
Incremental Analysis of Logic Programs
with Assertions and Open Predicates

Isabel Garcia-Contreras1 '2*-^ , Jose F . Morales1 ,

and Manuel V. Hermenegildo1 '2

IMDEA Software Institute, Madrid, Spain
{isabel.garcia,josef.morales,manuel.hermenegildo}@imdea.org

2 Universidad Politecnica de Madrid (UPM), Madrid, Spain

A b s t r a c t . Generic components are a further abstraction over the con-
cept of modules, introducing dependencies on other (not necessarily avail-
able) components implementing specified interfaces. They have become a
key concept in large and complex software applications. Despite undeni-
able advantages, generic code is also anti-modular. Precise analysis (e.g.,
for detecting bugs or optimizing code) requires such code to be instan-
tiated with concrete implementations, potentially leading to expensive
combinatorial explosion. In this paper we claim that incremental, whole
program analysis can be very beneficial in this context, and alleviate the
anti-modularity nature of generic code. We propose a simple Horn-clause
encoding of generic programs, using open predicates and assertions, and
we introduce a new incremental, multivariant analysis algorithm that
reacts incrementally not only to changes in program clauses, but also to
changes in the assertions, upon which large parts of the analysis graph
may depend. We also discuss the application of the proposed techniques
in a number of practical use cases. In addition, as a realistic case study ,
we apply the proposed techniques in the analysis of the LPdoc documen-
tation system. W e argue that the proposed traits are a convenient and
elegant abstraction for modular generic programming, and that our pre-
liminary results support our thesis that the new incrementality-related
features added to the analysis bring promising advantages in this context.

1 Introduction

When developing large, real-life programs it is important to ensure application
reliability and coding convenience. An important component in order to achieve

Research partially funded by MINECO TIN2015-67522-C3-1-R TRACES project, FPU
grant 16/04811, and the Madrid P2018/TCS-4339 BLOQUES-CM program. W e are
also grateful to the anonymous reviewers for their useful comments.

these goals is the availability in the language (and use in the development pro-
cess) of some mechanism for expressing specifications, combined with a way of
determining if the program meets the specifications or locate errors. This deter-
mination is usually achieved through some combination of compile-time analysis
and verification with testing and run-time assertion checking [7,9,12,22,23].

Another relevant aspect when developing large programs is modularity. In
modern coding it is rarely necessary to write everything from scratch. Modules
and interfaces allow dividing the program in manageable and interchangeable
parts. Interfaces, including specifications and dependencies, are needed in order
to connect with external code (including specifications of such code), to connect
self-developed code that is common with other applications, and as a placeholder
for different implementations of a given functionality, in general referred to as
generic code.

Despite undeniable advantages, generic code is known to be in fact anti-
modular, and the analysis of generic code poses challenges: parts of the code are
unavailable, and the interface specifications may not be descriptive enough to
allow verifying the specifications for the whole application. Several approaches
are possible in order to balance separate compilation with precise analysis and
optimization. First, it is possible to analyze generic code by trusting its interface
specifications, i.e., analyzing the client code and the interface implementations
independently, flattening the analysis information inferred at the boundaries
to that of the interface descriptions. This technique can reduce global analysis
cost significantly at the expense of some loss of precision. Some of it may be
regained by, e.g., enriching specifications manually for the application at hand.
Alternatively, for a closed set of interface implementations, it may be desirable
to analyze the whole application together with these implementations, keeping
different specialized versions of the analysis across the interfaces. This allows
getting the most precise information, specializations, compiler optimizations,
etc., but at a higher cost.

Multivariant analyses maintain different information for each predicate call,
depending on the caller predicate and the sequence of calls to this call. For imper-
ative programs this implies the notions of “context-” and “path-”sensitivity. We
believe that this information is specially beneficial when dealing with generic
code, both for precision of the analysis results and for efficiency of the algorithm.
Thus, our starting point is a (whole program) analysis that is multivariant. To
treat generic code we propose a simple Horn-clause encoding, using open pred-
icates and assertions, and introduce a novel extension for logic programming
(traits) that is translated using open predicates. This abstraction addresses typ-
ical use cases of generic code in a more elegant and analysis-friendly way than
the traditional alternative in LP of using multifile predicates. Then, we introduce
a new, multivariant analysis algorithm that, in addition to supporting and tak-
ing advantage of assertions during analysis, reacts incrementally to changes not
only in the program clauses but also in the assertions, upon which large parts of
the analysis graph may depend, while also supporting natively open predicates.
Generic code offers many opportunities for the application of this new analysis

technique. We study a number of use cases, including editing a client (of an inter-
face), while keeping the interface unchanged (e.g., analyzing a program reusing
the analysis of a –family of– libraries) and keeping the client code unchanged,
but editing the interface implementation(s) (e.g., modifying one implementation
of an interface). In addition, we provide experimental results in a realistic case
study: the analysis of the LPdoc documentation system and its multiple backends
for generating documentation in different formats. Related work is discussed in
Sect. 7.

2 Background

Logic Programs. A definite Logic Program, or program, is a finite sequence of
Horn clauses (clauses for short). A clause is of the form H:-B1, . . . , Bn where
H, the head, is an atom, and B1, . . . , Bn is the body, a possibly empty finite
conjunction of atoms. Atoms are also called literals. An atom is of the form
p(V1, . . . , Vn), where p is a symbol of arity n. It is normalized if the V1, . . . , Vn

are all distinct variables. Normalized atoms are also called predicate descriptors.
Each maximal set of clauses in the program with the same descriptor as head
(modulo variable renaming) defines a predicate (or procedure). p/n refers to a
predicate p of arity n. Body literals can be predicate descriptors, which repre-
sent cal ls to the corresponding predicates, or built-ins. A built-in is a predefined
relation for some background theory. Note that built-ins are not necessarily nor-
malized. In the examples we may use non-normalized programs. We denote with
vars(A) the set of variables that appear in the atom A.

For presentation purposes, the heads of the clauses of each predicate in the
program will be referred to with a unique subscript attached to their predicate
name (the clause number), and the literals of their bodies with dual subscript
(clause number, body position), e.g., Pk:-Pk,1, . . . Pk,nk. The clause may also be
referred to as clause k of predicate P. For example, for the predicate app/3:

1 a p p (X , Y , Z) : - X = [] , Y=Z.

2 a p p (X , Y , Z) : - X = [U | V] , Z = [U | W] , a p p (V , Y , W) .

app /3 1 denotes the head of the first clause of app/3, app/32 , 1 denotes the first
literal of the second clause of app/3, i.e., the unification X=[U|V].

