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ABSTRACT One of the conclusions drawn at
the CASP4 meeting in Asilomar was that applying
various force fields during refinement of template-
based models tends to move predictions in the wrong
direction, away from the experimentally deter-
mined coordinates. We have derived an all-atom
force field aimed at protein and nucleotide optimiza-
tion in vacuo (NOVA), which has been specifically
designed to avoid this problem. NOVA resembles
common molecular dynamics force fields but has
been automatically parameterized with two major
goals: (i) not to make high resolution X-ray struc-
tures worse and (ii) to improve homology models
built by WHAT IF. Force-field parameters were not
required to be physically correct; instead, they were
optimized with random Monte Carlo moves in force-
field parameter space, each one evaluated by simu-
lated annealing runs of a 50-protein optimization
set. Errors inherent to the approximate force-field
equation could thus be canceled by errors in force-
field parameters. Compared with the optimization
set, the force field did equally well on an indepen-
dent validation set and is shown to move in silico
models closer to reality. It can be applied to model-
ing applications as well as X-ray and NMR structure
refinement. A new method to assign force-field pa-
rameters based on molecular trees is also presented.
A NOVA server is freely accessible at http://www.
yasara.com/servers Proteins 2002;47:393–402.
© 2002 Wiley-Liss, Inc.
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INTRODUCTION

The search for Nature’s folding function has been a
tempting scientific adventure ever since Linus Pauling
predicted the �-helix in 1951.1 Because a precise quantum
chemical calculation of the true energy function is still
hardly feasible for macromolecules, one works with approxi-
mations, such as the AMBER,2 CHARMM,3 or GROMOS4

molecular dynamics force fields.
When developing a new force field, the first step is to set

up a general equation that matches the various forces
present in the studied system. Then one defines rules to
derive force-field parameters from quantum chemical cal-
culations or experimental measurements on (usually) small

molecules. Here we took a different approach and just
defined three goals:

1. For every global (or lowest accessible local) minimum of
the true conformational free energy, a minimum of
NOVA should lie close by.

2. The regions around the minima of NOVA need to be as
smooth as possible and thereby facilitate energy minimi-
zation algorithms.

3. NOVA should be a function of solute atom coordinates
only; the solvent must thus be implicitly included. (See
Roux and Simonson5 for a recent review of implicit
solvent models).

The force field was allowed to parameterize itself while
trying to optimally fulfill these goals. This was achieved by
randomly changing force-field parameters and evaluating
the “fitness” of the resulting force field with a protocol step
by step matching the three goals defined above:

1. Energy minimization of high resolution X-ray struc-
tures. The smaller the root-mean-square deviation
(RMSD) from the initial structure, the closer are the
NOVA minima to reality.

2. Energy minimization of homology models built for
high-resolution X-ray structures. The smaller the RMSD
to the experimental structure, the better is the energy
landscape suited for getting there. (Other methods for
smoothing and reducing the height of energy barriers
include umbrella sampling and soft-core potentials6–8).

3. All energy minimizations are done as in vacuo.

To make such a global search in force-field parameter
space computationally feasible, the number of optimized
parameters had to be kept small. Precisely known parame-
ters (i.e., equilibrium bond lengths and angles) were not
optimized. Well-known parameters (i.e., bond stretching
and angle-bending force constants) came from the AMBER
force field and were rescaled together by using two scaling
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factors: one for the bonds and one for the angles. All other
parameters (e.g., Van der Waals interactions and off-
center point charges) were optimized independently. To
further reduce computational requirements, the energy
minimization algorithm searched for NOVA’s closest mini-
mum. Therefore, it can only be guaranteed that NOVA has
minima close to real protein structures, but not that these
minima are also global ones.

Algorithms that search for global minima with big steps
in conformational space (e.g., ab initio fold prediction9) can
be applied safely if the search is restricted to a specific
region with additional data (e.g., NMR NOESY re-
straints). NOVA is useful for applications that require a
search for a local minimum near by, such as refinement of
experimental low-resolution structures, models built by
homology or docked complexes. The force field is shown to
significantly reduce the C� RMSD between experimental
structures and theoretical models during an energy mini-
mization.

MATERIALS AND METHODS

The NOVA force field (protein � nucleotide optimization
in vacuo) has been implemented as part of the newly
developed interactive real-time molecular dynamics pro-
gram YASARA (“Yet Another Scientific Artificial Reality
Application,” http://www.yasara.com). It looks like com-
mon molecular dynamics force fields, with the total energy
being expressed as a sum of individual contributions:
bonds, angles, planarity, Van der Waals, and electrostatic
terms. Most negative point charges are placed outside the
nuclei (off-center charges). Van der Waals interactions are
modeled by Born-Mayer Exp6 instead of the familiar
Lennard Jones 12-6 potentials. Planarity is treated by
least-squares plane fitting instead of improper torsions.

