
Incremental Algorithm for Updating Betweenness

Centrality in Dynamically Growing Networks

Miray Kas, Matthew Wachs, Kathleen M. Carley, L. Richard Carley

Carnegie Mellon University

Pittsburgh, PA, USA

{miraykas@gmail.com, misc@mwachs.com, Kathleen.carley@cs.cmu.edu, carley@ece.cmu.edu}

Abstract— The increasing availability of dynamically growing

digital data that can be used for extracting social networks has

led to an upsurge of interest in the analysis of dynamic social

networks. One key aspect of social network analysis is to

understand the central nodes in a network. However, dynamic

calculation of centrality values for rapidly growing networks

might be unfeasibly expensive, especially if it involves

recalculation from scratch for each time period. This paper

proposes an incremental algorithm that effectively updates

betweenness centralities of nodes in dynamic social networks

while avoiding re-computations by exploiting information from

earlier computations. Our performance results suggest that our

incremental betweenness algorithm can achieve substantial

performance speedup, on the order of thousands of times, over

the state of the art, including the best-performing non-

incremental betweenness algorithm and a recently proposed

betweenness update algorithm.

Keywords — Betweenness Centrality, Incremental Algorithms,

Dynamic Networks, All-Pairs Shortest Paths.

I. INTRODUCTION

For decades, social network analysis has been an important
tool for solving a number of problems such as revealing
patterns of information dissemination, assessing the impact of
business decisions in organizational structures, and identifying
influential actors in social networks.

There are a large number of algorithms in network science
that seek to identify the most prominent nodes and relevant
characteristics of nodes. These can be roughly classed into the
following categories based on the underlying key calculation:
counting local edges, calculating shortest paths, counting two
mode connections, correlation, etc. Of these, the shortest path
and correlation measures are the most costly to calculate, and
that cost increases dramatically when there is temporal
variation in what nodes and edges are present. To address this
problem we examine betweenness, which is the canonical and
most widely used shortest path based metric, while
recognizing that the basic steps here can be generalized to the
other shortest path based metrics. We propose an incremental
algorithm, which reduces the calculation costs for shortest
path based metrics, and breaks up the shortest path calculation
into steps so that the entire calculation can then be done in a
distributed architecture.

The betweenness centrality of a node x is defined as the
fraction of the shortest paths that pass through x across all
pairs of nodes in a network. Traditional techniques used for
computing betweenness centrality involve solving the well-
studied all-pairs shortest paths problem. The all-pairs shortest

paths problem has complexity on the order of O (𝑛𝑚 +

𝑛
!log 𝑛) when it is computed by invoking a single-source

shortest path computation using each social actor (node) as a

source, where 𝑚 denotes the number of social ties (edges),

and 𝑛 denotes the number of social actors (nodes). When an
all-pairs shortest path algorithm such as the Floyd-Warshall

algorithm [1] is used the complexity increases to O(𝑛!).
The initial design point for all of these centrality metrics,

including betweenness, was static snapshots of small networks
(e.g. 20-30 nodes) [2] and the limiting algorithmic
complexities and computation times of centrality measures
were not a significant problem for such small, static networks.
However, restricting the representation of social networks to
static snapshots results in substantial information loss,
especially when the dynamism of social relationships is of
interest in the research.

Increasingly, network data is available through sensors and
on-line resources from networks where the participants may
be changing and/or the level of participation is changing.
Examples include SMS networks, Twitter networks, and inter-
organizational alliance networks.

Dynamic network analysis (DNA) is useful for analyzing
social networks that evolve over time and serves as a response
to the concerns about the limitations of analyses performed on
static snapshots. However, keeping the costly-to-compute
centrality metrics up to date in dynamic networks that rapidly
change/grow becomes computationally very expensive. This is
because many important centrality metrics such as
betweenness require re-solving the all-pairs shortest path
problem with every update/change made to the network.
Expensive computation times inhibit many social network
researchers from analyzing over-time variations of centrality
values on time-variant networks.

To facilitate solutions to costly problems on continually
changing networks, incremental algorithms have been
commonly used. An incremental algorithm is an algorithm
that updates the solution to a problem after an incremental
change is made on its input [3]. Incremental algorithms arrive
at solutions for computationally complex problems in an
efficient manner without recomputing everything from scratch
by preserving significant information from prior
computations. This paper extends existing incremental
algorithms for solving the all pairs shortest path problem [4] to
the case of incrementally computing betweenness centrality of
nodes for each time snapshot of a dynamically updated,
growing network. This requires significant additional
computation and memory over the incremental all pairs

shortest path algorithms. We present results that indicate how
the proposed incremental algorithm for betweenness centrality
will scale with realistic social network data sets.

We broadly classify network updates that evolve a network
into two categories: (i) growing network updates, and (ii)
shrinking network updates. The first group of updates, the
growing network updates, includes (i) inserting a new node,
(ii) inserting a new edge, and (iii) decreasing the cost of an
existing edge. We call them ‘growing network updates’
because they are usually observed due to new actors/agents
joining the network or more/new interactions.

Growing network updates can be handled by a single
incremental algorithm. Insertion of a new node with no edges
(i.e. an isolated node) has no effect on the shortest paths in the
network; therefore, no further action would be required to
complete the update. Insertion of a new node with one or more
edges is equivalent to inserting one or more edges to or from
the new node. Therefore, an algorithm designed to handle
inserting new edges into a network can also handle inserting
new nodes to the network. Inserting a new edge can be
represented as a special case of the network update that
decreases the cost of an edge. Because, inserting a new edge
corresponds to decreasing the cost of an edge from infinity to
a real, positive value in the adjacency matrix. Hence, as
mentioned, a single incremental algorithm will be sufficient to
cover all three sub-types of growing network updates.

Many real-life dynamic networks that can be obtained
online or by other digital means evolve only by growing
network updates, and do not exhibit shrinking behavior. Thus,
even with only support for growing network updates, a
significant number of real life networks can be studied. For
instance, consider a network of co-authorship. As researchers
continue to publish, new nodes and edges are added to the
network where nodes represent the authors and the edges
represent coauthorship, and once the paper is published, the
edge is expected to remain permanently. Hence, handling
growing network updates is important and we primarily focus
on this class of updates.

