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Incremental Acquisition of a Three -Dimensional
Scene Model from Images
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A b m c t - W e describe the current state of the 3-D Mosaic project,
whose goal i s to incrementally acquire a 3-Dmodel of a complex urban
scene from images. The notion of incremental acquisition arises from
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Fig. 1. Gray scale stereo images of a region of Washington, DC.

the observations that I)single images contain only partial information
about a scene, 2) complex images are difficult to fully interpret, and 3)
different features of a given scene tend to be easier to extract in differ-
ent images because of differences in viewpoint and lighting conditions.
In our approach, multiple images of the scene are sequentially analyzed
so as to incrementally construct the model. Each new image provides
information which refines the model. We describe some experiments
toward t h i s end. Our method of extracting 3-D shape information from
the images is stereo analysis. Because we are dealing with urban scenes,
a junction-based matching technique proves very useful. This technique
produces rather sparse wire-frame descriptions of the scene. A reason -
ing system tha t relies on task-specific knowledge generates an approxi -
mate model of the Scene from t h e stereo output. Gray scale informa -
tion i s also acquired for the faces in the model. Finally, we describe an
experiment in combining two views of the scene to obtain a refined
model.

fndex Terms-Geometric modeling, incremental model acquisition,
photo interpretation, scene analysis, stereo reconstruction, threedimen -
sional vision.

~NTRODUCTION

The goal of t h e 3-D Mosaic project i s to automatically
acquire a detailed 3-D description (or model) of a complex
urban scene from images. We are currently working with aerial
photographs of Washington, DC. Fig. 1 shows a stereo pair of
images from our database.

Our approach to t h i s problem i s based on the notion of in-
cremental acquisition of the scene model. A single image or
view of a complex scene i s generally not adequate for deriving
a complete, accurate description of the scene. Some reasons
for this are as follows.

1) Many surfaces in the scene are occluded in any particular
view.

2) Because of the complexity of an image, i t would be diffi -
cult to interpret a l l the detailed parts.

3) Some characteristics of visible surfaces may not be as ap -
parent in one image as in a different image. For example, i t
may be difficult to analyze a highly oblique surface because of
lack of resolution in the image, or it may be difficult to analyze
surfaces with shadows cast across them.

4) Errors in analyzing and interpreting the image may create
errors and inconsistencies in the scene description.

Our method involves using multiple views of the scene in a
sequential manner. A partial description i s derived from each
view. As each successive view i s analyzed, the model of the
scene i s incrementally updated with information derived from
the view. The model is initially an approximation of the scene,
and becomes more and more refined as new views are pro-
cessed. At any point along i t s development, the model should
be usable for the following types of tasks.

1) When information i s derived from a new view. it must be
matched to the model so that updating can occur. The model
should, therefore, contain information that fac i l i ta tes this
matching.

2) The model should permit higher level components to de-
termine which parts of the scene should be analyzed in more
detail, and whether a different view i s required for further anal -
ysis of these parts.

3) The model should be usable in i t s task domain, e.g., for
photointerpretation or display generation.

In our approach, 3-D features that are relatively inexpensive
to obtain, such as certain corners of buildings, are extracted
from the images, A model o f the scene i s then hypothesized
from these features by utilizing task -specific knowledge (e&,
block-shaped objects in an urban scene). Updating and refine -
ment of the model is facil i tated by remembering which parts
of the model have been hypothesized and which parts have
been directly derived from the images.

There are several applications we have in mind for the types
of models that are acquired. The first involves model -based
photointerpretation. A scene model can provide significant
help in interpreting images o f the scene taken from arbitrary
viewpoints [4 ] , [ 151. Furthermore, the analysis results can be
used in the incremental acquisition loop to update and refine
the model. Another area of application deals with generating
flight plans (simulating the appearance of the scene along po-
tential flight paths) or familiarizing personnel with a given area.
Our methods provide the ability to acquire a model of a scene
from only a few views and then generate arbitrary views from
the model. Finally, our incremental 3-D Mosaic approach
should be applicable to robot navigation and manipulation
tasks. The ability to incrementally acquire approximate de-
scriptions of complex environments could prove useful for
these tasks, since these descriptions may then be used to make
decisions dealing with path planning or determining which parts
of the environment to analyze in more detail.

In the rest of this paper, we first discuss how to extract a
3-D scene description from a single view. The stereo pair of
images shown in Fig. 1 constitutes the single view to be con-
sidered. Afterward, we discuss combining information from
multiple views.