Assertions. Assertions allow stating conditions on the state (current substi-
tution) that hold or must hold at certain points of program execution. We
use for concreteness a subset of the syntax of the pred assertions of [12,21],
which allow describing sets of preconditions and conditional postconditions on
the state for a given predicate. These assertions are instrumental for many pur-
poses, e.g., expressing the results of analysis, providing specifications, and doc-
umenting [9,12,22]. A pred assertion is of the form:

: - pred Head [: Pre] [=> Post].

where Head is a predicate descriptor that denotes the predicate that the assertion
applies to, and Pre and Post are conjunctions of property literals, i.e., literals cor-
responding to predicates meeting certain conditions which make them amenable
to checking, such as being decidable for any input [21]. Pre expresses properties
that hold when Head is called, namely, at least one Pre must hold for each call
to Head. Post states properties that hold if Head is called in a state compatible
with Pre and the call succeeds. Both Pre and Post can be empty conjunctions
(meaning true), and in that case they can be omitted.

Example 1. The following assertions describe different behaviors of an imple-
mentation of a hashing function dgst: (1) states that, when called with argu-
ment Word a string and N a variable, then, if it succeeds, N will be a number, (2)
states that calls for which Word is a string and N is an integer are allowed, i.e.,
it can be used to check if N is the hash of Word.

1 : - pred dgs t (Word ,N) : (s t r i n g (W o r d) , var (N)) => num(N). % (1)
2 : - pred dgs t (Word ,N) : (s t r i n g (W o r d) , i n t (N)) . % (2)
3 dgs t (Word ,N) : -
4 % i m p l e m e n t a t i o n of the h a s h i n g f u n c t i o n

Definition 1 (Meaning of a Set of Assertions for a Predicate). Given
a predicate represented by a normalized atom Head, and a corresponding set of
assertions {a1 ...an}, with Oj = “:- pred Head : Prei => Posti. ” the set of
assertion conditions for Head is {Co, G1,..., Cn}, with:

_ calls(Head, \l._1 Pre^) i = 0

[success(Head, Prei, Posti) i = 1..n

where calls(Head, Pre)1 states conditions on all concrete calls to the predicate
described by Head, and success(Head, Prej, Postj) describes conditions on the
success substitutions produced by calls to Head if Prej is satisfied.

3 An Approach to Modular Generic Programming:
Traits

In this section we present a simple approach to modular generic programming
for logic programs without static typing. To that end we introduce the concept
of open predicates. Then we show how they can be used to deal with generic
code, by proposing a simple syntactic extension for logic programs for writing
and using generic code (traits) and its translation to plain clauses.

Open vs. Closed Predicates. We consider a simple module system for logic pro-
gramming where predicates are distributed in modules (each predicate symbol
belongs to a particular module) and where module dependencies are explicit
in the program [2]. An interesting property, specially for program analysis, is

We denote the calling conditions with calls (plural) for historic reasons, and to
avoid confusion with the higher order predicate in Prolog call/2.

that we can distinguish between open and closed predicates.2 Closed predicates
within a module are those whose complete definition is available in the module. In
contrast, the definition of open predicates (traditionally declared as m u l t i f i l e
in many Prolog systems) can be can be scattered across different modules, and
thus not known until all the application modules are linked (note that programs
still use the closed world assumption). Despite its flexibility, open predicates are
“anti-modular” (in a similar way to typeclasses in Haskell).

Open as “multifile.” The following example shows an implementation of a generic
password-checking algorithm in Prolog:

: - mu l t i f i l e d g s t / 3 .

check_passwd(User) : -
g e t _ l i n e (P l a i n) , % Read plain t ex t password
passwd(User ,Hasher ,Digest ,Sal t) , % Consult password database
append(P la in ,Sa l t ,Sa l t ed) , % Append s a l t
dgs t (Hasher ,Sa l t ed ,Diges t) . % Compute and check digest

The code above is generic w.r.t. the selected hashing algorithm (Hasher). Note
that there is no explicit dependency between check_passwd/l and the different
hashing algorithms. The special multifile predicate dgst/3 acts as an interface
between implementations of hashing algorithms and check_passwd/l. While this
type of encoding is widely used in practice, the use of multifile predicates is
semantically obscure and error-prone. Instead we propose traits as a syntactic
extension that captures the essential mechanisms necessary for writing generic
code.

Traits. A trait is defined as a collection of predicate specifications (as predicate
assertions). For example:

i : - t r a i t h a s h e r { : - p red d g s t C S t r , D i g e s t) : s t r i n g (S t r) => i n t (D i g e s t) . } .

defines a trait hasher, which specifies a predicate dgst/2, which must be called
with an instantiated string, and obtains an integer in Digest.

As a minimalistic syntactic extension, we introduce a new head and literal
notation (X as T).p(Ai,..., An), which represents the predicate p for X imple-
menting trait T. Basically, this is equivalent to p(X, Ai,..., An), where X is
used to select the trait implementation. In literals, X is annotated with a trait,
which can be different for each call due to dynamic typing and multiple trait
implementations for the same data. When X (the implementation) is unknown

For space reasons we only consider static predicates and modules. Predicates whose
definition may change during execution, or modules that are dynamically loaded/un-
loaded at run time can also be dealt with, using various techniques, and in particular
the incremental analysis proposed.
In this paper we only focus on traits as interfaces. The actual design in Ciao supports
default implementations, which makes them closer to traits in Rust.

at compile-time, this is equivalent to dynamic dispatch. The check passwd/1
predicate using the trait above is:

i check_passwd(User) : -
2 g e t _ l i n e (P l a i n) ,
3 p a s s w d C U s e r , H a s h e r , D i g e s t , S a l t) ,
4 a p p e n d C P l a i n , S a l t , S a l t e d) ,
5 (Hasher as h a s h e r) . d g s t (S a l t e d , D i g e s t) .

The following translation rules convert code using traits to plain predicates.
Note that we rely on the underlying module system to add module qualification
to function and trait (predicate) symbols. Calls to trait predicates are done
through the interface (open) predicate, which also carries the predicate assertions
declared in the trait definition:

i % open p r e d i c a t e s and a s s e r t i o n s for each p / n in the t r a i t
: - m u l t i f i l e ’ T . p ’ / (n + 1) .
: - pred ’ T . p ’ (X , A i , . . . , A n) :
% c a l l t o p / n for X implement ing T

’ T . p ’ C X : , A i , . . . , A n) , ... % (X as T).p(Au...,An)

A trait implementation is a collection of predicates that implements a given
trait, indexed by a specified functor associated with that implementation. E.g.:

i

2

3

4

5

declares that xor8 implements a hasher. In this case xor8 is an atom, but trait
syntax allows arbitrary functors. The implementation for the dgst/2 predicate
is provided by (xor8 as hasher).dgst(Str, Digest).

The translation rules to plain predicates are as follows:

i % the i m p l e m e n t a t i o n i s a c l o s e d p r e d i c a t e (head renamed)
2 ’< f /k as T > . p ’ (/ (. . .) , A i , . . . , A n) : - ... % (/ (. . .) as T).p(Au ...,An)
3

4 % b r i d g e from i n t e r f a c e (open p r e d i c a t e) t o the i m p l e m e n t a t i o n
5 ’ T . p ’ (X , Ai,.. ., An) : - X = f (. . .) , ’ < f / k a s T > . p ’ (I , A 1 , . . . , A n) .