II. COMPUTATION OF BETWEENNESS CENTRALITY

A. Notation

A directed network G consists of a set of nodes 𝑉(𝐺) and

edges 𝐸(𝐺) where n is the number of nodes, and m is the

number of edges in the network. x → y ∈ 𝐸(𝐺) represents an

edge directed from node x to node y, where x ∈ 𝑉(𝐺) is a

predecessor of y, and y ∈ 𝑉(𝐺) is a successor of x. 𝑃𝑟𝑒𝑑(𝑥) is
used to denote all predecessors of x in the network. Px(y)
denotes the set of predecessors of node y on the shortest paths

from node x. 𝐺 is the transpose (reverse) of network 𝐺 where

all edges in network 𝐺 are reversed in direction. The set of

edges, nodes, and edge costs are also defined for network 𝐺.
In weighted networks, each edge e in the network has a

traversal cost of C(e) where C (x→y) > 0 for x → y ∈ 𝐸(𝐺).
The length of a path Path is the sum of the costs of the edges

on Path. The distance from node 𝑥 to 𝑦 is the length of the
minimum-length path from x to y that is also called the
shortest path. D(x, y) denotes the shortest distance while σ(x,
y) denotes the number of shortest paths from node x to y. The

vector 𝐵 holds the betweenness centrality value of each node.

Finally, SP(x, y, z) is true if the edge x → y ∈ 𝐸(𝐺) is on a
shortest path from x to z, satisfying the two conditions: (i)
there is a path from x to z (i.e. the distance from x to z is D(x,
z) ≠ ∞) and (ii) D(x, z) = C(x, y) + D(y, z). SP is false
otherwise [4].

The algorithms presented in this paper are designed to
handle weighted, directional, dynamic networks with positive
edge weights/costs. Undirected networks can be represented as
directed networks where the edge {x − y} is represented using
two directed edges {x → y} and {y → x}. Binary networks
can also be represented as weighted networks where existing
edges’ weights/costs are always equal to 1.

B. Overview of Betweenness Centrality

Betweenness centrality of a node 𝑖 is defined as the

fraction of shortest paths that pass through node 𝑖 across all

pairs of nodes. Let 𝜎(!,!) be the number of shortest paths from

𝑗 to 𝑘 and 𝜎(!,!)(𝑖) be the number of shortest paths from 𝑗 to 𝑘

that contain node 𝑖.

𝐵(𝑖) =
!(!,!)(!)

!(!,!)
!∈! !

!∈!(!)

 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑘, 𝑖 ≠ 𝑗, 𝑗 ≠ k

C. State of the Art

Herein we focus on betweenness centrality, as it is one of
the most commonly used metrics in the field of social network
analysis. The original argument for an algorithm for
calculating betweenness was introduced by Freeman [2].
Currently, the majority of the implementations for
betweenness centrality use Brandes’ algorithm or a variant of
it [5] which yields O(nm + n2logn) performance for a weighted
network where n is the number of nodes in the network and m
is the number of edges. The Brandes’ algorithm exploits the
sparsity of real life networks to avoid some of the superfluous

work done in ϴ(n3) algorithms, by following an idea similar to
that of Dijkstra’s algorithm.

D. Algorithm Variants for Computing Betweenness

 Many researchers have provided algorithms for variants of
betweenness centrality. One set of variants of betweenness
centrality focus on incorporating over-time information into
the definition of betweenness for dynamically changing
graphs (e.g. [6] [7] [8] [9]). In contrast, we do not change or
extend the definition of betweenness; we rather focus on faster
computation of the original betweenness metric in
dynamically growing networks. Another recent study focusing
on speeding up the exact computation of betweenness
centrality is [10]. The authors use two different heuristics:
structural equivalence and partitioning the network into
smaller components. Although [10] focuses on speeding up
betweenness computation, it targets static networks; and does
not maintain betweenness centrality dynamically. Another
approach that is closely related to ours is QuBE, which
focuses on updating betweenness centralities without
computing all-pairs shortest paths in the network [11]. We
provide comparisons with the QuBE algorithm later in the
results section.

E. Work on Dynamic Shortest Path Computations

We also draw on earlier research on dynamic shortest path
computations. Computation of betweenness centrality is

tightly coupled with solving the all-pairs shortest paths
problem. In the literature, there are many different techniques
proposed for solving the all-pairs shortest paths problem
dynamically [4] [12] [13]. However, some of these techniques
come with a number of restrictions. For instance, [12] solves
the all-pairs shortest paths problem in networks that have
positive integer edge costs that are less than a certain number,
b, which is inapplicable for networks whose edges are positive
real valued numbers. The Demetrescu and Italiano algorithm
[13] depends on the notions of locally shortest paths and
locally historical paths. The main idea is to maintain
dynamically the set of locally historical paths, which is a path
that has been identified as a shortest path at some point and
has not been modified since then. In this study, we use the
dynamic all-pairs shortest path algorithm proposed by
Ramalingam and Reps in [4] as our building block to maintain
all-pairs shortest paths dynamically.

There are many reasons why we use Ramalingam and Reps
algorithm as our basic building block. First, Ramalingam and
Reps algorithm is the most commonly used dynamic all-pairs
shortest paths algorithm in the literature. Second, it has good
performance compared to other dynamic all-pair shortest path
algorithms available in the literature considering the
experiments presented in [14]. Ramalingam and Reps
algorithm performs quite well on sparse, real-life networks
and the compute times of Ramalingam and Reps algorithm
and Demetrescu and Italiano’s algorithm are very close. In
experiments done with real life networks (presented in [14]),
Ramalingam and Reps have the lowest or one of the lowest
compute times among all dynamic all-pairs shortest paths
algorithms. Third, Ramalingam and Reps algorithm is shown
to scale better as the number of nodes increases because
Demetrescu & Italiano’s algorithm maintains more global
structures and requires more memory while Ramalingam and
Reps algorithm requires less space and exhibits better locality
in its memory access pattern. Since supporting an increasing
number of nodes is important for dynamically growing social
networks, we decided to use Ramalingam and Reps algorithm
as a building block in our algorithm.