11. STEREO ANALYSIS

Our current method of extracting 3-D shape information
from the images i s via stereo analysis. In the future, we may
add other methods, such as shadow analysis [ 161.

Our approach to the stereo matching problem i s to match
junctions and lines found in the images. There are several rea -
sons for this.

1) Our goal i s to recover the 3-D structure in the scene. We
approach this problem by first extracting 3-D information deal-
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Fig. 2. Edges resulting from a Sobel operator applied to the images of Fig. 1.

ing with vertices and edges in the scene. In an urban scene,
vertices often correspond to corners of buildings. Therefore,
by recovering scene vertices and edges that emanate from them,
we obtain portions of boundaries of t h e buildings. These
boundaries then allow us to construct 3-D approximations of
the buildings. (See [IO]for a different approach developed
for the same task domain.)

2) Our stereo images are fairly wide angle and the scene con-
sists of ta l l buildings. As a result, there are large discontinuities
in disparity and the appearance of many objects differ signifi -
cantly in the two images. This has caused problems for most
previous stereo matching techniques since there are large por-
tions of the scene that are visible in one image but not in the
other. In our approach, we are not interested in matching
scene faces that are occluded in one of the image pairs. Rather,
our goal i s to match face boundaries that are visible in both
images. We do this by explicitly taking into account the way
junctions change from one image to the other. We find a junc-
tion in one image, use task-specific constraints to predict i t s
appearance in the other image, and search for the correspond -
ing junction by making use of the predicted appearance. Cur-
rently, our method of predicting junction appearances i s based
on the following task-specific knowledge.

a) In aerial photography, image planes tend to be almost
parallel to the ground plane.

b) In urban scenes, roofs of buildings tend to be almost
parallel to the ground plane, while walls tend to be perpendic -
ular to this plane.

c) Therefore, features lying on a roof or on the ground
will maintain the same shape in bothimages. Edgesin thescene
that are perpendicular to the ground plane wil l appear in each
image to be directed toward the origin, defined by the inter-
section of the camera axis with the image plane [ 1 1 ] .

I f an L junction i s found in one image, i t i s initially assumed
to arise from a corner of a roof, and thus i t s appearance in the
other image can be predicted. Ifan ARROW or FORK junc-
tion i s found, the l ine directed toward the origin i s initially as-
sumed to arise from a scene edge which i s perpendicular to the
ground, while the other two lines of the junction are initially
assumed to arise from scene edges lying on a roof or on the
ground. Again, i t s appearance can be predicted.

3) Many stereo systems have trouble with wide angle stereo
images because they rely heavily on local similarities in the
two images [21, 131, [ 91, [ 121, [ 131. In our approach, how-
ever, because the junction is intended to represent a structural
component in the scene, we also rely on more global, struc -
tural similarities in the two images to perform the matching.

4) For a scene with many occlusion boundaries, an approach
based on feature matching results in much more accurate 3-D
positions for these boundaries than an approach based on gray
scale area matching.

A. Steps in Stereo Analysis
Extracting Lines: The f i rs t step in the stereo analysis i s to ex-

tract linear features. A 3 X 3 Sobel operator i s used to extract
edge points, as shown in Fig. 2. Then the edges are thinned us-
ing a modified Nevatia and Babu algorithm [ 141, as shown in
Fig. 3. The resulting edge points are linked and straight lines
are fitted to them. The method used to fit straight l ines to a
set of linked points is based on iterative endpoint fitting (71.
However, since this method determines a line using only two
end points, the line equation for the set of points i s recalculated
using least squares. Finally, short l ines are discarded. The re-
sulting line images are shown in Fig. 4.

Extracting Junctions: The next step is to extract junctions
from the line images. A junction i s a group of lines that meet
at a point, and often arises from a vertex in the scene. We con-
sider the following four junction types: L, ARROW, FORK,
and T. To find junctions, a 5 X 5 window around each end
point of each l ine i s searched for ends of other lines. Lines in
the window that are close and nearly parallel are combined into
a single line. Then, if the window contains the ends of three
lines, the lines are classified as an ARROW, FORK, or T junc-
tion depending on t h e angles between the lines. The position
of the junction point i s the middle of the three end points. I f
a window contains the ends of two lines, the l ines are classified
as an L junction. The intersection of the two lines determines
the position of the junction point. I f a window contains more
than three lines, each set of two lines is assumed to form a dis-
tinct L junction. Junctions that have been found in this man-
ner are labeled in Fig. 5.

