causal anchor that previously could only be
achieved by considering time series or artificial gene
perturbation experiments.

Limitations of This Study and Opportunities for Additional
Research

Simulation studies are, by their nature, limited to telling us
about the properties of models. To the extent a model
describes a biological system of interest, the simulations can
provide meaningful information. The current work makes a
number of simplifying assumptions in the interest of
tractability. First, many relevant biological phenomena—
including, but not limited to, mRNA splice variants, protein
concentrations, and protein modifications such as phosphor-
ylation, metabolite concentrations, and noncoding RNA
levels—are not represented in these models. Obviously
including such data would provide for a more realistic and
more complex model. In fact, our model does not even
include all of the protein-coding genes known in the mouse
genome, but instead restricts attention to the approximately
2,000 genes found to be most differentially regulated in the
biological samples upon which our simulations are based [5].
We accept the limitations in this current study in hopes of
taking the necessary first steps to systematically assess what
the genetic information can bring to the gene network

reconstruction problem, even if the gene network contains
only a fraction of the known functional units in the genome.
Evaluating the difference more realistic models make will
require generation of more comprehensive and larger-scale
datasets, in addition to creating and analyzing models that
take more of the biological information into account.
Second, the distribution of eQTL for nodes in the network

allowed only head nodes to be assigned cis eQTL, and the
head nodes were assumed to have expression perturbations
corresponding to eQTL as the ultimate causal events. In
practice, the distribution of eQTL is more complex, with
genes driven by cis eQTL also driven by potentially
complicated networks of trans eQTL that could involve
epistatic interactions. Getting a handle on the overall genetic
variance component for each expression trait will be an
important next step that has only recently begun to be
addressed [6,28,29]. Also, there may be changes in DNA that
lead to protein state changes or other such changes that don’t
necessarily result in expression changes of the corresponding
gene, so that in such cases the ultimate causal event would not
be DNA changes in a gene leading to changes in expression of
that gene, as we have modeled here.
Third, we employed Bayesian networks in this study.

Bayesian networks do not permit loops, making it difficult
to represent some types of feedback. Bayesian networks also
do not represent time-series data well [30]. Both of these
problems might be addressed by using dynamic Bayesian
networks [31], which explicitly allow for a temporal repre-
sentation of how nodes in the network interact with one
another. We plan to address the use of dynamic Bayesian
networks in future studies. In addition, we examined
reconstruction of only a single biologically motivated net-
work structure, and a single synthetic network with a simpler
structure. Results demonstrate that using genetic data helps
reconstruct both the biologically motivated and the synthetic
network to different degrees. How network structure affects
reconstruction accuracy will require further investigation.
The results reported herein provide some of the first

estimates regarding the benefits in experimental design of
combining genetic and gene expression data to reconstruct
predictive gene networks. However, despite incorporating
information derived from actual biological data, the models
simulated in this study were necessarily much less compli-
cated than the actual biological systems they approximate.
One of the consequences of reducing model complexity to
make these simulations possible is underestimating the
amount of biological data that may be needed to construct
predictive networks. Therefore, our simulations should not
be used at this point to determine how many biological
samples are actually needed to reconstruct a network with a
given level of accuracy. Rather, the relationship between
network accuracy and sample size reported here provides
more of a lower bound on the number of samples that may be
required and highlights that integrating genetic and gene
expression data can lead to more reliable gene networks. The
integration of additional types of data (for example, ncRNA
levels, protein levels, protein–protein interaction, protein–
DNA binding, protein state, and so on) in addition to genetic
and expression data will likely allow for further improve-
ments in network reconstruction with the same number of
biological samples.
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Conclusion
Ever larger sets of data are being generated and integrated