Molecular Trees Define the Chemical Environment

One of the aims during the development of NOVA was
the possibility to extend the force field to ligands without

the need for manual intervention. This was achieved by
using molecular trees (Fig. 1) instead of predefined atom
types to assign the force-field parameters. Normally, a
topology file lists all atoms by name (e.g., N, H, CA, 1HA,
2HA, C, and O for Glycine) and assigns at least an atom
type and often also a point charge. Bond lengths, angles,
and so forth are specified for all combinations of atom
types.

In contrast, YASARA builds a molecular tree to define
the chemical environment of every atom and then chooses
force-field parameters based on the closest reference tree
found in the NOVA definition file (electronic supplement).
Starting from every atom in the molecule (the root), the
program follows the various branches (the chemical bonds)
of the molecule—up to a certain recursion depth (usually 3).

An example is the molecular tree built from the C� atom
of phenylalanine (Fig. 1). Bond types (single, double,
triple, and resonance) are an integral part of the tree.
These types are taken from a connectivity table that
contains atom names and bonds for every residue or
ligand. These tables can be generated automatically by
analyzing heavy atom coordinates, predicting their hybrid-
ization state and adding hydrogens where needed. For
example, this is done by the Dundee PRODRG Server10

(http://davapc1.bioch.dundee.ac.uk/programs/prodrg/pro-
drg.html). Each molecular tree can also be written as a
single string, for example, for the C� of Phe:

CH2�OC�ONHOC�OC�AO�ON�

OC��CH�C��CH�C (1)

Comparable approaches have been suggested before (e.g.,
by Levitt11 or Weininger12). Here we extend this approach
to assign a complete set of force-field parameters.

Building Reference Trees

The NOVA definition file (available from http://www.
yasara.com/nova) does not explicitly specify equilibrium

Fig. 1. A phenylalanine residue (left). The C� carbon atom marked with an arrow serves as the root for
creating the molecular tree shown on the right. All atoms in the gray area are within recursion depth 3 of the root
and thus part of the tree. Beside the topology, the tree stores data about the bond types as well: single, double,
and resonance bonds are shown (the weaker resonance effects of the peptide bond are not considered). From
top to bottom, the parts of the tree are called “depth 3,” “depth 2,” “depth 1,” and “root.” A comparable tree is
generated for every atom in the simulated system, and force-field parameters are then assigned on the basis of
the most similar tree in the force-field definition file.
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bond lengths and angles. These are extracted from the 25
highest resolution X-ray structures in the PDB, with
�30% sequence identity, obtained from the PDB-SELECT
algorithm13 (a list with PDBID codes of all proteins used in
this work is available from http://www.yasara.com/nova).
Missing hydrogen atoms were added with the WHAT IF
hydrogen-bonding network optimizer14 and then relaxed
to the closest energy minimum with the AMBER force
field1 (parm94), whereas all heavy atoms were kept fixed.
For each atom in these proteins, a molecular tree was
built. The distances between the root and depth 1 atoms
(the bond lengths in Fig. 1) and between any two depth 1
atoms (the bond “angles”) are stored within the tree. If two
atoms share the same local covalent structure, their
molecular trees are identical. Therefore, bond lengths (and
also angles) were averaged over identical trees. In this
way, the program obtained a set of partly residue-

dependent bond lengths and angles, which can capture
features that are missed when using residue-independent
parameters.

Currently, there are 426 different trees available from
http://www.yasara.com/novatree.

Bonds

Chemical bond stretching is described by a harmonic
potential. Bond lengths (Rj0 in Fig. 2) are taken from the
reference trees. The initial bond stretching force constants
came from the AMBER Parm94 set. During force-field
parameter optimization, one common scaling factor (param-
eter 1 in Table I) was assigned to the force constants. The
final optimized values (kj in Fig. 2) are listed in the NOVA
definition file. To associate a force constant to a type of
bond, slightly modified molecular trees are used (as in the
case of VdW parameters). Instead of choosing any of the

Fig. 2. The YASARA NOVA force field. Atom distances are named R, equilibrium values R0. Vectors are
shown in bold print. The energy contribution of atom a (Ea) is the sum over all chemical bonds (to atom j, with
bond-stretching force constant kj, j�a), plus a planarity term (0.5*lp*Rp

2), plus the sum over all non-bonded Van
der Waals interactions (with atom i, using EXP6-potential parameters Ai, Bi and Ci, i�a), plus the electrostatic
Coulomb interactions between all m point charges on atom a and n point charges on atom k (k�a). More details
are given in Materials and Methods and the electronic supplement.