Adding new implementations is simple:

i : - i m p l (h a s h e r , s h a 2 5 6 / ®) .
2 (sha256 as h a s h e r) . d g s t (S t r , D i g e s t) : - ...

This approach still preserves some interesting modular features: trait names can
be local to a module (and exported as other predicate/function symbols), and
trait implementations (e.g., sha256/0) are just function symbols, which can also
be made local to modules in the underlying module system.

4 Goal-Dependent Abstract Interpretation

We recall some basic concepts of abstract interpretation of logic programs.

Program Analysis with Abstract Interpretation. Our approach is based on
abstract interpretation [4], a technique in which the execution of the program is
simulated (over-approximated) on an abstract domain (Da) which is simpler than
the actual, concrete domain (D). Although not strictly required, we assume that
Da has a lattice structure with meet (n), join (U), and less than (C) operators.
Abstract values and sets of concrete values are related via a pair of monotonic
mappings (a, 7}: abstraction a : D —s- Da, and concretization 7 : Da —s- D, which
form a Galois connection. A description (or abstract value) d G Da approximates
a concrete value c G D if a(c) Q d where C is the partial ordering on Da.

Concrete Semantics. In out context, running a program consists of making
a query. Executing (answering) a query is determining for which substitutions
(answers) the query is a logical consequence of the program if any. A query is
a pair (G, 9) with G an atom and 9 a substitution over the variables of G. For
concreteness, we focus on top-down, left-to-right SLD-resolution. We base our
semantics on the well-known notion of generalized and trees [1]. The concrete
semantics of a program P for a given set of queries =2, [P]^ , is the set of
generalized and trees that results from the execution of the queries in J3 for P.
Each node (G, 9C, 9s) in the tree represents a call to a predicate G (an atom), with
the substitution (state) for that call, 9C, and the success substitution 9s (answer).
The calling_context(G, P, J3) of a predicate given by the predicate descriptor G
defined in P for a set of queries J3 is the set {9C | (G',9'c,9's) G T V T G
\P\B A3<T, <T(G') = OAa(9'c) = 9C}, where a is a renaming substitution. I.e., a
substitution that replaces each variable in the term with distinct, fresh variables.
We denote by answers(P, J3) the set of success substitutions computed by P for
queries J3.

Graphs and Paths. We denote by G = (V, E) a finite directed graph (hence-
forward called simply a graph) where V is a set of nodes and E C V x V is an
edge relation, denoted with u —• v. A path P is a sequence of edges (e i , . . . , en)
and each ej = (XJ, j/j) is such that x\ = u, yn = v, and for all 1 < i < n — 1 we
have yi = Xj+i, we also denote paths with u ~-> v G G. We use n G P and e G P
to denote, respectively, that a node n and an edge e appear in P.

4.1 Goal-Dependent Program Analysis

We perform goal-dependent abstract interpretation, whose result is an abstrac-
tion of the generalized and tree semantics. This technique derives an analysis
result from a program P, an abstract domain Da, and a set of initial abstract
queries J3 = {(Aj,Acj)}, where Ai is a normalized atom, and Acj G Da. An
analysis result encodes an abstraction of the nodes of the generalized a n d trees
derived from all the queries (G, 9) s.t. (G, A) G =2 A 9 G 7(A).

Analysis Graphs. We use graphs to overapproximate all possible executions

of a program given an initial query. Each node in the graph is identified by

a pair (P, A) with P a predicate descriptor and A G Da, an element of the

abstract domain, representing the possibly infinite set of calls encountered. The

analysis result defines a mapping function ans : Pred x Da —• Da, denoted with

(P, Ac) i—• Xs which over-approximates the answer to tha t abstract predicate

call. It is interpreted as “calls to predicate P with calling pattern Xc have the

answer pattern As” with AC,AS G Da. The analysis graph is multivariant. Thus,

it may contain a number of nodes for the same predicate capturing different

call situations, for different contexts or different paths . As usual, _L denotes the

abstract description such tha t 7(_L) = 0. A call mapped to _L ((P, Ac) i—• _L)

indicates tha t calls to predicate P with any description 9 G 7(AC) either fail or

loop, i.e., they never succeed.

Edges in the graph represent a call dependency among two predicates. An

edge is of the form (P, A1)Cj; — (Q, A2}, and is interpreted as “calling predicate

P with substitution A1 causes predicate Q (literal l of clause c) to be called with

substitution A2”. Substitutions Xp and Ar are, respectively, the call and return

context of the call. These values are introduced to ease the presentation of the

algorithm, but they can be reconstructed with the identifiers of the nodes (i.e.,

predicate descriptor and abstract value) and the source code of the program.

For simplicity, we may write • to omit the values when they are not relevant to

the discussion. Note tha t the edges tha t represent the calls to a literal / and the

following one / + 1, (P, A1)Cj; — -̂ (Q, A2} the result at the return of the literal is

the call substi tution of the next literal: (P, A1} c ;+1 — (Q1, A2). Figure 1 shows

a possible analysis graph for a program tha t checks/computes the pari ty of a

message. The following operations defined over an analysis result g allow us to

inspect and manipulate analysis results to partially reuse or invalidate.

G r a p h C o n s u l t a t i o n O p e r a t i o n s

(P, Ac) G g : there is a node in the call graph of g with key (P, Ac).

(P, Ac) 1—• As G g : there is a node in g with key (P, Ac) and the answer

mapped to that call is As.

(P, Ac)c 1 - ^ (Q, Ac') G g : there are two nodes (k = (P, Ac) and k' = (Q, Ac')) in g

and there is an annotated edge from k to k'.

G r a p h U p d a t e O p e r a t i o n s

k'}) : adds an edge from node k to k' (creating node k' if

necessary) annotated with Xp and Ar for clause c and

literal /.

k'}) : removes the edge from node k to k' annotated for clause

c and literal /.

add(g,{kcl - ^

del(g,{kCtl - ^

mainCHsg, P) : -
parCMsg, 9, P) .

p a r ([] , P, P) .
p a r ([C | C s] , Po, P) :

xor(C, P 0 , P i) ,
parCCs, P i , P) .

x o r (8 , 8 , 8) .
x o r C S . l . l) .
x o r (l , 8 , l) .
x o r (l , l , 8) .

{X/b,P/b)

Fig. 1. A program that implements a parity function and a possible analysis result for
domain Da.