at a furious pace in all areas of biology. Inevitably, modeling
and computation will play a fundamental role in under-
standing these data. Network approaches, which consider
how all components of a system are connected, have the
potential to capture critical features of the data. It is
important to remember, however, that any network is just
the result of fitting a particular mathematical model to a
given set of data. Therefore, just as with any mathematical
model, we must examine the quality of the fit of the data to
the model to determine whether or not the model adequately
represents the system under study. One of the best ways to
evaluate the effectiveness of different network reconstruction
methods using different types of data is to apply them in
situations where the correct answer is known. While we
cannot generally at this point carry out this type of evaluation
using biological data (what is known is simply too incomplete
at this time), we can do it using data simulated from a known
model, as demonstrated here. The ability to compare models
in a systematic fashion will let us determine which data types
and reconstruction methods produce the most reliable and
predictive network representations of the data. The work
presented here provides some of the initial steps needed to
assess in a more systematic fashion how integrating different
types of data can enhance network reconstruction and what
sample sizes may be required to realize more reliable, more
predictive gene networks.

Materials and Methods

The information flow diagram for data simulation and network
reconstruction is shown in Figure 1. The main steps in the process are
outlined below.

Simulating a segregating population. An F2 intercross population
was simulated using the QTL Cartographer suite of software tools
[32]. Given a genetic map, the genetic models (which include QTL
location, and the additive, dominance, and epistatic effects) for the
gene expression traits were simulated using the Rqtl tool [32]. The
genetic map used in this study was constructed from a previously
described F2 intercross population constructed from the C57BL/6J
and C3H/HeJ strains of mice [33]. This genetic map consisted of 1,357
markers for 19 autosomal chromosomes. Rqtl was configured such
that, on average, one QTL was simulated for each gene expression
trait (via the ‘‘�q 1’’ option in the Rqtl tool). Dominance was assumed
to be random with respect to direction and magnitude for each locus.
Given the simulated QTL for each of the expression traits, the F2
population (including genotypes for each marker and trait values for
each head node) was then simulated using the QTL Cartographer
Rcross procedure. The heritability for each expression trait was set to
0.5 in addressing questions I and II, and to 0.25 for addressing
question III, as defined above.

Network structure. In a network with n nodes, there are
approximate nn possible structures. Even if we impose restrictions
on network structure based on observed properties of biological
networks, such as limiting the number of parent nodes [15],
restricting the frequency of certain structural motifs [34], or
requiring that the network be scale-free [35], the number of possible
structures will be intractably large. Sampling different network
structures systematically and studying how structure affects network
reconstruction are outside the scope of this paper. Here we examine
two types of networks, a biologically motivated network recon-
structed from the BXD data (see Methods for details), and a synthetic
network consisting of a set of simple isolated structures.

Simulating expression data. There are two types of nodes in a
Bayesian network: nodes without parents (head nodes) and nodes
with parents (non-head nodes). As shown in Figure 1, we used
different approaches to generate values for the two types of nodes.
Traits assigned as head nodes were simulated based on QTL location
and heritability, as defined above [36]. After the values of the head
nodes were determined, the values of non-head nodes were con-

strained by the strength of the gene–gene interactions and the values
at the head nodes. Gene–gene interactions in Bayesian networks are
described by a set of conditional probability functions. The condi-
tional probabilities can be specified for continuous values (e.g.,
between means of the Gaussian distributions for each gene) or for
discrete values representing the possible states for each gene.

We simulated data by considering the nodes as normally
distributed random variables. Gene–gene interactions were allowed
to be linear as well as nonlinear, given sigmoidal and other such
nonlinear relationships have been observed between gene expression
traits in a number of settings [37]. For two-channel gene expression
microarray experiments, relative expression levels are often repre-
sented as log ratios, where the ratio is defined as the experimental
channel divided by the reference channel. The log function in this
case can transform some nonlinear relationships into linear ones [38].
Therefore, to simulate gene expression traits for the purpose of
modeling transcription regulatory networks, we assumed that 90% of
the interactions were linear, as defined above. For a given gene
expression trait y, interactions with other expression traits were
simulated as:

y ¼
X

i

aixi þ e; ð1Þ

for linear interactions, and as:

y ¼
XN

i¼1
aixi þ

XN

i;j¼1
ki;jxixj þ e; ð2Þ

for nonlinear interactions (which were limited to second-order
terms), where the xi are the gene expression traits interacting with y, ai
the additive regression coefficients, kij the nonlinear regression
coefficients, and e the noise term, assumed to be normally distributed
with mean 0 and variance r2. The coefficients in this case are
constrained by the strength of correlation (either fixed or sampled
from a distribution, as described in the Results section), defined as
corrcoef(y,xi)¼ qi. The sign of the coefficient ai was randomly assigned,
but the overall numbers of positively and negatively correlated pairs
were constrained to be equal. Because we take the random vector
ðY ;X1; :::;XN Þ to be jointly normally distributed, we can write the

covariance for this random vector as R ¼ ½R11 R12

R21 R22
�, where R11 is of

size 131, R12 is of size 13N, R21 is of size N31, and R22 is of size N3

N. The regression coefficients, ai, in Equations 1 and 2 are then given
by R12R

�1
22 , and the error term, e, is normally distributed with mean 0

and variance r2 ¼ R11 � R12R
�1
22 R21. The ki in Equation 2 were

randomly sampled from a normal distribution with mean 0.50 and
variance 0.15.

To address questions I and II defined in the Results section, the
average heritability was estimated from the BXD data, while the
average correlation between nodes was taken to be significantly
weaker than what was observed in the BXD data. To address question
III, the average heritability was decreased compared with that
observed in the BXD data to better generalize the type of results
that may be realized in applying network reconstruction methods in
other settings (e.g., human populations).

Bayesian network reconstruction. Bayesian networks are directed
acyclic graphs in which the edges of the graph are defined by
conditional probabilities that characterize the distribution of states
of each node given the state of its parents [2]. The network topology
defines a partitioned joint probability distribution over all nodes in a
network, such that the probability distribution of states of a node
depends only on the states of its parent nodes: formally, p(node j j all
non-descendants of node j) ¼ p(node j j parents(node j)). These
conditional probabilities reflect not only relationships between
genes, but also the stochastic nature of these relationships, as well
as noise in the data used to reconstruct the network. Because the
edges in Bayesian networks are directed, they not only represent
interactions among genes, but also, when such information is
available, they can represent causal associations between genes.
Therefore, these probabilistic networks allow us to predict the
system’s response to perturbations based on the identified relation-
ships among genes.

Bayes formula allows us to determine the probability of a network
model M given observed data D as a function of our prior belief that
the model is correct and the probability of the observed data given
the model: P(M j D) ; P(DjM) * P(M). The number of possible network
structures grows super-exponentially with the number of nodes, so an
exhaustive search of all possible structures to find the one best
supported by the data is not feasible, even for a relatively small
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number of nodes. We employed Monte Carlo Markov Chain (MCMC)
[39] simulation to identify potentially thousands of different plausible
networks, which are then combined to obtain a consensus network
(see below). Each reconstruction begins with a random network.
Small random changes are then made to the network by flipping,
adding, or deleting individual edges, ultimately accepting those
changes that lead to an overall improvement in the fit of the network
to the data. We use a uniform prior probability on networks and
assess whether a change improves the network model using the
Bayesian Information Criterion (BIC) [40], which avoids overfitting by
imposing a cost on the addition of new parameters. This is equivalent
to imposing a lower prior probability P(M) on models with larger
numbers of parameters.

In this study, for each dataset we reconstructed 1,000 Bayesian
networks starting with 1,000 different randomly generated Bayesian
networks (seeds). MCMC simulation was then employed to identify
the most plausible networks. For each seed, 15 3 N2 iterations of
MCMC were run (on average the maximum BIC scores were reached
at roughly 123N2 iterations), where N is the number of nodes in the
network. From the 1,000 reconstructed networks we determined the
consensus network by retaining only those edges represented in a
percentage of the individual networks. A ROC curve can be generated
by varying the percentage threshold. Increasing the percentage
threshold for inclusion leaves fewer, but more reliable edges in the
consensus network (see Results), presenting the usual tradeoff
between sensitivity and specificity. Because Bayesian networks must
be acyclic, loops in the consensus network were removed by deleting
the weakest links in the loops [5].