TABLE I. Optimization Parameters of the NOVA Force Field†

Optimization
parameters Parameter description

1 Common scaling factor for all AMBER bond-stretching force constants
2 Common scaling factor for all AMBER angle-bending force constants
3 Planarity force constant of peptide plane
4 Planarity force constant of all planar sidechains (D, E, F, H, N, Q, R, W, Y)
5 Charge c at H (�c) and N (�c) in peptide bond
6 Charge c at C (�c) and O (�c) in CAO groups
7 Distance from O-nucleus of the negative lone “pair” in CAO groups
8 Charge c at H (�c) and N (�c) in aromatic rings (H, W) and NE/HE of R.
9 Charge c at H (�c) and N (�2c or �3c) at NH2 and NH3 groups (N, Q, K, R, N-term.)
10 Ionic charge (D, E, K, H-protonated, R, N-terminus, C-terminus)
11 Charge c at C (�2c) and O (�c) in deprotonated carboxyl groups (E, D, C-term.)
12 Distance from O-nucleus of the negative lone “pair” in carboxyl groups
13 Charge c at H (�c), O (�c per lone pair) and C (�c) at hydroxyl groups (S, T, Y,

D-protonated, E-protonated, C-terminus protonated)
14–16 Born-Mayer parameters of HOH interaction
17–19 Born-Mayer parameters of HOC interaction
20–22 Born-Mayer parameters of HON interaction
23–25 Born-Mayer parameters of HOO interaction
26–28 Born-Mayer parameters of COC interaction
29–31 Born-Mayer parameters of CON interaction
32–34 Born-Mayer parameters of COO interaction
35–37 Born-Mayer parameters of NON interaction
38–40 Born-Mayer parameters of NOO interaction
41–43 Born-Mayer parameters of OOO interaction
†Equilibrium bond lengths and angles are taken from high-resolution X-ray structures without
optimization. Bond stretching and angle-bending force constants come from the AMBER force field and
are rescaled (parameters 1 and 2 above).
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two bonded atoms, the bond itself becomes the root of the
tree. Thus, there are always two atoms with depth 1, and
the bond type is the same for both of them.

Angles

Bond angles are treated like true bonds between 1 and 3
bonded atoms (Urey-Bradley method). Equilibrium dis-
tances (Rj0 in Fig. 2) are taken from the reference trees; the
initial angle-bending force constants were converted to the
required distance-dependent form from the AMBER
Parm94 set. Again, one common scaling factor (parameter
2 in Table I) was assigned to all the angle-bending force
constants. The final optimized values (kj in Fig. 2) can be
found in the NOVA definition file.

We chose the Urey-Bradley approach for two reasons: (i)
Numerical stability: In many typical NOVA applications,
very high temperatures (5000 K) temporarily cause bond
angles to approach 180°. This creates problems with
angle-dependent formulations, which contain a singular-
ity at 180° and assign very large forces close to this angle
that can trap part of the molecule in an unrealistic local
minimum (mainly if it belongs to a planar group). (ii) At
least qualitatively, the Urey-Bradley method implicitly
contains a bond/angle cross-term that is normally missing.
(A change in bond lengths influences the bond angles and
vice versa.)

Dihedrals

Accurate potentials are more difficult to obtain for
torsions. Therefore, we decided to optimize all parameters.
To achieve this goal without making the set of optimiza-
tion parameters too large, we reduced the torsion forces to
the repulsion between 1–4 bonded atoms. Thus, 1–4
interactions are treated exactly like non-bonded interac-
tions. However, because Lennard-Jones 12-6 potentials do
not model the torsion energy properly, we chose the more
flexible Born-Mayer Exp6 potentials,15 combined with
“distant geometry links.”

A difficulty with this approach is the hydrogen-bonding
problem: The electrostatic attraction between the point
charges on polar protons and H-bond acceptors is normally
not large enough to compensate for the Van der Waals
repulsion. This requires a large reduction of the Van der
Waals radii of polar protons, which in turn leads to
unrealistic torsional energy profiles that must be corrected
with additional terms. By using negative off-center point
charges, we increased the electrostatic attraction between
proton and acceptor sufficiently to reproduce the experi-
mental H-bond lengths of about 1.9 Å while still keeping
realistic VdW parameters.