5 Incremental Analysis of Programs with Assertions

Baseline Incremental Analysis Algorithm. We want to take advantage
of the existing algorithms to design an analyzer that is sensible to changes
in assertions also. We will use as a black box the combination of the algo-
rithms to analyze incrementally a logic program [13], and the analyzer that
is guided by assertions [8]. We will refer to it with the function s/' =
INCANALYZE(P, Ba, Aois, *?), where the inputs are:

- A program P = (Cls, As) with Cls a set of clauses and As a set of assertions.
- A set of changes Acis in the form of added or deleted clauses.
- A set J3a of initial queries that will be the starting point of the analyzer.
- A previous result of the algorithm si which is a well formed analysis graph.

The algorithm produces a new si1 that correctly abstracts the behavior of the
program reacting incrementally to changes in the clauses. It is parametric on the
abstract domain Da, given by implementing (1) the domain-dependent opera-
tions C, n , U, Aproj (A, Vs), which restricts the abstract substitution to the set of
variables Vs, Aextend(Pfcn, Xp, As) propagates the success abstract substitution
over the variables of Pfcjn, A

s to the substitution of the variables of the clause Xp,
Acall(A, P, Pk) performs the abstract unification of predicate descriptor P with
the head of the clause Pk, including in the new substitution abstract values for
the variables in the body of clause P^, and Ageneralize(A, {Aj}) performs the
generalization of a set of abstract substitutions {Aj} and A; and (2) transfer func-
tions for program built-ins, that abstract the meaning of the basic operations
of the language. Functions apply_call(P, Ac, As) and apply_succ(P, Ac, As, As)
abstract the meaning of the assertion conditions (respectively calls and success
conditions). Further details of these functions are described in Appendix A and
in [8]. These operations are assumed to be monotonic and to correctly over-
approximate their correspondent concrete version.

(main(M, P),
T) .-> P/b

(p a r (M , X , P) ,
XIz) i->

(X/z,P/b)

m
(p a r (M , X , P) ,

(xo r (C ,P 0 , P i) ,
P0/z) n-

{C/b,P0/z,Pi/b

(xo r (C ,P 0 , P l)
Po/b) - •

(C /6 ,P 0 / b ,P i /&:

Abstract values:
T

b (bit)

z (0) o (1)
\ /

±

Operation of the Algorithm. The algorithm is centered around processing

events. It s tar ts by queueing a newcall event for each of the call pat terns tha t

need to be recomputed. This triggers p rocess (newca / / ((P, Ac})), which processes

the clauses of predicate P. For each of them an arc event is added for the first

literal. The initialguess function returns a guess of the As to (P, Ac). If possible,

it reuses the results in si, otherwise returns _L. Procedure reanalyze_updated

propagates the information of new computed answers across the analysis graph

by creating arc events with the literals from which the analysis has to be

restarted. process(arc((Pfc , Ac);jC P, Ac})) performs a single step of the left-

to-right traversal of a clause body. First, the meaning of the assertion conditions

of P is computed by apply_cal l . Then, if the literal P^j is a built-in, its transfer

function is computed; otherwise, an edge is added to si and the As is looked up

(a process tha t includes creating a newcall event for (P, Ac) if the answer is not

in the analysis graph). The answer is combined with the description Xp from the

literal immediately before P^j to obtain the description (return) for the literal

after Pk,i. This is used either to generate an arc event to process the next literal,

or to update the answer of the predicate in insert_answer_info. This function

combines the new answer with the semantics of any applicable assertions (in

apply_succ), and the previous answers, propagating the new answer if needed.

Procedure a d d c l a u s e s adds arc events for each of the new clauses. These

trigger the analysis of each clause and the later upda te of si by using the edges

in the graph.

The d e l e t e _ c l a u s e s function selects the information to be kept in order to

obtain the most precise semantics of the program, by removing all information

which is potentially inaccurate (Fig. 2).

Def in i t ion 2 (Correct ana lys i s) . Given a program P and initial concrete

queries J2, an analysis result si is correct for P, i ? if:

- \/G,9c G calling_context(G, P, JS) 3{G,XC) i—s- AS G S/ s.t. 9C G 7(AC).

- V(G, Ac) H^ As G si,\/9c G 7(AC) if 9s G answers(P,{{G,9c)}) then 9s G

7(AS) .

From [13] and [8] we have that :

T h e o r e m 1 (Correc tnes s of I n c A n a l y z e from scra tch) . Let P be a

program, and JSa a set of abstract queries. Let JS be the set of concrete

queries: JS = {{G,9) \ 9 G 7(A) A (G, A) G Sa}. The analysis result

,s/ = I N C A N A L Y Z E (P , Bai 0, 0) for P with Ba is correct for P, B.

Additionally, assertions ensure that certain executions never occur. This

information is included in the analysis in the following way (adapted from [8]):

T h e o r e m 2 (A p p l i e d asser t ion cond i t ions) . Let P be a program, and Ba

a set of abstract queries. Let si = I N C A N A L Y Z E (P , JSa, 0, 0) .

(a). The call assertion conditions cover all the inferred states:

V(P, Ac) \-+ Xs G s/.Xc Q apply_call(P, T , As).

INCANALYZE(P, Ba, Acu,si)

1: for all (P, Ac> e 3a do

2: add_event(neu;ca««P, Ac)))

3: if Acts = (Dels, Adds) ^ (0,0) t h e n

4: delete_clauses(.DeZs)

5: add_clauses(Adds)

6: analysis_loop()

7: procedure analysis_loop()

8: whi le E := next_event() do

9: process(B)

10: procedure add_clauses(C£s)

11: for all Pk : - P w , . . . , Pfc,„t e Cls do

12: for all (P, Ac) >->• XS e si do

13: Ap := Acall(Ac , P, Pk)

14: Aci :=Aproj(Ap,TOrs(Pfc,i))

15: addevent(arc«P, X")k,i

(Pk,uXci)))

16: procedure delete_clauses(Cls)

17: Calls := {(P, AC)|(P, Ac) € si, [Pk :- ..

Cls}

18: Ns := {N e s/\N ~*Ces/,Ce Calls}

19: de\(si,Ns)

function lookupanswer((P, Ac))

if (P, Xc) H + A ' e j * ' t h e n

return As

else

add_event(raewca//((P, A")))

return ±

procedure reanalyze_updated((P, Ac))

for all E := (Q, Aco>M ^ <P, A0} 6 ^

add_event(arc(E))

29

30

31

32

33

34

35

36

37;

38

39

40

41

42

43

'44

45

46

47:

48

49

50

51

52

53

54

55

56

do 57:

58

59

60

) e

procedure process(newcall((P, Xc)))

for all Pfc :- Pkll,..., Pk,nk € Cls do

Ap :=Acal l (A c , P,Pk)

A°o := Aproj(Ap,tiars(Pit,i))

Calls := {A | (P, X) e sf}

Aci := Ageneralize(Aco, Calls)

add_event(arc((P, Ac)fc,i (f t , i ,A° i»)