III. INCREMENTAL BETWEENNESS ALGORITHM

A. Background on Incremental Algorithm Design

An incremental algorithm updates the solution to a
problem after an incremental change is made on its input [3].
In the application of an incremental algorithm, the initial run
is conducted by an algorithm that performs the desired
computation from scratch and the incremental algorithm is
used in the subsequent runs (i) using information from earlier
computations and (ii) to reflect the update on the network
while avoiding re-computations as much as possible.

The computation of betweenness centrality depends on the
number of shortest paths in a network and the intermediate
nodes on these paths. A network update such as an edge
insertion or edge cost decrease might result in creation of new
shortest paths in the network. However, a considerable portion
of the older paths might remain intact, especially in the
unaffected parts of the network. Therefore, accurate
maintenance of the number of shortest paths and the
predecessors on the shortest paths will suffice for accurately
updating betweenness values in the case of dynamic network

updates. This is the key observation we make in the design of
our incremental betweenness centrality algorithm.

Our incremental betweenness centrality algorithm extends
the dynamic, all-pairs shortest path algorithm proposed by
Ramalingam and Reps in [4]. The original Ramalingam and
Reps algorithm [4] is a dynamic all-pairs shortest-path
algorithm which maintains only the shortest distances when a
network is updated. While the Ramalingam and Reps
algorithm can be used as a basic building block for the
proposed incremental betweenness centrality algorithm,
several major extensions are required for detecting the newly
formed shortest paths of equal length, maintaining the number
of shortest paths, and maintaining the predecessors on these
shortest paths. Due to space constraints, we describe only the
algorithms we have designed for our incremental betweenness
computation. The pseudocodes are provided in the Appendix.

B. Procedures for Incremental Betweenness Centrality

1) InsertEdge Procedure
When there is a network update (e.g. edge insertion or

edge cost decrease), the entry point of execution is the
INSERTEDGE procedure. In the first phase of the INSERTEDGE
procedure, INSERTUPDATE is invoked twice (Lines 3–4 of
Algorithm-1) to determine the sets of affected sinks and
affected sources, passing once the source, once the destination
of the inserted edge as a parameter to it. INSERTUPDATE is
then invoked for each affected sink and source node (Lines 5–
8) to modify the information required for accurate
maintenance of betweenness values. The modified information
includes the shortest distances (D), the number of distinct
shortest paths (σ), and the predecessors on these shortest
paths. After all the shortest distances, predecessors, and the
shortest path counts are updated accurately for the affected
nodes, betweenness values of the intermediate nodes that lie
on the paths between affected source and affected sink nodes
are adjusted (Line 9). The first two lines prepare auxiliary data
that are only used during the current update, and are not
maintained across different updates.

2) InsertUpdate Procedure
The INSERTUPDATE procedure examines the impact of the

updated edge {src → dest} on the network, for each affected
sink or affected source node z. The update process continues
until there are no edges that were on the shortest paths that
would propagate the update further. The INSERTUPDATE
procedure consists of three phases:

• If a strictly shorter path is found, the shortest path
distance is updated. The predecessors and the number of
shortest paths are cleared. Betweenness values for the
intermediate nodes on the cleared paths are also reduced
opportunistically. (Lines 7–14 of Algorithm-2).

• If the shortest paths have changed in any way (number or
length), the predecessors and the number of shortest paths
are adjusted accordingly (Lines 15–25 of Algorithm-2).

• Propagation of the update across the network is continued
if appropriate (Lines 26–29 of Algorithm-2).

Consider the case where the edge {x → y} is updated. In
the first phase of the algorithm, assume that there is now a

path from node x to z passing through the edge {x → y},
which is strictly shorter than the previously known shortest
path(s) from x to z (Lines 7–14 of Algorithm-2).

In this first phase of the algorithm (Lines 7–14 of
Algorithm-2), since a strictly shorter path from x to z is found,
the previously known shortest paths are no longer the shortest.
Hence, the number of known shortest paths and the
predecessors should be cleared (Line 11 of Algorithm-2).
Before we clear the number of shortest paths (σ (x, z)) and the
update distance from x to z (D (x, z)) to be equal to the new
distance (alt), we temporarily record their values in σold (x, z)
and Dold (x, z) and reduce the betweenness values of the old
predecessors because these intermediates do not have any
contribution from the (x, z) pair anymore. Attempt to retrieve
σold and Dold values returns the temporarily stored values if
they exist and returns current σ and D values otherwise.

At the beginning of the first phase, we check if it is the
first time a strictly shorter path is found from x to z by
checking if σold contains any information on the pair (x, z)
(Line 8 of Algorithm-2). We check σold because a change in
betweenness values is required if the number of shortest paths
changes even if the shortest distance does not necessarily
change. For every updated pair, we record the original number
of shortest paths from x to z known before the update to ensure
accurate reduction of betweenness values for the nodes that
were on the paths that are not shortest paths anymore.

Since the original Ramalingam and Reps algorithm is
concerned with only updating the D values, in their algorithm,
the AffectedVertices set only covers the nodes with lower-cost
paths to/from z that pass through the modified edge {src →
dest}. However, for computing betweenness centrality, we
need to maintain the number of shortest paths (σ) and the

predecessors (𝑃) accurately as well. Hence, we need to
consider the alternative shortest paths of equal length and
expand the AffectedVertices to include nodes that have new
alternative shortest path(s) to/from node z passing through the
originally modified edge {src → dest}.

The second phase of the algorithm (Lines 15–25 of
Algorithm-2) checks if the shortest distance from x to z is now
equal to the cost of the alternative shortest path passing

through the edge {x → y} (Line 15 of Algorithm-2). If they
are equal, then we need to update the number of shortest paths
from x to z and the predecessors on these shortest paths.