Distant Geometry Links

Many planar groups contain charged atoms in close
proximity. For example, the terminal hydrogen atoms
HH12 � HH22 and HH21 � HE in arginine are separated
by four bonds, but they lie very close to each other. The
distance is about 2.3 Å, leading to repulsive Van der Waals
forces. The atoms are all positively charged, adding fur-
ther repulsive forces with a non-negligible influence on the

molecular geometry. But these forces are already implicit
in the equilibrium bond lengths and angles taken from the
high-resolution structures. Distant geometry links (DGLs)
define such critical atom pairs and link them with a
pseudo-bond to exclude them from the calculation of
non-bonded interactions.

Planarity

All force-field terms considered so far were a function of
the distance between two atoms. Planarity of atom groups
is one of the features that cannot be based on atomic
distances only, because out-of-plane bending is accompa-
nied by only small changes in distances. Here we present a
method that differs from the normally used “improper
dihedrals.” It is fast and has some advantageous features
when used with the NOVA force field. Our approach
calculates the optimal plane through all members of a
planar group. Knowing the normal vector of the plane, a
force toward the plane is applied to every atom. For a given
atom Ai, this force is simply the distance from the plane
(Rp in Fig. 2) times the “plane stretching force constant” lp
(parameters 3 � 4 in Table I): Fp � �Rp*lp. A compensat-
ing force �Fp/n is applied to all the n atoms bound to Ai.
Although not entirely conserving energy, this approach
offers the advantage that the least-squares plane fitting
has to be performed only once per planar group every
timestep and that the resulting normal vector can be used
to apply non-spherical Van der Waals potentials in DNA
base pair stacking.

Van der Waals Interactions

The NOVA force field uses Born-Mayer potentials15 to
describe interatomic forces. This function consists of an
attractive R�6 term and a short-range exponential repul-
sion term:

E � A�e � B�R � C/R6 (2)

Our reasons for choosing this function were as follows.
First, the Born-Mayer Exp6 function contains three adjust-
able parameters and thus allows us to shift the root
independent of the minimum, whereas the more common
Lennard Jones 12-6 potential always has its root at 0.89
times the distance of its minimum. Second, because there
is no need to minimize numerical noise as in long-time MD
simulations, a simple look-up table can be used to avoid
the very expensive evaluation of the exponential term.
This approach is particularly handy because the Exp6
function requires special care at short distances: When R
approaches zero, the repulsive term reaches A (see Eq. 3),
whereas the attractive part tends toward infinity. Thus,
the potential becomes attractive again at close separa-
tions, somehow resembling “nuclear fusion.” Therefore, we
replaced the interval from 0 to the first root of the third
derivative with an R�12 damping function.

Initial parameters were taken from a table published by
Mirsky,16 manually adjusted by up to 5% so that second-
ary structure elements did not fall apart and a stable
starting guess was available; then parameters were opti-
mized for all atom pairs, and no combining rules were
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used. To keep the number of parameters below a reason-
able limit, all interactions involving sulfur were not opti-
mized but taken from AMBER Parm94 and transformed to
Exp6 format.

The Exp6 parameters make the largest contribution to
the optimization set (parameters 14–43, Table I).

Electrostatics

The electrostatic forces are added by assigning point
charges to the atoms. To maximize the level of consistency
with the remaining force field, all electrostatic parameters
were optimized. This required a description of the essen-
tial features with a minimal set of nine parameters (Table
I). These included the charges and also their positions, if
placed outside the nucleus. Using off-center point charges
was required mainly for hydrogen bonds. Because numeri-
cal long-time stability is not an issue, charges can be
assumed massless. Thus, forces are calculated between
the charges, but they act on the associated nuclei. After
each change in atom positions, the coordinates of the point
charges are recalculated on the basis of the following rules:

Central charges: These are simply placed at the coordi-
nates of the nucleus.

Charges with positions that can be obtained as a linear
combination of atom coordinates: A typical example is the
lone pair of the carbonyl group (Fig. 3).

Charges with positions that require the calculation of a
vector product: The lone pair coordinates of sp3 hybridized
atoms [like the oxygen in hydroxyl groups or water (Fig. 4)]
cannot be determined with a simple linear combination of
atom coordinates. The point charges are placed in a plane
N defined by vectors a and c (Fig. 4), where c is a 	 b. a
and b are themselves linear combinations of atom coordi-
nates.

Initial guess values for the various charges were ob-
tained from the experimentally measured dipole moments
of small molecules; the ST2 parameters17 were used for

hydroxyl groups. Ionic charges were set to 0.3e. Then the
parameters were optimized (Table I).