A" := initial_guess((P,Ac))
if X

s
 jt± then

reanalyze_updated({P, Ac))

upd(j^,(P,Ac)-«-iAs)

procedure process(arc((P, Aco)k,i -*—>

<Q,Ac i»)
A" := apply_call(Q,A c i , i4s)

if Pk,t is a built-in t h e n

A"0 := fa(Pk,i, Xa) > Apply transfer

function

else A'o := lookup_answer((Q, A"))

Ar := Aextend(A", A8o)

upd(^,{P,A co>M^(Q.A' '»

if Xr ^ _L and i^nk t h e n

Ac
2 := Aproj(Ar,uars(P fc,i+i))

add_event(arc((H,Aco)fc, i+i -£+ (B,AC
2»)

else if Ar ^ J_ and i = nk t h e n
A" := Aproj(Ar, vars(Pk))

insertanswer info({P, Aco), Xs)

procedure insert-answer _info«P, Ac), As)

A" := apply-SuccCP.A^A",^)

if (P, Ac) <-yX3
0esi t h e n

Asi := Ageneralize(A°, {A"o})

else Asi := _L

if As
0 # A"i t h e n

upd«<P,A°><-H As i)

reanalyzes pdated((P, Ac))

Fig . 2 . The generic context-sensitive, incremental fixpoint algorithm using (not chang-
ing) assertion conditions.

1: function 1AWAC{(CIS, As), Act,, AAS,£O,,S?) 7

2: R :=PREPROCESS(CZS, As, si)

3: si' := lNCANALYZE((C7s,As),.Sa U 9:

R, Acts, si) 10

4: del {si',{E \ E E jti' AQ •/> E AQ e £a}) 11

5: re turn J / '

12:

funct ion PREPROCESS(Cls, As, si)

R:= 0
for each P 6 Cls do

if 4 A „ [P] / 0 t h e n

R : = R U update_calls_pred(P,As,si)

R := R V

updatesuccess_pred(P, As, si)

return R

Fig . 3 . High-level view of the proposed algorithm

(b). The inferred abstract success states are covered by the success assertion

conditions: V(P, Ac) H^ As G A. Xs C. apply_succ(P, Ac, T , As)

We introduce a new proposition about the algorithm that will be of use later.

P r o p o s i t i o n 1 (Correc tnes s s tar t ing from a part ia l ana lys i s) . Let P

be a program, JSa a set of abstract queries, and £/0 any analysis graph. Let

srf = I N C A N A L Y Z E (P , JSa, ACIST^0). ^ is correct for P and a query Q G JSa if

for any node N G £/0 such that there is a path Q ~-> N in | - P] 7 (Q) , N G JSa.

Proof. This follows from the creation of a newcall event for each of the queries,

which will trigger the recomputation and later upda te of all the nodes of the

analysis graph tha t are potentially under the fixpoint.

Note tha t here we are not assuming tha t s40 is the (correct) output of a

previous analysis, it can be any partial analysis (below the fixpoint).

5.1 T h e I n c r e m e n t a l A n a l y z e r of P r o g r a m s w i t h A s s e r t i o n s

We propose to inspect and update the analysis graph to guarantee tha t a call

to I N C A N A L Y Z E produces results tha t are correct and precise. We call this new

analyzer IAwAC, short for I N C A N A L Y Z E - W / A S S R T C H A N G E S (Fig. 3). The P R E -

P R O C E S S phase consists in inspecting all the literals affected by the changes in the

assertions, collecting which call pat terns need to be reanalyzed by the incremen-

tal analysis, i.e., it may be different from the set of initial queries J3 originally

requested by the user. In addition, after the analysis phase, the unreachable

abstract calls tha t were safe to reuse may not be reachable anymore, so they

need to be removed from the analysis result.

Detecting the Affected Parts in the Analysis Results. The steps to find

potential changes in the analysis results when assertions are changed are detailed

in Fig. 4 with procedures update_calls_pred and update_successes_pred. The

goal is to identify which edges and nodes of the analysis graph are not precise

or correct. Since assertions may affect the inferred call or the inferred success of

predicates, we have split the procedure into two functions. However, the over-

all idea is to obtain the current substitution, which encodes the semantics of

the assertions in the previous version of the program, and the abstract substi-

tut ion tha t would have been inferred if no assertions were present. Then func-

tions apply_ca l l and apply_success obtain the meaning of the new assertions.

Finally, we call a general procedure to treat the potential changes, treat_change

(see Fig. 5). Specifically, in the case of c a l l conditions, we review all the pro-

gram points from which it is called, by checking the incoming edges of the nodes

of tha t predicate. For each node we project the substitution of the clause (Xp) to

the variables of the literal to obtain the call pat terns if no assertions would be

specified (line 4). We then detect if the call pa t te rn produced by the new mean-

ing of the assertions already existed in the analysis graph to reuse its result, and,

last, we call the procedure to t reat the change. In the case of s u c c e s s conditions

we obtain the substitution including the new meaning of the assertion by joining

the re turn substitution at the last literal of each of the clauses of the predicate,

previously projected to the variables of the head (line 16).

Amending the Analysis Results. The procedure treat_change (Fig. 5), given

an edge tha t points to a literal whose success potentially changed, updates the

function updatecalls_pred(P, As, si)
Q:= 0
for each (P',A)c,i -7+ (P, ASW) 6 ^ do

A° := cr(Aproj(Ap,Dor-s(P^)) s.t. CT(P^) =

5: A°e„ := applyca l l (P , Ac, As)
6: if 3(P' , A°„e„) >-> A" e si then
7: A" := A*

else A" := ±
Q •= Q U treat_change((P', A>c

(P,A° n e„) ,A",^)

10: r e tu rn Q

function updatesuccesses_pred(P, As, si)
Q:= 0
for each (P, Ac) t-y A* e si do

A:= X
for each (P, A°)c,i„, -^+ (Q, A) e si do

A := AU apply succ(P, Ac, Aproj(Ar,uars(Pc)),J4s)

for each £ = N.,. -J+ <P, A°) e r f d o

Q := Q U t rea tchange (E, A, .e)̂

r e turn Q

Fig . 4 . Changes in assertions (split by assertion conditions)

analysis result, and decides which predicates and call pat terns need to be recom-

puted. After updat ing the annotation of the edge (line 4), we s tudy how the

abstract substi tution changed. If the new substitution (Ar /) is more general than

the previous one (Ar), this means tha t the previous assertions where pruning

more concrete states than the new one, and, thus, this call pa t te rn needs to be

reanalyzed. Else, if Ar [2 Ar /, i.e., the new abstract substi tution is more concrete

or incompatible, some parts of the analysis graph may not be accurate. There-

fore, we have to eliminate from the graph the literals tha t were affected by the

change (i.e., the literals following the program point with a change) and all the

dependent code from this call pat tern. Also, the analysis has to be restarted from

the original entry points tha t were affected by the deletion of these potentially

imprecise nodes. In the last case (line 3) the old and the new substi tutions are

the same, and, thus, nothing needs to be reanalyzed (the 0 is returned).