The entry condition of the second phase (Line 15 of
Algorithm-2) is not a condition that is tied to the if block
between Lines 7–14. Once the condition in Line 7 (alt < D(x,
z)) is satisfied (i.e. a strictly shorter path is found), the value of
D(x, z) is updated in Line 9 to be the newly found alternative
distance alt. Therefore, the condition in Line 15 of Algorithm-
2 (alt = D(x, z)) is satisfied for all cases that originally
satisfied the initial check of alt < D(x, z) in Line 7. However,
the condition alt = D(x, z) covers additional cases where there
are newly formed alternative shortest paths of equal length.
Such cases would not satisfy the condition on Line 7 which
checks for strictly shorter paths, but would still satisfy the alt
== D(x, z) condition in Line 15. This new part of the
algorithm, not handled by Ramalingam and Reps, is required
for accurate maintenance of betweenness. Finally, in Line 25
of Algorithm-2, we mark node x as affected whose
predecessors should be further checked to understand if the
update has a wider impact on the network.

When updating the number of shortest paths from x to z,
we increase the number of shortest paths only by the number

of shortest paths that are newly formed due to the change
made in the network. To obtain the number of newly formed
shortest paths, the number of shortest paths from x to z that

use the modified or inserted edge {src → dest} should be
counted. The number of newly discovered paths is calculated
as σ(x, src) * 1 * σ(dest, z), and then added to the σ(x, z) to
calculate the total number of shortest paths from x to z. From
src to dest, there may be other shortest paths that might
already be counted in. Hence, to avoid double counting, we
only consider the modified edge, which is represented with the
‘1’ in the above given formulation (Line 21 of Algorithm-2).

This second phase of the algorithm also updates the
predecessors on the shortest paths from x to z due to formation
of new shortest paths that pass through the edge {x → y}.
Hence, the new shortest paths can be represented in the

following form: x → y→ vi……vn → z. In this case, x becomes
a predecessor of y, and the predecessors on the shortest path(s)
from y to z become predecessors on the shortest path(s) from x
to z. Predecessors denote the nodes that are the last stop(s)
before the final destination node, which is z in this case. The
predecessors are updated in Lines 22–23 of Algorithm-2.

The final phase of the INSERTUPDATE procedure (Lines
26–29 of Algorithm-2) is for pruning the parts of the network
that are not affected by the changes in the shortest paths. For
each of the edges to/from the affected node x, it is checked to
see if they are on the inspected shortest paths. If SP returns
true, and if the other end of the edge (node u) is not in the list

of already processed nodes, the edge u → x is inserted in the
set of edges that would need inspection for subsequent
processing. This part of the algorithm is responsible for
propagating updates further if required. The ripples of updates
expand outwards as much as required starting at the modified

or inserted edge in the center. In this case, the edge u → x
would carry the network update to the next ripple level.

3) ReduceBetweenness Procedure
This procedure opportunistically reduces the betweenness

values of intermediates on the old set of shortest paths from x
to z that are no longer shortest paths. To be able to construct
the shortest paths, we only store predecessors; not the whole
path. The shortest paths from node x to z are constructed on
demand by following the predecessors. However, since these
paths are constructed on demand, there might be subpaths that
might have already been updated before the network update
propagation reaches the shortest paths/distance from x to z. In
such cases, there will be some intermediate nodes that are
already cleared and not reachable anymore. The nodes that are
already deleted from the shortest paths are stored in trackLost.

In Lines 1–20 of Algorithm-3, first, we reduce the
betweenness of each node v that is found to be an intermediate
from x to z and remove the contribution of the node pair (x, z)
from the betweenness of node v. Then, we process currently
unreachable intermediate nodes that originally belonged to the
shortest paths from x to z and reduce their betweenness values
as required (Lines 21–29 of Algorithm-3).

4) IncreaseBetweenness Procedure
By the time INCREASEBETWEENNESS is invoked in the

INSERTEDGE procedure (Line 9 of Algorithm-1), all the
shortest paths, the number of distinct shortest paths, and the
predecessors affected by the network update have accurately
been adjusted. Since we have also reduced the betweenness

values of the intermediate nodes on the invalidated shortest
path by invoking REDUCEBETWEENNESS, the only remaining
action is updating the betweenness values for the new set of
intermediate nodes on the paths from the affected source
nodes to the affected sink nodes. For each node pair (x, z) that
is recorded in the σold set, we increase the betweenness value
of each intermediate n on the shortest paths from x to z by (σ

(𝑥, 𝑛) * σ (𝑛, 𝑧) / σ (𝑥, 𝑧)). With this step, incremental update
of betweenness centralities is complete.

5) Discussion on Algorithmic Complexity
Next, we discuss the time complexities of the proposed

algorithms. Earlier, it has been shown that an incremental
algorithm can perform asymptotically no better than its static
counterpart for some dynamic problems [15] because in the
worst case an incremental algorithm needs to solve the entire
problem set. In our case, the proposed algorithms’
complexities are not any lower than that of Brandes algorithm.
We express the complexity analysis for incremental
algorithms by incorporating the complexity of changes for
expressing the time complexity of the incremental function.

The INCREASEBETWEENNESS procedure runs a for loop for
σold many iterations and inside the outer for loop, there is one
for loop, and one while loop. These two loops should be
considered in combination because the intermediate nodes on
the shortest paths from src to dest are handled by one or the
other and the distinction is irrelevant. The complexity of the
bodies of these loops are O(1), and they are executed once for
each intermediate node. So, the overall complexity of the
procedure is O(|σold| I) where I represents the total number of
intermediates processed for all node pairs listed in σold. In the
REDUCEBETWEENNESS procedure, the run time is dominated
by the if block at the end (Lines 25 – 29 of Algorithm-3). This
block performs a search over the map of all known
intermediate nodes on the shortest paths from a to z and uses
two intermediates at a time to form the key to the map. Hence,
its complexity is O(Ia,z

2) where Ia,z represents the number of
intermediates on the shortest paths from a to z.