Gene expression was simulated as a continuous random variable,
then discretized into one of three possible states (downregulated,
upregulated, or no change relative to the reference channel) guided
by k-means clustering, modified to discourage extremely unbalanced
classes, with the number of clusters allowed for a given gene over all
individuals in the F2 population set to three. A Bayesian network was
reconstructed based on the discretized data. There are two primary
reasons for reconstructing Bayesian networks using discretized data.
First, only linear interactions can be modeled under the Gaussian
model for continuous data, whereas with discretized data Bayesian
networks can capture nonlinear interactions. Second, network
reconstruction using discrete data is much faster than reconstruction
using continuous data.

Genetic data as a network prior. In general, Bayesian network
structures can only be solved to Markov equivalent structures. That is,
it may not be possible to determine the direction of many edges. The
reconstruction algorithm employed can take advantage of the
experimental cross design (or segregating populations more gener-
ally) by incorporating genetic data [5]. If genetic information is not
available or is ignored, the population is simply treated as a
population with random genetic perturbations. In the present
algorithm, we use the genetic data as prior evidence that two genes
may be causally related. There are three sources of genetics priors.
First, genes with cis-acting eQTLs [10] are allowed to be parent nodes
of genes with trans-acting eQTLs, p(cis ! trans) ¼ 1; but genes with
trans-acting eQTLs cannot be parents of genes with cis-acting eQTLs,
p(cis ! trans) ¼ 0. Second, genes with suggestive eQTLs [41] (LOD
scores greater than 2.8, corresponding to a point-wise p-value of
0.001) were identified. Genes from the set of genes with cis or trans
eQTL were then tested individually for pleiotropic effects at each of
their eQTL to determine whether any other genes in the set were
driven by the same eQTLs [42]. If yes, the gene pair and the locus
where they have a pleiotropic effect are used to infer a causal/reactive
or independent relationships based on a formal causality test [1]. The
reliabilities of the inferred relationship between gene A and gene B at
locus li, p(A ! Bj A,B,li), p(B ! A j A,B,li), and p(A?B j A,B,li), are
estimated by a standard bootstrapping procedure. If an independent
relationship is inferred p(A?B j A,B,li) . 0.5, then the prior
probability that gene A is a parent of gene B is scaled as

pðA! BÞ ¼ 1�

X

i

pðA ? BjA;B; liÞ
X

i

1
:

If a causal or reactive relationship is inferred (p(A! Bj A,B,li) or p(B
! A j A,B,li) is greater than 0.5), then the prior probability is scaled as

pðA! BÞ ¼
2 �

X

i

pðA! BjA;B; liÞ
X

i

pðA! BjA;B; liÞ þ pðB! AjA;B; liÞ
:

Third, if the causal/reactive relationship between genes A and B
cannot be determined by the above two sources, then the complexity
of the eQTL signature for each gene was taken into consideration.
Genes with a simpler, albeit stronger eQTL signature (i.e., a small
number of eQTL explains the genetic variance component for the
gene, with a significant proportion of the overall variance explained
by the genetic effects) were taken to be more likely to be causal
compared with genes with more complex and possibly weak eQTL
signatures (i.e., a larger number of eQTL explaining the genetic
variance component for the gene, with less of the overall variance
explained by the genetic effects). The structure prior that gene A is a
parent of gene B is

pðA! BÞ ¼ 2 � 1þ nðBÞ
2þ nðAÞ þ nðBÞ ;

where n(A) and n(B) are the number of eQTLs with LOD scores
greater than 2.8 for A and B, respectively. We have found that both
information on cis-acting eQTLs (excluding edges into certain nodes)
and information on trans-acting eQTLs (increasing the likelihood of
some edges over others) improve the quality of reconstruction.