6

7

8

9
10
11

function treat_change((P, A)c

\r' := Aextend(Ap, Xs)

if Ar = Ar/ then return 0
d e l (^ , < P , A) c , , - ^ .)

add(^,<P,A)c,i <Q,AC»

(Q,\c),\°,s/)

> Obtain new abstraction at literal return

> Update the analysis graph

if Ar C X" then return {(P,A)}
else if Ar % \rl then > Analysis is potentially imprecise

Lits := {E | E = (P, X)c,i —> N G si A i > 1}

IN := {E | B ' w L e j / A L e Lits} > Potentially imprecise nodes
de\(s/,IN)

return IN

Fig . 5 . Procedure to determine how the analysis result needs to be recomputed.

Correctness of the Algorithm

P r o p o s i t i o n 2 (I A w A C from scratch) . Let P be a program, Ba a set of

abstract queries. Let J2 be the set of concrete queries: J2 = {{G, 0) \ 0 G 7(A) A

(G, X)e£a}. The analysis ,ef = IAwAC (P, Ba, 0, 0, 0) for P with Ba is correct

for P, B.

Proof. Since the preprocessing phase only modifies information tha t is already

in the initial analysis and it is e m p t y correctness follows from Theorem 1.

In terms of precision, we want to ensure tha t the meaning of the new asser-

tions is precisely included in the analysis result.

P r o p o s i t i o n 3 (Prec i s ion after update_cal ls_pred) . Let Cls be a set of

clauses, As be a set of assertions, and si any analysis graph. For any predicate

G of Cls, lets/' be the state of si after update_calls_pred(G, As, si). Then,

for any (G, Xc) H^ As G si' .Xc C. apply_call(G, T , As).

Proof. Given a predicate G, the function update_calls_pred looks at each edge

tha t finishes in a node G, and obtains the new meaning of the conditions (line 5).

Then, in line 4 of treat_change, the node is removed if it is different. Because

a p p l y . c a l l is assumed to be monotonic, for any Ac. apply_call(G, Ac, As) C.

apply_call(G, T , As).

P r o p o s i t i o n 4 (Prec i s ion after update_successes_pred) . Under the condi-

tions of Proposition 3, for any predicate G of Cls, let si' be the state of si after

update_successes_pred(G, As, si). Then, for any {G,XC) H^ As G £/'.Xs C.

apply_succ(G, Xc, T , As).

Proof. Given a predicate G, the function update_successes_pred looks at the

last literal of each clause of G, and obtains the new meaning of the conditions

(line 16). Then, in line 4 of treat_change, the node is removed if it is dif-

ferent. Because apply_cal l is assumed to be monotonic, for any pair (AC,AS).

apply_succ(G, Xc, Xs, As) C apply_call(G, Xc, Xs, As).

As shown in Proposition 1, given any partial analysis result, we can ensure

correctness of the reanalysis if we guarantee tha t all literals tha t need to be

reanalyzed are included in J3a. We want to show tha t the set Q of queries

collected in treat_change is enough to guarantee the correctness of the result.

P r o p o s i t i o n 5 (Quer ies co l l ec ted in p r e p r o c e s s) . Let P = (Cls,As0)

be a program, JSa a set of abstract queries. Let JS be the set of con-

crete queries: JS = {(G,0) \ 0 G 7(A) A (G,X) G Sa}. Let £/ =

IAwAC(P, JSa, 0 ,0 ,0) be the correct analysis for P,JS. If P changes to

P' = (Cls, As), Bj = P R E P R O C E S S (C l s , A s , ^) guarantees that ,ef' =

lNcANALYZE((Cls ,As) , i 2 a
, ,0 ,^) is correct for P> and £.

Proof. We split the proof into two cases: (a) The assertions change only for one
predicate: because si is correct, by Theorem 1, since si is an over-approximation
of [P]^ , and Proposition 1 is true.

(b) The assertions change for more than one predicate: after processing the
first predicate si may not be correct, as treat_change removes nodes. However,
every node that is removed is added to the set of queries. This means that
the nodes that are unreachable when processing the following predicates were
already stored before, and therefore, Proposition 1 also holds.

Theorem 3 collects all correctness and precision properties of the algorithm.

Theorem 3 (Correctness of IAwAC). Let P0 and P = (Cls, As) be pro-
grams that differ in Acis and AAS, &a be a set of abstract queries. Let JS be
the set of concrete queries JS = {(G, 0) \ 0 G 7(A) A (G, A) G Sa}. Given S/0 =
IAwAC(P0, £a, 0, 0, 0), and the analysis si = IAwAC(P, Bai AGis, AAs,si0).

(a). si is correct or P and £}.
(b). V(G, Ac) H^ As G si.Xc C. apply_call(G, T , As).
(c). V(G, Ac) \-^ Xs G si. Xs C. apply_succ(G, Ac, T , As)

Proof. (a) follows from Theorem 2 and Proposition 5. (b) and (c) follow from
Lemma 2 and Propositions 3 and 4.

5.2 Use Cases

We show some examples of the algorithm. We assume that we analyze with a shape
domain in which the properties in the assertions can be exactly represented.

Example 2 (Reusing a preanalyzed generic program). Consider a slightly mod-
ified version the program that checks a password as shown earlier, that only
allows the user to write passwords with lowercase letters. Until we have a con-
crete implementation for the hasher we will not be able to analyze precisely this
program. However, we can preanalyze it by using the information of the assertion
of the trait to obtain the following simplified analysis graph:

:- trait hasher { :- pred dgstCStr, Digest)
: lowercase(Str) => int(Digest). }.

check_passwd(User) :-
get_line (Plain) ,

passwd(User,Hasher,Digest,Salt),

append(Plain,Salt,Salted),

(Hasher as hasher) dgst(Salted.Digest)

10 passwd(don,xor8,8x6d,"eNfwuBhtN9CUHxg==").

The node for dgst/2 represents the call (dgst(S, D), (S/lowercase, P/num)}
\-+ (Sylowercase, P / i n t) , in this case, D was inferred to be a number because
of the success of passwd/4. If we add a very naive implementation that consists
on counting the number of some letters in the password, reanalyzing will cause
adding to the graph some new nodes, shown with a dashed line:

:- impl(hasher, naive/8).

(naive as hasher).dgst(, Digest) :

naive_count(Xs, 8, Digest).

naive_count(L, DO, D) :-

count(L,'a',Na), Dl is D8 + Na*l,

count(L,'b',Nb), D2 is Dl + Nb*2,

count(L,'c',Nc), D3 is D2 + Nc*3,

We detect that none of the previous nodes need to be recomputed
due to tracking dependencies for each literal. The analysis was per-
formed by going directly to the program point of dgst/2 and inspect-
ing the new clause (that was generated automatically by the translation)
that calls naive_count/2. By analyzing naive_count/2 we obtain nodes
(naive_count(S, D), (S/lowercase,D/num)} i—• (S/lowercase,D/int), and
(count(L, C, N), (S/lowercase,C/char)} i—• (S'/lowercase,C/char,N/int). As
no information needs to be propagated because the head does not contain any
of the variables of the call to digest, we are done, and we avoided reanalyzing
any caller to check_passwd/2, if existed.