The overall complexity of the INSERTUPDATE procedure is
dominated by the complexity of the priority queue Workset.
Workset is used to track all the affected nodes as the
propagation of the update progresses. INSERTUPDATE
essentially performs a traversal in the neighborhood of every
AffectedSink and AffectedSource. The work performed inside
the while loop is O(||Affected|| log ||Affected||) + I2) where
||Affected|| is used to denote the sum of the number of the
edges and the nodes in the subgraph formed by
AffectedSource and AffectedSink nodes’ neighborhoods.
Finally, the INSERTEDGE procedure invokes the
INSERTUPDATE procedure for each AffectedSink and
AffectedSource node once, followed by an invocation of the
INCREASEBETWEENNESS procedure, yielding
O((|AffectedSink|+|AffectedSource|)||Affected||log ||Affected||)
+ I2 + |σold| I) time complexity overall.

The proposed algorithms depend on the dynamic all-pairs
shortest path algorithms proposed in [4] to incorporate the
computation of betweenness centrality. Incremental
algorithms usually provide faster solutions at the cost of more
memory usage. The incremental betweenness algorithm also
takes quadratic space, using memory on the order of O(n2 +
m). Accurate maintenance of betweenness centralities depends

on the accurate maintenance of shortest distances, whose
correctness was proved in [4]. The reader is referred to [4] for
more details on the proof of correctness.

IV. IMPLEMENTATION, DATASETS, AND RESULTS

A. Implementation Environment

We implement our algorithms in an open source, dynamic
Java graph library [16]. Our performance results are collected
on a machine with a 3.20Ghz CPU and 256 GB of RAM.

B. Synthetic Networks

For synthetic networks, we use preferential attachment
networks (PF) [17], Erdos-Renyi (ER) networks [18], and
small-world (SW) networks [19]. We vary the number of
nodes from 1000 to 5000 with a step size of 2000, and fix the
average degree to 6. For small world networks, the rewiring
probability is 0.5. We generate these synthetic networks with
all but 100 edges that are selected randomly. We insert the last
100 edges incrementally and get the average update
performance in terms of execution time over the repeated
invocations of Brandes’ algorithm, which is the best
performing algorithm used in standard implementations.

TABLE 1 - PERFORMANCE IMPROVEMENTS OBTAINED ON DIFFERENT

NETWORKS WITH DIFFERENT TOPOLOGIES/SIZES.

TABLE 2 - PERCENTAGE OF AFFECTED NODES (AFFECTEDSINKS +

AFFECTEDSOURCES)

Table 1 lists average speedup obtained per new edge

insertion while Table 2 shows the percentage of nodes that are

affected in terms of the sizes of AffectedSinks and

AffectedSources. These results indicate that the incremental

betweenness algorithm performs best with the preferential

attachment networks. Comparing the network statistics and the

speedup obtained on different networks (Table 3), the speedup

obtained using the incremental betweenness update algorithm

increases with the increased network size. It is also observed

that other parameters such as network diameter, characteristic

path length, and min/max betweenness values are inversely

related with the performance obtained. The values in Table 1

and the speedup column in Table 4 describe the speedup

obtained over Brandes’ algorithm averaged across 100 updates

on the network. For instance, for a single update on 1000-node

Erdos-Renyi network, the incremental betweenness algorithm

is 7.99 times faster on average than invoking Brandes

algorithm for the same update, resulting in a 799x faster

cumulative execution time for a sequence of 100 updates.
For instance, in preferential attachment networks, the

average path length and the diameter are lower than they are
in other topologies. However, the average betweenness value
and the network size exhibit the strongest correlation with the

#(Nodes) PF ER SW

1000 1178.66 x 7.99 x 17.48 x

3000 971.40 x 18.98 x 18.53 x

5000 3760.48 x 31.19 x 22.54 x

#(Nodes) PF ER SW

1000 3.54% 79.16% 32.52%

3000 1.98% 85.7% 33.35%

5000 1.16% 87.36% 31.86%

obtained speedup. The performance benefits of the
incremental betweenness algorithm increase with the
increasing network size. When the average betweenness
values are considered, the difference across different
topologies is very large. This is because in preferential
attachment networks, there are fewer nodes that are on the
shortest paths of many other nodes than in other network
topologies. Hence, when there is a network update, there are
fewer nodes whose betweenness values should be adjusted.
Another factor is the average and maximum of the shortest
path lengths (i.e. average path length and diameter). When the
average distances are low, fewer nodes lie on the shortest
paths which also results in tracking of fewer predecessors
when there is need for reconstructing the shortest paths.

TABLE 3 - NETWORK STATISTICS.

Topo
logy Size Max Btw

Avg.
Btw

Std.

Dev.
Btw

Dia

me
ter

Avg

Path
Length

Clust
Coef

PF 1000 1953.97 94.37 177.47 10 3.45 0.014

PF 3000 5183.26 197.59 434.828 14 4.126 0.007

PF 5000 12987.22 292.48 749.003 16 4.442 0.005

ER 1000 25429.36 4777.28 4249.81 15 6.305 0.003

ER 3000 76713.80 18136.7 10087.4 14 7.086 0.001

ER 5000 108061.5 32073.4 16062.9 14 7.492 0.001

SW 1000 12401.46 2685.67 2255.69 33 7.612 0.044

SW 3000 82585.03 11296.2 10401.4 55 10.33 0.039

SW 5000 147015.4 21003.3 20449.2 71 11.93 0.039

TABLE 4 - PERFORMANCE BENEFITS AND NETWORK STATISTICS OBTAINED ON

SMALL WORLD NETWORKS (1000 NODES, AVERAGE DEGREE = 6).

p

Speed
up

Affect
%

Max

Btw

Avg.

Btw

Std.
Dev.