In actual experiments, the estimated error rate associated with
determining cis-acting eQTLs [10,13] is low. A genome-wide scan of
25,000 gene expression traits, using a LOD score cutoff of 7 (point-
wise p-value ¼ 1.02 3 10�7), is expected to yield 0.03 false cis-acting
eQTLs by chance (1.02 3 10�7 3 25,000 genes 3 10 markers tested
around the gene’s physical location). Because we do not simulate
genomic information in this study, we cannot use genomic and
expression data to detect cis-acting eQTLs in the simulated data.
Instead, a percentage of the head nodes are simply designated as cis-
acting eQTLs, while the others are designated as trans-acting. Several
studies have shown that roughly 5% of genes in a given experimental
cross comprised several hundred animals and in a single tissue give
rise to cis-acting genes [9,10]. In addition to genes with cis eQTL,
other genes can also serve as head nodes in the Bayesian networks. In
our simulation, 64% (70/110) of the nonsingleton head nodes (4.6%
of the nonsingleton nodes in the network) and 7% (45/639) of the
singleton nodes were designated as giving rise to cis-acting eQTLs.

Reconstruction of correlation-based association networks. Like
Bayesian networks, correlation-based association networks are graph-
ical models in which the nodes are genes and edges between the
nodes indicate a significant correlation between the corresponding
expression traits in a given tissue of interest. Unlike Bayesian
networks, the edges in a correlation-based association network are
undirected. To define a gene–gene correlation-based association
network, two gene expression traits (nodes) were considered linked
(connected by an edge) if the p-value for the Pearson correlation
coefficient between the two genes was less than some pre-specified
threshold. To reconstruct the ROC-like curves for the correlation
networks depicted in Figure S7, we varied the correlation coefficient
p-value threshold used to determine whether two nodes should be
connected by an edge.

Comparing the reconstructed network with the true network:
Recall and precision. To assess the goodness of the reconstructed
network, it was compared with the true network used in the
simulation process. We define the ‘‘goodness’’ of the reconstructed
network in terms of its accuracy, which is measured by two
parameters. The first parameter is defined as the precision of the
network:

precision ¼ # true postives
# total detected

;

which is the proportion of detected interactions that actually exist in
the true network. Precision corresponds to specificity and is equal to
one minus the false positive rate (1� FPR). The second parameter is
defined as the recall of the network:

recall ¼ # true postives
# total true interactions

;

which is the proportion of total interactions in the true network that
are detected in the reconstructed network. Recall corresponds to
sensitivity and is equal to one minus the false negative rate (FPR) (1�
FPR), which is also known as the true positive rate (TPR). The recall
and precision for a perfectly reconstructed network are equal to 1.

Throughout the text, true positive events are defined in three
separate ways, depending on the context: (1) since Bayesian networks
are directed graphs, the most stringent way to define a true positive
event is to require that not only the link but also the direction
between two nodes in the constructed network be the same as the
true network; (2) if we ignore the direction of the edges in a Bayesian
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network, true positive events are then the edges that exist in both the
constructed and true networks; and (3) whether two nodes interact
directly or indirectly through a third node is not important in some
applications (e.g., when a network is used to predict a responder or a
biomarker set, genes responding to a perturbed node [1,5,27] can be
directed or undirected), and therefore, in such cases, interactions in
the reconstructed networks can be considered as true positive events
if the two nodes interact directly or indirectly in the true network.

Comparing the network reconstruction methods: ROC curves. The
central figure of merit used to evaluate and compare the different
reconstructed networks to each other (with respect to the true
network) is the recall versus precision curve, which can be considered
as a variation of the traditional ROC curve. ROC curves are generated
by plotting the true positive rate (TPR) against the false positive rate
(FPR). The area under the ROC curve (AUC) is then a measure of how
the constructed network compares with the true network. The larger
the AUC, the better the constructed network compares with the true
network, where the maximum AUC is 1, indicating that the
constructed network perfectly matches the true network. As defined
above, recall is equivalent to the TPR, while precision is equal to 1�
FPR. Therefore, the recall vs. precision curve is generated by plotting
1 � FPR against the TPR. The recall versus precision curve has the
same characteristics as the ROC curve in that the AUC is a measure of
how well the constructed network compares with the true network,
with an AUC of 1 indicating a perfectly reconstructed network.
Qualitatively, the recall versus precision curve is equivalent to the
ROC curve in that if the AUC for one network is greater than (or less
than) the AUC of a second network with respect to one of plot types,
that same relationship will hold for the other plot type. We opted to
use the recall versus precision plots over the ROC plots as the figure
of merit because recall and precision are the more standard measures
used in the network reconstruction community.