Example 3 (Weakening assertion properties). Consider the program and anal-
ysis result of Example 2. We realize that allowing the user to write a password
only with lowercase letters is not very secure. We can change the assertion of
the trait to allow any string as a valid password.

: - t r a i t hasher { : - pred d g s t (S t r , Digest) : s t r i n g (S t r) => i n t (D i g e s t) . } . J
When reanalyzing, node (dgst(S,D), (S/lowercase, D/num)} will disappear to
become (dgst(S,D), (S/string,D/num)}, and the same for naive_count/3. A
new call pattern will appear for count/3 (count(L, C, N), (S/string, C/char)} i—•
(S/string, C/char, N/int), leading to the same result for dgst/2. I.e., we only
had to partially analyze the library, instead of the whole program.

Table 1 . Analysis time for LPdoc adding one backend at a time (time in seconds).

Domain

r e a c h a b i l i t y

r e a c h a b i l i t y inc

gr

gr inc

def

def inc

shar ing

shar ing inc

No backend

1.7

1.7

2.1

2.1

6.0

6.0

27.2

27.2

+ texinfo

2.1

1.2

2.2

1.4

7.1

2.2

28.1

3.9

+ man

3.4

1.0

2.3

0.9

7.8

1.3

24.2

1.4

+ html

3.9

1.6

2.6

1.8

9.7

3.5

28.5

5.1

6 Experiments

We have implemented the proposed analysis algorithm within the CiaoPP sys-
tem [9] and performed some preliminary experiments to test the use case
described in Example 2. Our test case is the LPdoc documentation generator
tool [10,11], which takes a set of Prolog files with assertions and machine-
readable comments and generates a reference manual from them. LPdoc con-
sists of around 150 files, of mostly (Ciao) Prolog code,with assertions (most of
which, when written, were only meant for documentation generation), as well as
some auxiliary scripts in Lisp, JavaScript, bash, etc. The Prolog code analyzed
is about 22 K lines. This is a tool in everyday use that generates for example
all the manuals and web sites for the Ciao system (http://ciao-lang.org, h t tp : / /
ciao-lang.org/documentation.html) and as well as for all the different bundles
developed internal or externally, processing around 20 K files and around 1M
lines of Prolog and interfaces to another 1M lines of C and other miscellaneous
code). The LPdoc code has also been adapted as the documentation generator
for the XSB system [24].

LPdoc is specially relevant in our context because it includes a number of
backends in order to generate the documentation in different formats such as
tex info , Unix man format, html, a s c i i , etc. The front end of the tool generates
a documentation tree with all the content and formatting information and this
is passed to one out of a number of these backends, which then does the actual,
specialized generation in the corresponding typesetting language. We analyzed
all the LPdoc code with a r e a c h a b i l i t y domain, a groundness domain (gr), a
domain tracking dependencies via propositional clauses [6] (def), and a shar ing
domain with cliques [19]. The experiment consisted in preanalyzing the tool with
no backends and then adding incrementally the backends one by one. In Table 1
we show how much time it took to analyze in each setting, i.e., for the different
domains and with the incremental algorithm or analyzing from scratch. The
experiments were run on a MacBook Pro with an Intel Core i5 2.7 GHz processor,
8GB of RAM, and an SSD disk. These preliminary results support our hypothesis
that the proposed incremental analysis brings performance advantages when
dealing with these use cases of generic code.

7 Related Work

Languages like C + + require specializing all parametric polymorphic code (e.g.,
templates [25]) to monomorphic variants. While this is more restrictive than
runtime polymorphism (variants must be statically known at compile time), it
solves the analysis precision problem, but not without additional costs. First, it is
known to be slow, as templates must be instantiated, reanalized, and recompiled
for each compilation unit. Second, it produces many duplicates which must be
removed later by the linker. Rust [15] takes a similar approach for unboxed types.

Runtime polymorphism or dynamic dispatch can be used in C + + (virtual
methods), Rust (boxed traits), Go [5] (interfaces), or Haskell’s [14] type classes.

However, in this case compilers and analyzers do not usually consider the par-
ticular instances, except when a single one can be deduced (e.g., in C + + devir-
tualization [18]).

Mora et al. [17] perform modular symbolic execution to prove that some
(versions of) libraries are equivalent with respect to the same client. Chatterjee
et al. [3] analyze libraries in the presence of callbacks incrementally for data
dependence analysis. I.e., they preanalyze the libraries and when a client uses it
reuses the analysis and adds incrementally possible calls made by the client. We
argue that when using our Horn clause encoding, both high analysis precision
and compiler optimizations can be achieved more generally by combining the
incremental static global analysis that we have proposed with abstract special-
ization [20].

8 Conclusions

While logic programming can intrinsically handle generic programming, we have
illustrated a number of problems that appear when handling generic code with
the standard solutions provided by current (C)LP module systems, namely, using
multifile predicates. We argue that the proposed traits are a convenient and ele-
gant abstraction for modular generic programming, and that our preliminary
results support the conclusion that the novel incremental analysis proposed
brings promising analysis performance advantages for this type of code. Our
encoding is very close to the underlying mechanisms used in other languages for
implementing dynamic dispatch or run-time polymorphism (like Go’s interfaces,
Rust’s traits, or a limited form of Haskell’s type clases), so we believe that our
techniques and results can be generalized to other languages. This also includes
our proposed algorithm for incremental analysis with assertion changes, which
can be applied to different languages through the standard technique of trans-
lation to Horn-clause representation [16]. Traits are also related to higher-order
code (e.g., a “callable” trait with a single “call” method). We also claim that
our work contributes to the specification and analysis of higher-order code.

A Assertions

Assertions may not be exactly represented in the abstract domain used by the
analyzer. We recall some definitions (adapted from [22]) which are instrumental
to correctly approximate the properties of the assertions during the analysis
(Fig. 6).