Btw

Dia
me

ter

Avg
Path

Len

Clust

Coef

0.2 1.36 47.78 34020 4305 3104 35 9.71 0.154

0.4 9.97 36.47 15036 3183 2395 30 8.02 0.071

0.6 18.3 28.00 14763 2268 2463 31 7.79 0.024

0.8 67.3 13.06 6779 833 1162 22 6.44 0.005

1.0 72.2 2.23 1026 100 144 12 3.86 0.003

In addition, small world networks have different

topological characteristics and performance values depending

on the rewiring probability, p, chosen. We perform a sweep of

p values covering the range of 0.2 - 1.0 with a step size of 0.2

on 1000-node networks, with an average degree of 6. As

shown in Table 4, with the increasing rewiring probability,

clustering coefficient, diameter, and the characteristic path

length reduce. This reflects as a reduction in the average of

unscaled betweenness values along with an increase in the

speedup obtained using the incremental betweenness

algorithm similar to the results presented in Table 1 and Table

3. In addition, the speedup obtained over repeated invocations

of Brandes’ algorithm increases with the reducing percentage

of affected nodes, in line with the results presented earlier.

C. Real Life Networks

Next, we evaluate the performance of our algorithm using
a number of real life networks that are of different magnitudes
and that grow incrementally over time. The networks used in
our evaluations are prepared as weighted networks where the
cost of an edge is inversely proportional to the strength of
relationship. We consolidate multiple updates for the same
pair of nodes in a single edge. For instance, if an interaction
between two nodes x and y has been recorded twice up to a

certain point, then the edge x → y has the cost of 1/2. When a
third update is recorded between x and y, then the cost of the

edge x → y is updated to be 1/3. We first describe the datasets
we have used, and then compare the performance of our
incremental betweenness update algorithm against the best-
performing non-incremental betweenness algorithm (Brandes’
algorithm [5]). We use four different real life networks:
SocioPatterns (communication between conference attendees)
[20], Facebook-like (online-forum communication between
students) [21], HEP Co-Authorship Network (coauthorship
relations between High-Energy Physics researchers) [22], and

P2P Communication Network (P2P file sharing) [23].

TABLE 5- PERFORMANCE OF INCREMENTAL BETWEENNESS ALGORITHM ON

REAL LIFE NETWORKS.

Network

D?

#(N) #(E)

Avg
Speedup Affect%

SocioPatterns U 113 4392 9.58 x 38.26%

FB-like D 1896 20289 18.48 x 27.67%

HEP Coauthor U 7507 19398 357.96 x 42.08%

P2P Comm. D 6843 7572 36732 x 0.02%

TABLE 6- NETWORK STATISTICS COLLECTED ON REAL LIFE NETWORKS.

Network Max Btw Avg. Btw

Std.
Dev.
Btw

Diam
eter

Avg.
Path
Len.

Clus
Coef

SocioPatterns 423.477 36.752 51.139 3 1.65 0.53

FB-like 146171.2 2848.62 9753.8 8 3.19 0.08

HEP Coauthor 820318.2 13553.29 38024 15 5.74 0.46

P2P Comm 1515.99 0.3298 18.870 3 1.24 0

For evaluating the performance of our incremental
betweenness update algorithm, we first compute the
betweenness centrality values for each network modeling all
but 100 interactions. Then, we incrementally update the
network and record the average speedup obtained over
Brandes’ algorithm. Table 5 presents the performance
improvements obtained along with basic information on the
networks, while Table 6 lists additional information about
other topological properties of the networks.

The results presented in Table 5 and Table 6 suggest that
the incremental betweenness update algorithm can obtain
substantial performance benefits, but these benefits vary with
the network topology. The avg. speedup column in Table 5
describes the speedup obtained over Brandes’ algorithm
averaged across 100 updates on the network. For instance, for
a single update the incremental betweenness algorithm is 9.58
times faster on average than invoking Brandes algorithm for
the same update; resulting in 958x faster cumulative execution
time for a sequence of 100 updates.

The performance benefits improve with the increasing
network size and decreasing characteristic path length,
diameter, and average betweenness as shown in Table 5 and
Table 6. For instance, on the HEP co-authorship network,
there are several close-knit groups and it is a relatively more
connected network than the P2P communication network,
where only a few users act as servers for the other users
providing them with files to download. Hence, in the P2P
communication network, very few nodes can lie on the
shortest paths between other nodes. Consequently, when a
network update occurs, few shortest paths tend to be changed,
and thus few betweenness values are affected, resulting in a
dramatic average speedup per each update (36732x) over
Brandes’ algorithm. The rightmost column of Table 5 shows
the percentage across the entire set of nodes that were
affected. In undirected (bidirectional) networks, the
percentage of affected nodes tends to be higher as each
inserted edge causes the network update to propagate in
multiple directions.

D. Comparison with QuBE Algorithm [11]

The idea of the QuBE algorithm depends on estimating the
nodes whose betweenness values might change due to an
update in a network while avoiding computation of all-pairs
shortest paths. In contrast, our algorithm depends on dynamic
maintenance of all-pairs shortest paths and the related
auxiliary data. The QuBE algorithm covers edge
insertions/deletions, leaving out node insertions for growing
networks and edge cost modifications for weighted network
types. In contrast, our algorithm supports node/edge insertion
and edge cost modifications for the weighted networks.

Providing support for weighted networks makes the
algorithm more complex. For example, assume that there is a
path from x to y. Then, with a network update an edge from
node x to y is inserted into the network. In binary networks, it
is obvious that no path between x and y can be smaller than a
direct edge between x and y, and several changes on the
shortest paths can be maintained by considering the number of
hops. However, in weighted networks, when an edge from x to
y is inserted, it is still necessary to check the paths of
equivalent length before ruling out all previously known
shortest paths between x and y.

TABLE 7- PERFORMANCE COMPARISON OF QUBE AND OUR PROPOSED

ALGORITHM.