Find Potential Junction Matches: The next step in the stereo
analysis i s to match the junctions found in one image with those
in the other. L e t us consider how L junctions are matched.
As explained previously, each L junction in one image is ini-
tially assumed to l i e on a plane which i s almost parallel to the
camera image planes. The shape and orientation of i t s corre -
sponding junction in the other image, therefore, can be pre-
dicted. In stereo images, i t is known that for each point in one
image, the corresponding point in the other image lies along a
line, called the epipolar line, which depends only on the camera
model. Each L junction in the first image may therefore be
matched with several junctions in the second image that l ie
along the corresponding epipolar line and that have, within
tolerance, the predicted shape and orientation. An interesting
point i s that we do not try to match only with junctions in the
second image that have been previously found. Rather, the
shape and orientation of the corresponding junction in the
second image i s predicted for every point lying on the epipolar
l ine (on the appropriate side of the infinity point), and at each
of these points, a search is made within a prespecified window
for lines that might correspond to the predicted junction. The
requirements, however, for two lines to be a junction is more
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Fig. 3. Result of thinning the edges in Fig. 2. Results for the upper
middle part of each image in Fig. 2 are shown here.

Fig. 4. Straight lines fitted to the edge points of Fig. 3 after they are
linked.

Fig. 5. Result of classifying Junctions In a different version of line im-
ages than sholrn in 1 ig. 4. Junctions are classified as L, A (arrow), 1-
(fork). or T.

relaxed than the requirements during initial Junction search.
We therefore improve feature detection in each image by using
the features found in one image to predict features i n the other
image. (Matching is performed in two directions, from the
first image t o the second. and vice versa.)

To match ARROW. FORK, and T Junctions. each pair of
lines forming the junction i s treated as i f i t were an LJunction
and matched in the manner described above.

Search ,for Unique Junction Marches: Next, a beam search
[ 1 5 1 i s used to arrive a t a unique combination of junction
matches. There are two factors involved in computing costs
for the various combinations of matches.

1 ) Local cost between two potentially matching junctions i s
computed bb the similarity of thc image intensities inside the
Junctions. The assumption here i s that the two junctions will
havc similar intensities if they arise from the same face corner.
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Fig. 6. Matches that have been found for junctions and lines in Fig. 5.
Note that not all matches are correct. For example, although the
junction matches (J1, J2) and (53, J4) arc corrcct, thc match (JS,J6)
i s incorrect.

\
\

\
. -

Fig. 7. Perspective view of 3-D wire -frame description (Le., 3-D vertices and edges) derived from matches shown in Fig. 6.

Similarity i s determined by comparing the average intensities
of regions along the legs of the junction in each image.

2) Global cost i s based on the consideration that i f there are
two vertices in the scene with the same heights, the positiona!
relationship between their corresponding junctions in one im-
age will be the same as in t h e other image. This i s due to the
image planes being parallel to the ground plane. We make the
assumption that junctions which are close to one another will
often correspond to vertices lying on top of the same building,
thus having approximately the same height. Global cost be-
tween two potentially matching junctions is the-efore com-
puted by the similarity of the configuration of the neighbor -
hoods around the junctions, Similarity between pairs of
junctions in each image is determined by comparing the vec-
tors connecting the junctions.

The matching procedure i s applied from the first image to
the second and vice versa. The results are then merged.

The search space i s represented by a network whose nodes
are the possible pairs of junction matches: each junction in,
say, imagel i s paired with each of i t s potential matches in
image2. Any path through the network that visits exactly one
of the several nodes for each junction in imagel represents a
set of unique junction matches. An exhaustive search involves
exploring all possible paths. Beam search differs in that only a
limited number of paths are explored. The beam search pro-

ceeds by successively considering each junction in imagel, and
simultaneously considering all nodes for each of these junc-
tions. At each junction, all the partial paths that have been
obtained by processing previous junctions are evaluated. All
but the best N paths (as determined by the sum of the local
and global costs described above) are discarded.

The results of this search are displayed in Fig. 6. which shows
junctions and lines in one image that have matches in the other
image.

Search for Third Legs of Junctions: The next step i s to find
lines in the images that might be the third leg of matched junc-
tions and that might represent scene edges perpendicular to the
ground plane. The method used i s to find l ines near t h e junc-
tions in both images that are directed toward the orgin.