Optimization and Validation Sets

The aim was to create an optimized force field that does
not make highest resolution X-ray structures worse while
at the same time improves approximate models during an
energy minimization procedure. The generation of the
required optimization and validation sets of proteins (each
one consisting of 25 high-resolution structures and 25
models of high-resolution structures) was done automati-
cally on the basis of a list of highest quality PDB chains
with �30% sequence identity, no chain breaks, resolutions
better than 1.9 Å and R-factors below 0.19, generated by
the PDB-SELECT program.13 For each of these chains, the
script searched for a modeling template in the correspond-
ing FSSP file.18 If a template existed that allowed model-
ing the chain without insertions or deletions and had
�93% sequence identity, the model was built with WHAT
IF19 and added to the group of models (M); otherwise, the
chain became part of the structures group (S). The lowest
value that reached the required number of 50 structure-
model pairs was 93%. The first 25 odd entries of M and S
were taken as optimization set; the even entries as valida-
tion set. The 25 entries in group S of the optimization set
were also used to generate the reference trees.

The Practical Limit of Fold Prediction

Comparisons of experimental crystal structures indicate
limits on effective accuracy that need to be specified in
optimizing the parameters. They also reveal practical
limits of fold prediction.

Fig. 3. Placing off-center point charges as a linear combination of
atom coordinates. If the distance x of the partial charge P� from the O
nucleus was 0.8 Å, the weighting factors i, j for coordinates O, C to obtain
P� would be: P� 
 O � (0.8/1.23) * (O � C), P� 
 (0.8/1.23 � 1) * O �
(0.8/1.23) * C and thus i 
 1.65, j 
 �0.65. In this case, the position of the
point charge depends on the length of the C
O bond.

Fig. 4. Placing off -center point charges at sp3 hybridized atoms. This
example shows the application of the method to the ST2 water model. The
required parameters are the number of atoms and weighting factors
needed to calculate the vectors a and b, the number of charges placed in
the plane defined by a and c (c 
 a 	 b), and finally for each of these
charges the plane coordinates and size.
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Using the PDBFINDER database,20 we identified chains
with identical sequences that have been solved by different
authors and refinement programs at resolutions better
than 1.9 Å. For these structure pairs, C�, backbone and
heavy-atom RMSDs were calculated, defining the experi-
mental uncertainty of coordinates obtained at high resolu-
tion (top and bottom outliers were removed). We used
these values (0.48 Å for C�, 0.95 Å for all heavy atoms) to
define how much the force field may modify a structure
during an energy minimization before we know that it got
worse.

Force-Field Optimization Methods

The NOVA force field described in this study has been
optimized by Monte Carlo moves in parameter space. After
every step, the quality of the force field was evaluated by
running “simulated annealing” molecular dynamics simu-
lations for the 50 structures in the optimization set with
YASARA and the following protocol. The non-bonded force
cutoff was set to 10.5 Å. One hundred steps of steepest
descent minimization with a maximum step size of 0.05 Å
removed any sources of conformational stress that might
lead to a collapse of the following simulation. Velocity
vectors were initialized to average values found at 298 K4

followed by 3800 integration steps of the equations of
motion with the leapfrog algorithm, using a timestep of 2
fs for electrostatic plus Van der Waals interactions and 1 fs
for all harmonic forces including planarity.

The random initial velocities were required to avoid
optimization toward force-field vectors with zero length,
which are guaranteed not to introduce errors. The distor-
tion at the beginning made sure that a realistic parameter
set with the ability to “pull the structure back to where it
belongs” was obtained. Every 20 fs, all velocity vectors
were scaled by 0.9, thus the protein was slowly frozen.
After 3.8ps, the timesteps were reduced by 50% to 1 fs and
0.5 fs, respectively, for another 200 cycles. Finally the C�,
backbone, and heavy-atom RMSDs were calculated [with
respect to the starting structure (group S) or the modeling
target (group M)]. The heavy atom RMSDs of all 50
proteins were averaged and used as a progress indicator. A
move in parameter space was accepted with a probability
of

p � exp���RMSDnow � RMSDbest�/0.00045� (3)

The value of 0.00045 for kT was empirically chosen so that
progress was steady but local minima could still be es-
caped. A total of 43 force-field parameters were subjected
to this minimization procedure (Table I). Each Monte
Carlo move was performed by picking one parameter
randomly and then either increasing or decreasing it 1–10
times the minimal step size. The minimal step size was
predefined for every parameter and equivalent to the final
precision required (0.002e for charges, 2% for scaling
factors, planarity force constants and VdW contact ener-
gies, 0.01 Å for VdW radii and VdW potential roots).