Definition 3 (Set of Calls for which a Property Formula Trivially Suc-
ceeds (Trivial Success Set)). Given a conjunction L of property literals and
the definitions for each of these properties in P, we define the trivial success set
of L in P as:

TS(L, P) = {6\Var(L) s.t. 39' e answers(P, {{L, 9)}), 9 = 9'}

global flag: speed-up

1: function apply_call(P,Ac)
2: if 3a, A' = A+s((T(Pre) p) s.t. calls(J?, Pre) e C,a{H) = P then

3: if speed-up return A* else return Ac n A'
4: else return Ac

5: function apply_succ(P,Ac,As°)
6: app = {A | 3 a, success(i7, Pre, Post) € C, a{H) = P,

f'- * = *TS(<7(Post),P)>*TS(tr(Pre),P) — ^ J

8: if app / 0 then

9: A* := \~\aPP
10: if speed-up return A' else return A' l~l As°
11: secbeg else return As°

Fig. 6. Applying assertions.

where 6|Var(L) above denotes the projection of 6 onto the variables of L, and

|= denotes tha t 6' is a more general constraint than 6 (entailment). Intuitively,

TS{L, P) is the set of constraints 9 for which the literal L succeeds without

adding new constraints to 6 (i.e., without constraining it further). For example,

given the following program P:

i f l i s t e n) .
2 l i s t ([_ | T]) : - l i s t (T) .

and L = list(X), both 9\ = {X = [1, 2]} and 62 = {X = [1,A]} are in the trivial

success set of L in P, since calling (X = [1, 2], list(X)) returns X = [1,2] and

calling (X = [l,A],list(X)) returns X = [1, A]. However, 63 = {X = [1|_]} is

not, since a call to (X = [l|Y],list(X)) will further constrain the term [1|1^],

returning X = [1|Y],Y = []. We define abstract counterparts for Definition 3:

Def in i t ion 4 (A b s t r a c t Trivial Success Subse t of a P r o p e r t y Formula) .

Under the same conditions of Definition 3, given an abstract domain Da,

^TS(L p) ^ Da is an abstract trivial success subset of L in P iff I(^TS(L P)) —

TS{L,P).

Def in i t ion 5 (A b s t r a c t Trivial Success Superse t of a P r o p e r t y For-

m u l a) . Under the same conditions of Definition 4, an abstract constraint

^TS(L p) is an abstract trivial success superset of L in P iff 7 (A ^ S (L m) I)

TS{L,P).

I.e., Ay„|-r P\ and Xt,s(L „-, are, respectively, safe under- and over-approximations

of TS(L,P). These abstractions come useful when the properties expressed in

the assertions cannot be represented exactly in the abstract domain.

References

1. Bruynooghe, M.: A practical framework for the abstract interpretation of logic
programs. J. Logic Program. 10, 91-124 (1991)

2. Cabeza, D., Hermenegildo, M.: A new module system for prolog. In: Lloyd, J.,
et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 131–148. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44957-4 9

3. Chatterjee, K., Choudhary, B., Pavlogiannis, A.: Optimal Dyck reachability for
data-dependence and alias analysis. PACMPL 2(POPL), 1–30 (2018)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238–252. ACM Press (1977)

5. Donovan, A.A.A., Kernighan, B.W.: The Go Programming Language, Professional
Computing. Addison-Wesley, Boston (2015)

6. Dumortier, V., Janssens, G., Simoens, W., Garc´ıa de la Banda, M.: Combining a
definiteness and a freeness abstraction for CLP languages. In: Workshop on LP
Synthesis and Transformation (1993)

7. Flanagan, C.: Hybrid type checking. In: 33rd ACM Symposium on Principles of
Programming Languages (POPL 2006), pp. 245–256, January 2006

8. Garcia-Contreras, I., Morales, J.F., Hermenegildo, M.V.: Multivariant assertion-
based guidance in abstract interpretation. In: Mesnard, F., Stuckey, P.J. (eds.)
LOPSTR 2018. LNCS, vol. 11408, pp. 184–201. Springer, Cham (2019). h t tps : / /
doi.org/10.1007/978-3-030-13838-7 11

9. Hermenegildo, M., Puebla, G., Bueno, F. , Lopez-Garcia, P.: Integrated program
debugging, verification, and optimization using abstract interpretation (and The
Ciao System Preprocessor). Sci. Comput. Program. 58(1–2), 115–140 (2005)

10. Hermenegildo, M.: A documentation generator for (C)LP systems. In: Lloyd, J.,
et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 1345–1361. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44957-4 90

11. Hermenegildo, M.V., Morales, J.: The LPdoc documentation generator. Ref. Man-
ual (v3.0). Technical report, July 2011. http://ciao-lang.org

12. Hermenegildo, M.V., Puebla, G., Bueno, F.: Using global analysis, partial specifica-
tions, and an extensible assertion language for program validation and debugging.
In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Pro-
gramming Paradigm, pp. 161–192. Springer, Heidelberg (1999). https://doi.org/
10.1007/978-3-642-60085-2 7

13. Hermenegildo, M.V., Puebla, G., Marriott, K., Stuckey, P.: Incremental analysis
of constraint logic programs. ACM TOPLAS 22(2), 187–223 (2000)

14. Hudak, P., et al.: Report on the programming language Haskell. Haskell special
issue. ACM SIGPLAN Not. 27(5), 1–164 (1992)

15. Klabnik, S., Nichols, C.: The Rust Programming Language. No Starch Press, San
Francisco (2018)

16. M´endez-Lojo, M., Navas, J., Hermenegildo, M.V.: A flexible, (C)LP-based app-
roach to the analysis of object-oriented programs. In: King, A. (ed.) LOPSTR
2007. LNCS, vol. 4915, pp. 154–168. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78769-3 11

17. Mora, F., Li, Y., Rubin, J., Chechik, M.: Client-specific equivalence checking. In:
33rd ACM/IEEE International Conference on Automated Software Engineering,
pp. 441–451. ASE (2018)

18. Namolaru, M.: Devirtualization in GCC. In: Proceedings of the GCC Developers’
Summit, pp. 125–133 (2006)

19. Navas, J., Bueno, F. , Hermenegildo, M.: Efficient top-down set-sharing analysis
using cliques. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 183–
198. Springer, Heidelberg (2005). https://doi.org/10.1007/11603023 13

20. Puebla, G., Albert, E., Hermenegildo, M.: Abstract interpretation with specialized
definitions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 107-126. Springer,
Heidelberg (2006). https://doi.org/10.1007/11823230_8

21. Puebla, G., Bueno, F., Hermenegildo, M.: An assertion language for constraint logic
programs. In: Deransart, P., Hermenegildo, M.V., Maluszynski, J. (eds.) Analysis
and Visualization Tools for Constraint Programming. LNCS, vol. 1870, pp. 23-61.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722311_2

22. Puebla, G., Bueno, F., Hermenegildo, M.: Combined static and dynamic assertion-
based debugging of constraint logic programs. In: Bossi, A. (ed.) LOPSTR 1999.
LNCS, vol. 1817, pp. 273-292. Springer, Heidelberg (2000). https://doi.org/10.
1007/10720327_16

23. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and
Functional Programming Workshop, pp. 81-92 (2006)

24. Swift, T., Warren, D.: XSB: extending prolog with tabled logic programming.
TPLP 12(1-2), 157-187 (2012). https://doi.org/10.1017/S1471068411000500

25. Vandevoorde, D., Josuttis, N.M.: C++ Templates. Addison-Wesley Longman Pub-
lishing Co. Inc., Boston (2002)