Generate 3-0 Wire Frames: Finally, 3-D coordinates are de-
rived using triangulation. Fig. 7 shows a perspective view of
the 3-D vertices and edges that result. We call th is a wire -
frame description of the scene.

IJI. REPRESENTING AND MODIFYING THE
3-D SCENE MODEL

Our requirement that the scene model i s to be incrementally
acquired leads to several issues: 1) representing partial con-
straints on 3-D structure, 2) incremental accumulation of these
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Fig. 8. Rectangular boxes indicate geometric constraints on topological
nodes. Arrows indicate direction of propagation o f constraints.

partial constraints, and 3) handling discrepancies in informa -
tion acquired at different times.

Our approach involves representing the model in a modular
manner. Constraints on 3-D structure are represented in the
form of a graph, called the strucrure graph. The nodes and
links represent primitive topological and geometric constraints.
The structure graph is incrementally constructed through the
addition of these constraints. As constraints are accumulated
in the graph, their ef fects are propagated to other parts of the
graph so as to obtain globally consistent interpretations.

A. Representation of Model

The current structure -graph representation models surfaces
in the scene as polyhedrons. The components of a polyhedral
surface are the face, edge, and vertex. We distinguish the to -
pology of the polyhedral components from their geometry [ 1 ] ,
[ 8 1. The geometry involves the physical dimensions and loca -
tion in 3-space of each component, while the topologyinvolves
connections between the components.

In the structure graph, nodes represent either primitive topo-
logical elements - faces, edges vertices, objects, and edge-groups
(which are rings of edges on faces)-or primitive geometric
elements-planes, lines, and points. Vertex, face, and edge
nodes are tagged as either confirmed or unconfirmed. Con-
firmed means that the element represented by the node has
been derived directly from t h e images. Unconfirmed means
that the element has only been hypothesized.

The primitive geometric elements serve to constrain the 3-
space locations of faces. edges. and vert ices. Plane and line
nodes contain plane and line equations, respectively. Point
nodes contain coordinate values. The graph contains two types
of links: the part -of link, representing the part/whole relation
between two topological nodes, and the geometric constraint
link, representing the constraint relation between a geometric
and topological node.

B. Modification to Model

Modifications to the model wil l occur as part of the process
of incremental construction. Deletions and changes are made
when new information i s found to conflict with information
currently contained in the model. This wi l l happen most of -
t en with portions of the model that have been hypothesized.
Additions to the model a re made to incorporate the new in-
formation as part of the model.

Modifications to the structure graph arc made by adding or
deleting nodes and links. or changing the equations o f line and
plane nodes, or the coordinates of point nodes. All e f fec ts of
modifications are propagated to other parts of the graph.

As an example. consider adding or deleting a geometric con -
straint link between a geometric and topological node. Any of
the three geometric nodes-points, lines. and planes-may con-
strain any of the three topological nodes- vertices, edges. and
faces. Fig. 8 shows how a constraint on one node may propa-
gate to others. The arro1r.s in the figure indicate the direction
of propagation. For example, i f a point constrains a vertex. i t

I Is pan of c ( h k I)
elspanoff(llnk 2)
Pconslrolns b (Ilnk 3)
~cons~rrrnrc(llnk 4)
pconslratnrf(lml; 5)

9
(b) (C)

Fig. 9. (a) Initial structure graph. (b) Link 4 i s deleted. (c) Resulting
structure graph after effects of deletion have been propagated.

must also constrain a l l edges and faces containing that vertex.
Similarly, a point that constrains an edge also constrains al l
faces containing that edge.

When a geometric constraint link i s deleted. the rest o f the
structure graph must be made consistent with this change. Our
approach to this problem i s based on the TMS system 161,
using the notion that when an assertion is deleted, al l assertions
implying i t and all assertions implied by i t should also be
deleted, unless they have other support. Assertions that imply
a given assertion are obtained by following backwards along
the arrows in Fig. 8. Assertions implied by a given assertion
involve following forward along the arrows.