Force-Field Evaluation Methods

After the optimization converged, the force field was
evaluated with an extensive minimization: 250 steps of

steepest descent and long 40 ps simulated annealing runs
without initial velocities. Timesteps were 1 and 0.5 fs for
the first 4 ps and 2 and 1 fs for the remaining 36 ps.
Force-field energies were calculated without a cutoff dis-
tance every 200 fs. If the energy did not drop during five of
these measurements (1000 integration steps), the energy
minimum was reached and the procedure was stopped
(corresponding to horizontal lines in Fig. 8). This avoided
the problem that simulated annealing does not stop at the
true energy minimum if a cutoff distance is used (it
proceeds further to the minimum of the truncated energy
function, leading to an increase in true energy).

Computational Requirements

The force-field optimization required about 20,000 h of
CPU time. The calculations were performed on 26 PCs at
the CMBI, using Models@Home, a freely available screen-
saver that turns a network of normal, non-dedicated PCs
into a distributed computing cluster (http://www.cmbi.nl/
models). Two months of computer time could be saved by
implementing the NOVA force field in Assembly language.

RESULTS
Force-Field Optimization

Our goal was to parameterize a force field for energy
minimization of proteins that does not “mess up” high-
resolution X-ray structures and that moves predicted
models closer to reality. Most parameters were not chosen
on the basis of measured or calculated physicochemical
properties, but instead freely optimized with Monte Carlo
moves in force-field parameter space. Each move was
evaluated with energy minimizations (by simulated anneal-
ing) of a 50-protein optimization set: 25 high-resolution
X-ray structures and 25 homology models built by WHAT
IF.19

The parameter optimization progress is shown in Figure
5 for the 25 high-resolution structures. Three distinct
regions are visible. During the first 100 optimization steps,
the force field improved rapidly. The damage done to the
C� coordinates during the 4-ps minimization decreased by
0.15 Å. At step 100, the “low hanging fruits” were gone,
and the first local minimum was reached. From here on, a
Monte Carlo algorithm that can escape local minima was
obligatory. Nevertheless, there was slow but steady
progress until step 450. From step 450 on, improvement
was minimal but still measurable. Around step 600, the
optimizer finally passed the experimental uncertainty
barrier of 0.48 Å (Fig. 5) for C� atoms: Below 0.48 Å
RMSD, it is impossible to decide whether the structure got
worse during the minimization. However, the heavy atom
RMSD barrier lies much higher, at about 0.95 Å. This can
be attributed to the influence of crystal contacts on surface
rotamers, which can not be exactly determined experimen-
tally and thus increase the RMSD. After 1000 steps (and
thus 50,000 simulated annealing runs) the procedure
converged.

Force-Field Evaluation

The above results apply to the optimization set only and
were obtained for short 4-ps simulating annealing runs.
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(By making the minimization time short enough, one can
stay arbitrarily close to the initial structures.) The truly
important question is: How far are the NOVA minima
away from reality? This can only be answered with an
extensive simulated annealing run that proceeds till the
energy converges. The result is shown in Figure 6 for an
independent validation set of another 25 structures.

Before parameter optimization, the force field undoubt-
edly made the 25 high-resolution structures worse. The
energy minima lay 0.15 Å (heavy atom RMSD) and 0.39 Å
(C� RMSD) above their experimental boundaries (Fig. 6).
During optimization, the minima moved closer to reality
by 0.30 Å (heavy atoms) and 0.27 Å (C�). Thus, the C�
RMSD came close to the boundary, whereas the heavy

atom RMSD crossed it and converged 0.15 Å below. Figure
7 shows the results for all 100 proteins involved.

Model Improvements

Not to mess up high-resolution structures can be re-
garded as a basic requirement. But to be of practical use,
the force field must also be able to move models toward
reality. We concentrate on the evaluation of C� RMSDs to
indicate that a true improvement in backbone geometry
and not just rotamer prediction accuracy was obtained. It
is important to note that WHAT IF was only used to
mutate the side-chains; the backbones of the templates
were simply copied to the models.