Network Type #(Node) #(Edge) QuBE

Incremental
Betweenness

Eva [24] Ownership 4457 4562 2418.17 25425.87

CAGrQc [25] Collaboration 4158 13422 2.06 67.86

We compare our algorithm against the QuBE algorithm
using the datasets the authors used in their paper [11]. We
select two of their datasets: the dataset on which QuBE
performs the best (Eva), and the dataset on which QuBE

performs the lowest (CAGrQc). Table 7 reports the average
performance results for 100 random updates on the networks.
For purposes of fair comparison, the updates included
shrinking network updates as well, which were handled by an
incremental shrinking network update algorithm we have
under development and excluded due to space reasons. Both
QuBE and our algorithm are compared against the Brandes’
algorithm as baseline. Our algorithm performs 10-30 times
better than the QuBE algorithm while providing substantial
improvements over Brandes’ algorithm. Additional analyses
of speedup and memory consumption are presented in [26].

V. CONCLUSION

This paper proposes an incremental betweenness algorithm
that performs dynamic maintenance of betweenness values in
the cases of a new edge/node insertion and/or edge cost
decrease. The goal is to avoid re-computations involved in the
analysis of dynamic social networks and reflect changes

triggered by a network update as efficiently as possible. The

approach in this paper has already been extended to other
types of centrality measures and to networks that grow and
shrink over time [27]. While the underlying behavior of
incremental all-pairs shortest path computation has been
studied, the memory and computation required to extend the
shortest path algorithm to a particular centrality metric can
result in significantly different scaling of computation time
and memory requirements with network size and type. Our
performance results indicate substantial performance
improvements over the state of the art including non-

incremental and dynamic update algorithms on realistic social
network data.

VI. ACKNOWLEDGEMENTS

This work is supported in part by the Defense Threat

Reduction Agency (HDTRA11010102), and by the center for

Computational Analysis of Social and Organizational Systems

(CASOS). The views and conclusions contained in this

document are those of the authors and should not be

interpreted as representing the official policies, either

expressed or implied by the DTRA or the U.S. government.

APPENDIX

Algorithm-1: INSERTEDGE (src, dest, cost)

1. σold ← []; Dold ← []; trackLost ← []; PairsDone = []

2. C (src, dest) ← cost

3. Sinks ← INSERTUPDATE (dest, src, src, PairsDone)

4. Sources ← INSERTUPDATE (src, dest, dest, PairsDone)

5. for s ∈ Sinks

6. INSERTUPDATE (src, dest, s, PairsDone)

7. for s ∈ Sources

8. INSERTUPDATE (dest, src, s, PairsDone)

9. INCREASEBETWEENNESS()

Algorithm-2: INSERTUPDATE (src, dest, z, PairsDone)

1. Workset ← {src → dest}
2. VisitedVertices ← {src}
3. AffectedVertices ← ∅
4. while Workset ≠ ∅
5. {x → y} ← pop (Workset)
6. alt ← C (x, y) + D (y, z)
7. if alt < D (x, z)
8. if <x, z>∉ σold
9. Dold (x, z) ← D (x, z); σold(x, z) ← σ(x, z);
10. REDUCEBETWEENNESS (x, z);
11. σ(x, z) ← 0; Clear 𝑃!(𝑧);
12. if [u, z] ∈ PairsDone
13. Remove [x, z] from PairsDone
14. D (x, z) ← alt
15. if alt == D (x, z) and D (x, z) ≠ ∞
16. if [x, z] ∉ PairsDone
17. if <x, z>∉ σold
18. REDUCEBETWEENNESS (x, z);
19. if σ (x, z)≠ 0
20. σold (x, z) ← σ (x, z)
21. σ (x, z) ← σ (x, z) + (σ (x, src) * 1 * σ (dest, z))
22. Append x to 𝑃!(𝑦) and 𝑃!(𝑧) to 𝑃!(𝑧)
23. Insert [x, z] into PairsDone
24. Insert x into AffectedVertices
25. for u ∈ Pred (x) sorted w.r.t. edge costs in asc. order
26. if SP (u, x, src) = 1 && u ∉ VisitedVertices
27. push {u → x} into Workset
28. Insert u into VisitedVertices
29. return AffectedVertices

Algorithm-3: REDUCEBETWEENNESS (a, z)

1. if σold (a, z) = 0
2. return;
3. Known ← ∅; Stack ← ∅
4. for n ∈ 𝑃!(𝑧)
5. if D (a, z) ≠Dold (a, n) + Dold (n, z)
6. continue;
7. else if a ≠ n & n ≠ z
8. B(n) = B(n) – (σold (a, n) * σold (n, z) / σold (a, z))
9. Add <a, z, n> to trackLost
10. Add 𝑛 to Stack and Known
11. while Stack ≠ ∅
12. 𝑝 ← pop (Stack)
13. Add 𝑝 to Known
14. for 𝑛 ∈ 𝑃!(𝑝)
15. if D (a, z) ≠ Dold (a, n) + Dold (n, z)
16. continue;
17. else if a ≠ 𝑛 & 𝑛 ≠ z & 𝑛 ∉ Known
18. B(𝑛) = B(𝑛) – (σold (a, 𝑛) * σold (𝑛, z) / σold (a, z))
19. Add <a, z, n> to trackLost
20. Add 𝑛 to Stack and Known
21. AlreadyDone ← (Known ∪ a)
22. if D (v, z) = Dold (a, v) + Dold (v, z) where v1, v2 ∈ Known

and <v1, v2, v> ∈ trackLost
23. if 𝑣 ∉ AlreadyDone
24. B(v) = B(v) – (σold (a, v) * σold (v, z) / σold (a, z))
25. Add 𝑣 to AlreadyDone
26. Add <a, z, 𝑣> to trackLost

Algorithm-4: INCREASEBETWEENNESS ()