Consider the simple example in Fig. 9(a), which depicts three
topological nodes (vertex u, edge e, face f ) constrained by one
geometric node (point p). Suppose now that link 4 i s deleted
[Fig. 9(b)], i.e., the assertion “p contrains e” i s deleted. To
find the assertion that might imply this one. loca te the box in
Fig. 8 that represents a point constraining an edge, follow back-
wards along the arrow, and the result i s the box that represents
the point constraining any vertex of the edge. In Fig. 9(b), this
represents the assertion “p constrains u, and u i s part of e.”
This assertion must therefore be made false. To do so, we may
delete either link 1, link 3, or both from Fig. 9(b). We have
arbitrarily decided that part -of links should dominate constraint
links, and thus link 3 is deleted. This seems to work well for
our examples.

We now must determine the assertions implied by the one ini-
tially deleted. We follow forward along the arrow from the box
in Fig. 8 that represents a point constraining an edge. and the
result i s the box that represents the point constraining a l l faces
containing the edge. In Fig. 9(b). this represents the assertion
“p constrains f,” which i s link 5. This link sh~uldtherefore be
deleted because t t has no other support. The resultingstructure
graph i s depicted in Fig. 9(c).

IV . GENERATING THE 3-D SCENE MODEL

We now present an example showing how the scene model is
generated from the output of the stereo analysis component.
We s ta r t with t h e 3-D wire-frame description shown in Fig. 10.
The final model derived is a surface -based description. The
various thresholds used throughout this example have been
manuall!. chosen.
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Fig. 10. Perspective v i e w of 3-D vertices and edges extracted from
stereo pair . This version i s different from the one shown in Fig. 7.

Combine Edges: First, i f there are two wire-frame edges that
are nearly parallel and very close to each other, they are merged
into a single edge. This occurs only once in Fig. I O , for the two
edges l abeled E1 and E2.

Generate Web Faces: Next, each vertex i s assumed to corre -
spond to a corner of an object. Therefore each adjacent pair
of legs ordered around the vertex corresponds to the corner of
a planar face. Thus far in our experiments, we have dealt only
with trihedral vertices. In this case, every pair o f legs of each
vertex corresponds to the corner of a separate face. A partial
face called a web face, i s generated for each such pair.

Merge Partial Faces: After all web faces have been created,
those that represent the corners of a single face are merged.
Two partial faces that contact each other (e.&, F1 and F 2 in
Fig. 10) should be merged i f 1) they share exactly one edge, 2)
the edge serves as a boundary of both faces, but does not parti -
tion them, and 3) the planes of the faces are nearly parallel and
very close to each other.

Two partial faces that do not contact each other ( e g , F 3 and
F 4 in Fig. 10) should be merged if 1) each face has a single
chain of edges that i s not closed, 2) each of the two end points
of the edge chain of one face i s uniquely matched wi th those
of the other face, where unique matching i s determined by the
distance between the two points being less than a threshold, and
3) the planes of the faces are nearly parallel and very close.
When merging the two noncontacting faces, the two edges on
which each matching pair of endpoints l ie are extended in space
and intersected. The intersection points form two new vertices
on the resulting face.

CompZete the Shapes of Faces: After al l mergers have been
performed, many faces may still be incomplete, i.e., they do
not have a closed boundary. In these cases, task -specific
knowledge i s used to hypothesize the shape of each face, and
it i s completed by generating the appropriate edges and ver-
tices. The rules used here a r e as follows.

1) I f the partial face consists o f a single corner, i.e., i t con-
tains only two connected edges. the shape i s completed as a
parallelogram .

9) Ifthe partial face contains three or more edges connected
as a single chain. the shape i s completed by connecting the
two end points of the c h a m with a new edge.

Find Holes in the Faces: After al l faces have been completed.
one face i s assumed to represent a hole in another face ifI)the
planes of the faces are nearly parallel and close to each other.

Fig. 11. Perspective v i e w of reconstructed buildings. These buildings
correspond to the cluster of buildings a t the upper middle parts o f
the images in Fig. 1.

and 2) the boundary of the f i r s t face, when projected onto the
plane of the second face, fal ls inside the boundary of that face.
When these conditions are met. the bounding edges of the f i r s t
face are converted into a n inner ring of edges of the second face.

Generate Vertical Faces for Incomplete Objects: A t this point,
many objects wil l be only partially complete because they are
not closed. Task -specific knowledge may be used to add more
faces to the object. Because our 3-D information i s obtained
from aerial images of an urban scene, many faces that l i e high
enough above the ground plane represent roofs of buildings.
For each such face, vertical walls are dropped toward the ground
plane from each edge of the face, unless the edge i s also part of
another face, The equation of the ground plane i s currently
interactively obtained. A vertical wall i s dropped either down
to the ground plane, or to the first face it in tersects on the
way down.