Figure 8 shows the energy minimization results for the
25 models in the validation set. There are two different
regions to deal wit. If the model is already very close to the
true structure (C� RMSD � 0.9 Å), it gets slightly worse
during the minimization; otherwise, it is significantly
improved [up to 0.25 Å as in the case of the 1CYO model

Fig. 5. Force-field optimization progress shown for the 25 high-
resolution structures in the optimization set. The average heavy atom
(upper curve, gray) and C� RMSDs (lower curve, black) after �4-ps
simulated annealing runs are drawn as a function of the optimization step.
The two horizontal lines mark the border of experimental uncertainty [i.e.,
0.95 Å for the heavy atom (top) and 0.48 Å for the C� RMSDs (bottom)
observed if the same structure is solved at high resolution by different
authors and refinement programs]. Anything above these lines surely got
worse during the minimization. To make the optimization procedure
computationally feasible, every simulated annealing run lasted only 4 ps
(and did not always reach the energy minimum). Exhaustive simulated
annealing runs that proceed until the energy minium is reached are shown
in Figure 6.

Fig. 6. Extensive minimization of the structure validation set (25
proteins). The two horizontal lines mark the experimental boundaries
described in Figure 5. The average heavy atom (gray curves) and C�
RMSDs (black curves) are shown as a function of simulated annealing
time. Dashed curves were obtained with initial force-field parameters, and
solid curves with final optimized parameters.

Fig. 7. Force-field parameter optimization results for optimization sets
(OS) and validation sets (VS) of 25 structures and 25 models. For each of
the four groups, the following values are shown: Average heavy atom
RMSD before and after parameter optimization (bright gray and gray bars)
and C� RMSD before and after optimization (dark gray and black bars).
RMSDs are measured after a 40-ps simulated annealing run. The two
horizontal lines mark the experimental boundaries described in Figure 5.
Time-dependent results for the structure validation set (group 3) are
shown in Figure 8.

Fig. 8. Extensive minimization of the model validation set (25 pro-
teins) with the optimized force-field parameters. Eleven non-overlapping
of 25 trajectories are shown.
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(top curve in Fig. 8)]. This result was to be expected: the
closer one gets to the true structure, the more precision in
the force field is required to improve the model.

The solution is obvious: not to energy minimize if the
model is closer than 0.9 Å to its high-resolution X-ray
structure. Because this RMSD is of course not known at
the time of modeling, the decision must be based on
different grounds. We derived the following empirical rule
from the optimization set: Only minimize a model if
template resolution (Å) divided by sequence identity (%) is
�0.04.

We applied this rule to the validation set and obtained
the results shown in Figure 9. Initially, minimizing the
models clearly made them worse (C� RMSD increased
from 1.36 to 1.54 Å). During the parameter optimization,
the model RMSD dropped from 1.54 to 1.40 Å, 0.04 Å above
the initial RMSD without minimization. By energy mini-
mizing only the models that match the selection rule, we
found a true improvement: The backbone moved on aver-
age 0.111 Å (C�) closer to reality (bottom curve in Fig. 9).

To investigate the performance of NOVA relative to
other force fields, we ran exactly the same energy minimi-
zation protocol also with the AMBER force field. Although
NOVA with the initial parameters did clearly worse, it is
apparent from Figure 9 that the optimization procedure
allowed to turn around and go into the right direction.

Force-Field Energy

Ideally, one would like the RMSD to decrease further
than the 0.111 Å obtained above, all the way down to the
experimental limit of 0.48 Å. It is obvious from Figure 8,
that the proteins “get stuck” too early. Two reasons are
possible: (i) the NOVA energy function is not precise
enough, or (ii) the simulated annealing procedure is not
adequate to find the way down.

Low-temperature simulated annealing allows backbone
shifts and reorientations of flexible surface rotamers, but

certainly not a complete flip of a buried tryptophan. If such
a rotamer is initially not predicted correctly, the minimiza-
tion can easily get stuck in a wrong local minimum. To
verify this hypothesis and clarify the possible involvement
of point (i), we compared the NOVA energies of the models
with those of the true structures. The latter should of
course always be lower. Energies were calculated after
40-ps simulated annealing simulations, models, and struc-
tures were subjected to the same procedure. The results
are shown in Figure 10.

In 3 of 25 cases, the real structure has a higher energy
than the model. Structures 4 and 5 are not a big surprise,
because Figure 8 has already shown that the force field
loses its discriminative power below 0.9 Å C� RMSD. If it
were possible to “home in” from 2.4 to 0.9 Å, this would
already be a huge step forward. However, model 24 looks
disappointing at first sight: It has a lower energy than the
X-ray structure and 2.3 Å C� RMSD. Closer inspection
reveals surprising characteristics. Hirustasin, a serine
protease inhibitor, does not have an exactly determined
native fold. It is a highly flexible protein,21 with a very
loose residue packing (the WHAT IF packing quality
Z-score22 is �5), and almost no secondary structure (of 51
amino acids in 1BX7, 43 are neither strand nor helix,
according to DSSP23). The only reason why this protein
does not fall apart are five disulfide bonds. By assigning
very similar energies to both conformations (the structure
1BX7 and the modeling template bdellastasin 1C9P-B),
NOVA predicted this high level of flexibility.