Supporting Information

Figure S1. General Properties of the BXD Network Structure Used in
the Simulation Study

(A) Most genes in the network have only one parent.
(B,C) Log–log plots of number of genes with multiple children or
connections. The network has some general features of a scale-free
network.
(D) A global view of the whole network shows that most of genes are
interconnected.

Found at doi:10.1371/journal.pcbi.0030069.sg001 (6.2 MB EPS).

Figure S2. The Synthetic Structure Consists of 360 Isolated Three-
Node Causal/Reactive Networks and 360 Isolated Three-Node
Independent Models

This gives 2,160 nodes and 1,440 interactions, similar to the number
in the BXD network. The root nodes (squares) are assumed to have
cis-ating eQTLs.

Found at doi:10.1371/journal.pcbi.0030069.sg002 (1.1 MB EPS).

Figure S3. Properties of Simulated Data

(A) Histogram of correlation coefficients of interacted genes in BXD
dataset.
(B) Histogram of QTL peaks. The peaks of head nodes are evenly
distributed. The peaks of QTLs for all nodes are clustered into several
hot spots, similar to the BXD data [9].

Found at doi:10.1371/journal.pcbi.0030069.sg003 (1.5 MB EPS).

Figure S4. Fraction of Interactions Recovered with 60% Precision at
Different Interaction Strength

The left and right columns show results for the BXD network and for
the synthetic network (using 100 samples), respectively.
(Top) Number of interactions with different correlation strengths.
Each point shows results for edges with correlation strength within
0.05 on either side of the indicated value.
(Bottom) Fraction of edges of each strength detected, with genetic
information (solid) and without genetic information (dashed).

Found at doi:10.1371/journal.pcbi.0030069.sg004 (1.4 MB EPS).

Figure S5. Recall versus Number of Samples at Different Levels of
Precision

(A,B,C) 60%, 80%, and 95%, respectively. At the two lower levels of
precision, adding genetic information gives relatively modest gains in
recall, while at 95% precision, the increase in recall from genetic data
is substantial. The curves based on 95% precision are not smooth in
places, especially for the networks reconstructed without the genetic
data. This lack of smoothness is due to the fact that a large section of
each curve is parallel to the 95% precision threshold line (see Figure
5A). As a result, the exact points at which the 95% precision
threshold line and the ROC-like curves intersect are sensitive to small
variations in the ROC-like curves.

Found at doi:10.1371/journal.pcbi.0030069.sg005 (2.4 MB EPS).

Figure S6. Robustness of Reconstruction Accuracies of the BXD
Bayesian Network Using 100 Gene Expression Measurements with
and without Genetics

The results of five independent runs indicate the reconstruction
process is stable even though the procedure is stochastic in nature.
(A) Reconstruction accuracies of five independent runs.
(B) Reproducibility of individual predicted interactions at different
thresholds.

Found at doi:10.1371/journal.pcbi.0030069.sg006 (2.0 MB EPS).

Figure S7. ROC Curves Showing Accuracy of Reconstructions of the
Simulated BXD Network Ignoring Edge Direction (Dashed Lines) and
Considering an Edge as Correct if the Nodes Are Connected by a Path
of Length Less Than or Equal to 2 (Solid Lines)

Three methods are shown: Bayesian networks without genetic
information (red lines), Bayesian networks with genetic information
(green), and association networks based on correlation (red). The
curve for the correlation-based association network was generated by
varying the correlation coefficient p-value threshold used to establish
whether or not two nodes are connected by an edge (see the Methods
section for details).

Found at doi:10.1371/journal.pcbi.0030069.sg007 (777 KB EPS).
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