Our procedure for dropping vertical faces from a face F i s as
follows. First, an edge i s dropped from each vertex o f F either
to the ground plane or to the first face i t intersects. Next. web
faces are created for each new edge pair at each vertex. Newly
created faces are then merged and completed in the ways des-
cribed above, Fig. 11 shows several perspective views of the
resulting scene model.
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Fig. 13 Perspective view of manually generated vertices and edges
which simulates the information derived from stereo analysis o f im-
ages obtained from an opposite point of view from that shown in Fig.
It The viewpoint for this drawing i s the same as in Fig. 10. Points
P1, P2, and P3, for example, correspond to points PI, P2, andP3 in
Fig. 10.

Fig. 12. Reconstructed buildings of Fig. 11 with g a y scale mapped
onto faces. Gray scale values were derived from the le f t image in
Fig. 1. In a color display, faces and portions of faces that are oc-
cluded in the original image show up as red.

A. Comparison with Depth Map

There are several interesting points about the generated
model. First, notice that i t i s a higher level description than a
depth map. The product of most stereo analysis systems i s a
depth map [ 21, [ 131 which, like an image, i s an array of num-
bers that requires description. Our approach, on the other
hand, has been to extract a sparse amount of 3-D information
using stereo analysis (as shown in Fig. 10) and to use task -
specific knowledge to go directly to a higher level 3-D descrip -
tion. This description i s much more compact than one based
on surface points, and allows properties such as topology,
shape, absolute size, and absolute position of scene objects to
be easily available. It should therefore be easier to update and
refine the model from information obtained from subsequent
views. Furthermore, the model should be more useful for
matching with 2-D image information, with 3-D information
extracted from images, and with other models.

B. Mapping Gray Scale onto Faces

In order to render more realist ic displays, gray scale is added
to them [ S I . This i s accomplished by associating with each
face in the model a normalized intensity image patch of the
face. Although these patches are currently derived from a sin-
gle image of the scene, we plan to generate them from multiple
images. Geometric normalization, which eliminates the effects
of perspective projection, is performed on t h e patches. We
also hope to perform photometric normalization to eliminate
the effects of varying illumination conditions. Fig. 12 shows the
results of adding gray scale to the faces of the model. On a color
display, faces and parts of faces that are occluded in the origi-
nal image are displayed in red. An interesting future problem
involves incrementally updating the intensity patch of a face as
information i s acquired from successive images. Note that the
gray scale displays might also be useful in performing a 2-D
match between the projected image of the model and an image
of the real scene.

v. MULTIPLE VIEWS

This section describes an experiment in combining informa -
tion from two views to generate the scene description. The 3-D
information shown in Fig. 10 i s derived from one view (viewing
the scene from the “front”). Another set of verticesand edges,

depicted in Fig. 13, was manually generated to simulate the in-
formation available from an opposing point of view (viewing
the scene from the “back”). The viewpoints for the perspective
drawings of Figs. 10 and 13 are the same to allow easier com-
parison by the reader. Notice that the information in Fig. 10
emphasizes edges and vertices that are facing the front of the
scene, while vertices and edges facing the back of the scene are
emphasized in Fig. 13.

We have made the assumption in this experiment that we
know the exact positions, relative to the first view, of the cam-
eras used to obtain the second view. Therefore, the wire -frame
descriptions in Figs. 10 and 13 can be expressed in the same
coordinate system. We are currently working on the problem
of matching such descriptions with a model so that relative po-
sitions of views can be automatically determined.

The procedure used in t h i s experiment is similiar to the one
described in the last section, except that matching and merging
of the two sets of wire frames i s also required.

First, for each set of wire frames, edges that are nearly paral -
lel and very close to each other are merged. Next, each con-
nected group of edges i s labeled as a separate wire-frame object.
We now want to merge objects derived from the first view with
matching objects derived from the second view. Two objects
are said to match if they have matching vertices or edges. The
requirements for two vertices, one from each object, to match
are: 1) they must be very close together, or 2) they must be
part of matching edges, and the other two vertices of the edges
match. The requirements for two edges, one from each object,
to match are: 1) the two vertices of one edge must match the
two of the other, or 2) one vertex of one edge matches one ver-
tex of the other, and the two edges are close together and overlap
in their lengths. These rules are used in a relaxation algorithm
to obtain matching vertices and edges.