DISCUSSION

We developed an all-atom force field that moves models
on average 0.111 Å (C� RMSD) closer to their true
structures, in cases for which template resolution divided
by percentage sequence identity is �0.04. This result was
achieved with an optimization in force-field parameter
space, which allowed to obtain a set of parameters that

Fig. 9. Average changes of C� RMSDs during an extensive minimiza-
tion of the model validation set. Results for the AMBER and NOVA force
fields are shown. The minimization protocol was identical in both cases;
only the central force-field equation was changed. Gray lines correspond
to the complete set (25 models); black lines indicate the subset of those
models, where template resolution divided by percentage sequence
identity was �0.04 (14 models). Because this subset has a different
average RMSD, only changes in RMSD are displayed. The performance
of NOVA before optimization is also shown (dashed line).

Fig. 10. Comparison of model and structure energies. The C� RMSDs
between the 25 homology models in the validation set and their true
structures are shown in black (models have been sorted by RMSD). The
gray curve indicates the differences between structure and model ener-
gies, whereas the black curve serves as the root: as long as the true
structure is lower in energy than the homology model, the gray curve
stays below the black one. Every tick on the right axis corresponds to
1kJ/mol NOVA energy difference per residue.
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optimally fit the approximate force-field equation, disre-
garding the physical correctness of individual values. This
principle has been applied on a small scale since the very
beginning of molecular dynamics simulations. The attrac-
tive R�6 term in the Lennard Jones 12-6 potential is
typically a factor 2 larger than suggested by experimental
or theoretical data, which is meant to cancel the error
caused by neglecting any higher order R�8 and R�10

terms.24 With the Monte Carlo search method described
here, it was possible to extend this idea to the entire force
field.

The improvement in force-field precision was equally
large in the optimization and validation sets (Fig. 7). This
result is most likely due to the large optimization set with
50 proteins and no restrictions on the number of residues
(the largest protein being 1C0P-A with 363 amino acids).
Thus, the force-field parameters did not “memorize” any
features specific to the optimization set.

The composition of optimization and validation sets has
been influenced by two arbitrary choices: first, we split
them into 25 structures and 25 homology models, and
second, we decided to use only models without insertions
or deletions. The latter choice was made to ensure that a
signal of progress due to backbone shifts of secondary
structure elements (which are the hardest to predict) was
not masked by an improvement in loop modeling. To make
sure that these choices did not reduce the range of
application (e.g., to models without insertions or dele-
tions), we continued the search procedure with models
alone and structures alone (25 proteins each) for another
500 steps. Our remarkable finding was that the all-atom
RMSDs decreased only by an insignificant amount of 0.003
Å (model optimization set) and 0.008 Å (structure optimiza-
tion set). This means that keeping a structure in its
minimum and improving a model requires the same
force-field parameters. It also implies that the force-field
parameters do not depend on the structural characteristics
of the models (the number of insertions, deletions, etc.) and
the algorithms used to build the models. The parameters
simply provide a precise description of protein structure.

It also became clear that the ability not to make a
high-resolution structure worse is a crucial feature: One of
the main force-field applications is the calculation and
comparison of energies (Fig. 10). For an all-atom force
field, this only makes sense after an extensive, unre-
strained energy minimization (otherwise, bumps and bond
lengths or angles that are slightly off, add a huge, random
factor to the force-field energy that makes structure com-
parisons impossible). If a structure is significantly dis-
torted during the minimization, the whole procedure be-
comes questionable.

Comparing the initial and optimized values, we ob-
served the smallest changes in experimentally and theoreti-
cally well-determined parameters (bond-stretching force
constants changed by only 1%), whereas large shifts
occurred in the less precisely known parameters (e.g., Van
der Waals interactions).

We found that the current model improvement of 0.111
Å is limited by the simulated annealing search rather than

the force-field precision. Therefore, future work will in-
clude the development of a more flexible minimization
algorithm. Getting 0.111 Å closer to reality is a valuable
achievement, because the best CASP predictions (http://
PredictionCenter.llnl.gov) in homology modeling are often
just a few hundredths of an Angstrom ahead of the
competitors.
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