1. for (𝑠𝑟𝑐,𝑑𝑒𝑠𝑡) ∈ σold
2. Known ← ∅; Stack ← ∅
3. for 𝑛 ∈ 𝑃!"#(𝑑𝑒𝑠𝑡)
4. Add 𝑛 to Stack and Known
5. if 𝑠𝑟𝑐 ≠ 𝑛 & 𝑛 ≠ 𝑑𝑒𝑠𝑡
6. B(𝑛) ←B(𝑛) + (σ (𝑠𝑟𝑐, 𝑛) * σ (𝑛, 𝑑𝑒𝑠𝑡) / σ (𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡))
7. while Stack ≠ ∅
8. 𝑛 ← pop (Stack)
9. Add 𝑛 to Known
10. for 𝑝 ∈ 𝑃!"#(𝑛)
11. if 𝑝 ≠ 𝑠𝑟𝑐 & 𝑝 ≠ 𝑑𝑒𝑠𝑡 & 𝑝 ∉ Known
12. Add 𝑝 to Stack and Known
13. B(𝑝) = B(𝑝) + (σ (𝑠𝑟𝑐, 𝑝)*σ (𝑝, 𝑑𝑒𝑠𝑡) / σ (𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡))

REFERENCES

[1] R.W. Floyd, "Algorithm 97: Shortest path," Communications of the ACM,

vol. 5, no. 6, p. 345, June 1962.

[2] L. C. Freeman, "A Set of Measures of Centrality based on Betweenness,"

Sociometry, vol. 40, no. 1, pp. 35-41, 1977.

[3] A. M. Berman, "Lower and upper bounds for incremental algorithms,"

Computer Science, The State University of New Jersey at Rutgers, New

Brunswick, NJ, PhD Dissertation 1992.

[4] G. Ramalingam and T. Reps, "On the Computational Complexity of

Incremental Algorithms," CS, Univ. of Wisconsin at Madison, Tech.

Report 1991.

[5] U. Brandes, "A Faster Algorithm for Betweenness Centrality," Journal of

Mathematical Sociology, vol. 25, no. 2, pp. 163--177, 2001.

[6] H. Kim and R. Anderson, "Temporal node centrality in complex

networks," PHYSICAL REVIEW E, vol. 85, no. 026107, pp. 1-8, 2012.

[7] K. Lerman, R. Ghosh, and J. H. Kang, "Centrality Metric for Dynamic

Networks," in 8th Workshop on Mining and Learning with Graphs

(MLG), 2010, pp. 70-77.

[8] J. Tang, M. Musolesi, C. Mascolo, V. Latora, and V. Nicosia, "Analysing

information flows and key mediators through temporal centrality

metrics," in 3rd Workshop on Social Network Systems (SNS), 2010.

[9] H. Habiba, C. Tantipathananandh, and T. Berger-Wolf, "Betweenness

centrality measure in dynamic networks," Department of Computer

Science, University of Illinois at Chicago, Chicago, 2007.

[10] R. Puzis, P. Zilberman, Y. Elovici, S. Dolev, and U. Brandes, "Heuristics

for Speeding up Betweenness Centrality Computation," in Social

Computing and on Privacy, Security, Risk and Trust, 2012, pp. 302-311.

[11] M. J. Lee, J. Lee, J. Y. Park, R.H. Choi, and C. W. Chung, "QUBE: a

Quick algorithm for Updating BEtweenness Centrality," in WWW, 2012,

pp. 351--360.

[12] V. King, "Fully Dynamic Algorithms for Maintaining All-Pairs Shortest

Paths and Transitive Closure in Digraphs," in 40th Annual Symposium on

Foundations of Computer Science, 1999, pp. 81--89.

[13] C. Demetrescu and G. F. Italiano, "A New Approach to Dynamic All

Pairs Shortest Paths," Journal of the ACM (JACM), vol. 51, no. 6, pp.

968--992, November 2004.

[14] C. Demetrescu and G. F. Italiano, "Experimental Analysis of Dynamic

All Pairs Shortest Path Algorithms," ACM Transactions on Algorithms

(TALG), vol. 2, no. 4, pp. 578 - 601, 2006.

[15] S. Even and H. Gazit, "Updating distances in dynamic graphs," Methods

of Operations Research, vol. 49, pp. 371--387, 1985.

[16] GraphStream Team. (2010) GraphStream. [Online]. http://graphstream-

project.org/

[17] A.L. Barabasi and R. Albert, "Emergence of Scaling in Random

Networks," Science, vol. 286, no. 5439, pp. 509-512, 1999.

[18] A. Renyi and P. Erdos, "On Random Graphs," Publicationes

Mathematicae, vol. 6, 1959.

[19] D. Watts and S. Strogatz, "Collective Dynamics of ‘Small-World’

Networks," Nature, vol. 393, 1998.

[20] L. et al. Isella, "What's in a crowd? Analysis of face-to-face behavioral

networks," Journal of Theoretical Biology, vol. 271, no. 1, pp. 166–180,

2011.

[21] T. Opsahl and P. Panzarasa, "Clustering in weighted networks," Social

Networks , vol. 31, no. 2, pp. 155-163, 2009.

[22] M. Kas, K. M. Carley, and L. R. Carley, "Trends in science networks:

understanding structures and statistics of scientific networks," Social

Network Analysis and Mining (SNAM), vol. 2, no. 2, pp. 169-187, 2012.

[23] F. et al. Gringoli, "GT: picking up the truth from the ground for Internet

traffic," Computer Communication Review, vol. 39, no. 5, pp. 13--18,

2009.

[24] K. Norlen, G. Lucas, M. Gebbie, and J. Chuang, "EVA: Extraction,

visualization and analysis of the telecommunications and media

ownership network," in International Telecommunications Society 14th

Biennial Conference, 2002.

[25] J. Leskovec, J. Kleinberg, and C. Faloutsos, "Graph evolution:

Densification and shrinking diameters.," ACM Trans. KDD, vol. 1, no. 2,

pp. 1-41, 2007.

[26] M. Kas, "Incremental Centrality Algorithms for Dynamic Network

Analysis," ECE, Carnegie Mellon University, Pittsburgh, PA, Ph.D.

Dissertation 2013.

[27] M. Kas, K. M. Carley, and L.R. Carley, "Incremental Closeness

Centrality for Dynamically Changing Social Networks," in Workshop on

the Semantic and Dynamic Analysis of Information Networks

(ASONAM)., 2013.