Two matching wire-frame objects are merged in the follow -
ing manner. First, their matching vertices are merged. The co-
ordinates of each resulting vertex are those of the midpoint of
the line connecting the two initial vertices. Next, the match-
ing edges are merged by using a type of “averaging” to obtain
a resulting edge for two initial edges that do not coincide. This
averaging i s based on the observation that end points of edges
that are vertices generally have much more accurate 3-space
positions than endpoints that are not vertices. Therefore, the
vertex endpoints are given greater weight in the averaging than
the nonvertex endpoints. Finally, a l l other edges and vertices
of the two objects are combined to generate a single wire-frame
object.

From this point onward, processing continues as described in
the previous section. Web faces are generated for each comer
of each vertex, the web faces are merged, the shape of incom-
plete faces are completed, holes in faces are found, and vertical
walls are dropped from faces floating above the ground. Fig. 14
shows several perspective views of the resulting scene model.
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Fig. 14. Perspective views of buildings reconstructed from two views.

Display0
t

Fig. 15. 3-D Mosaic flowchart, showing major modules (boxes) and
data structures (ellipses). The matcher has not yet been implemented.

A. Results with Multiule Views

There are two important differences between the scene mod -
els shown in Figs. 14 and 11. First, the one in Fig. 14 contains
more buildings. This i s expected because more wire -frame data
are available in constructing this model. Second, many build-
ings that are described in both models are more accurately de-
scribed in the one in Fig. 14. That is, the positions of vertices
and edges of these buildings are more precise. There are two
reasons for this. 1) Since more wire -frame data are available for
reconstructing these buildings. we obtain high accuracy for
more vertices and edges. 2) Since many vertices and edges are
redundantly available in both sets of data. their positions are
“averaged,” generally decreasing the amount of error.

This experiment demonstrates how the information provided
by each additional view allows the scene model to be gradually
refined and made more complete.

In this experiment, only wire -frame objects are matched and
merged. Our next step wil l be to match and mergeawire -frame
description with a scene model. Our current experiment can also
be thought of as merging wire frames with a scene model by
noting that it i s equivalent to having generated a model from
one set of wire frames, but using only confirmed vertices and
edges of the model to match and merge wi th the other set of
wire frames. This gives an indication of the importance of con-
firmed information for the more general matching and merging
processes. Our next step wil l require determining which parts
of t h e model, both confirmed and unconfirmed, require mod-
ification. Some of these parts may actually have to be pulled
apart and rebuilt, while others may merely require modifica -
tions to their 3-space locations.

quence of images taken from multiple viewpoints. We have also
shown that task -specific knowledge i s very useful in interpreting
complex images. Our stereo analysis component uses such
knowledge for matching features in the images, and our higher
level reasoning component uses such knowledge for recon-
structing shapes from the stereo output.

Fig. 15 displays a flow chart for the whole system. The stereo
analysis extracts 3-D wire -frame descriptions representing
portions of boundaries of the buildings in the scene. A surface -
based model representing an approximation of the scene is then
generated from the wire -frame descriptions. This model should
be useful for tasks such as matching, photointerpretation, dis-
play generation, and path planning. On a color display, the
images in Fig. 12 would show red for parts of the scene not yet
observed. This idea can be used in a task such as planning flight
paths for reconnaissance, where a path that permits viewing
the maximum amount of red portions might be optimal.

There are several extensions and improvements we have in
mind for our system. In addition to continuing our experi -
ments wlth multiple views as discussed in the previous section,
the following are our main tasks for the immediate future.

1) Using the scene model for matching. This is required for
performing model -based image understanding and for updating
the model wi th information obtained from a new view.

2) Verifying a scene model in a top-down manner by project -
ing hypothesized edges and vertices ir,to the image plane and
then searching for them in the image.

3 ) Increasing the amount and accuracy of the wire-frame in-
formation extracted during stereo analysis. More boundaries
of buildings in the scene than shown in Fig. 7 can probably be
extracted by directly incorporating task -specific knowledge a t

VI. CONCLUSION the lowest lkvels in the process of extracting junctions from the
image

The current s t a t e o f the 3-D Mosaic project has been described.
The goal of this project i s to acquire a detailed 3-D model of a
complex scene from images. A useful approach tothisproblem F. Komura did much work in exploring and experimenting
i s to acquire the model in an incremental manner. over a se with initial concepts dealing with this project. D. Williams has
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