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Abstract. Bounded model checking is an efficient method for finding bugs in
system designs. The major drawback of the basic method is that it cannot prove
properties, only disprove them. Recently, some progress has been made towards
proving properties of LTL. We present anincrementaland completebounded
model checking method for the full linear temporal logic with past (PLTL). Com-
pared to previous works, our method both improves and extends current results in
many ways: (i) our encoding is incremental, resulting in improvements in perfor-
mance, (ii) we can prove non-existence of a counterexample at shallower depths
in many cases, and (iii) we support full PLTL. We have implemented our method
in the NuSMV2 model checker and report encouraging experimental results.
Keywords: Bounded Model Checking, Incremental, Complete, PLTL, NuSMV

1 Introduction

Bounded model checking(BMC) [1] has established itself as an efficient method of
finding bugs to LTL specifications from system designs. The method works by search-
ing for witnesses of lengthk to the negation of the specification. This bounded search
problem is translated to the propositional satisfiability problem (SAT) and a SAT solver
is used to get an answer.

A problem with BMC is knowing how large the boundk should be, before we
can be sure that no counterexample exists. This bound, referred to as thecompleteness
threshold[2], depends on the system, the property, and how the problem is mapped to
SAT. Computing a tight bound on the completeness threshold is a challenging problem.

One method of finding small completeness thresholds for invariant properties is us-
ing induction. Sheeran et al. [3] present an inductive scheme for invariants. They show
that invariants can be proven by automatically strengthening induction to show that no
path of lengthk breaks the invariant and that there is no initialised loop free path of
lengthk+1. The longest initialised loop free path in the state graph is called therecur-
rence diameter[1]. The inductive method can easily be generalised to safety proper-
ties and also to LTL properties by using the liveness-to-safety transformation presented

? Supported by the Academy of Finland (projects 53695, 211025, 213397, research fellow post).
?? Supported by the Academy of Finland (projects 53695, 211025).

??? Supported by the Helsinki Graduate School in Computer Science, the Academy of Finland
(projects 53695, 211025), and the Nokia Foundation.



in [4], generalised to BDD based model checking of PLTL in [5]. However, the liveness-
to-safety transformation doubles the number of state variables in the model [4,5], which
is unnecessary for BMC. This increases the size of the already large loop free predicate
that in many cases already is the biggest bottleneck. The method of Sheeran et al. has
been generalised in various ways. Kroening and Strichman [2] show that the size of loop
free predicate can be optimised toO(k log2k) (vs.O(k2)) using sorting networks. They
also suggest ways to leave out state variables from the loop free predicate to improve
efficiency while maintaining completeness. Two papers that consider strengthening of
induction without always doing deeper BMC queries are [6,7].

Recently, some work has focused on computing a completeness threshold for gen-
eral LTL properties. Clarke et al. [8] show how the completeness threshold can be com-
puted for general LTL properties by computing the recurrence diameter of the product
of the system and a B̈uchi automaton. Awedh and Somenzi [9] apply the same approach,
but they use a refined method for calculating the completeness threshold. Both papers
have the problem that they use an explicit representation of Büchi automata in their im-
plementations and thus potentially using an exponential number of state bits in the size
of the formula to represent the Büchi automaton. Furthermore, they do not use gener-
alised B̈uchi automata to represent LTL properties and might therefore have to proceed
deeper to prove properties than the method proposed in this paper or methods based on
generalised B̈uchi automata.

McMillan [10] uses interpolants derived from unsatisfiability proofs of BMC coun-
terexample queries to overapproximate reachability. The deeper the BMC query is, the
more exact the overapproximation is. The method is complete and can be extended to
LTL through the liveness to safety transformation [4]. A weakness of the method is that
the unsatisfiability proofs can be of exponential size and cause a blow up.

A promising technique for improving the performance of BMC is usingincremen-
tal SAT solving. When a solver is faced with a sequence of related problems, learning
clauses (see e.g., [11]) from the previous problems can drastically improve the solution
time for the next problem and thus for the whole sequence. BMC is a natural candidate
for incremental solving as two BMC instances for boundsk andk+1 are very similar.
Strichman [12] and Whittemore et al. [13] were among the first to consider incremental
BMC. Both papers presented frameworks for transforming a SAT problem to the next in
the sequence by adding and removing clauses from the current problem instance. Eén
and S̈orensson [14] consider incremental BMC combined with the inductive scheme
presented in [3]. Their approach is based on using the special syntactic structure of
the BMC encoding for invariants to forward all learned clauses, and therefore they do
not need to perform any potentially expensive conflict analysis between two sequen-
tial problem instances. Jin and Somenzi [15] present efficient ways of filtering conflict
clauses when creating the next problem instance. In [16] a framework for incremental
SAT solving based on incremental compilation of the encoding to SAT is presented,
however, their PLTL encoding is based on the original and inefficient encoding of [17].

Our contribution is a BMC encoding specifically adapted to an incremental setting
based on the PLTL encoding presented in [18]. The encoding has been designed to allow
easy separation of constraints that remain active over all instances and constraints that
should be removed when the bound is increased. In addition, we have tried to minimise



the number of constraints that must be removed in order to allow maximal learning in a
solver independent fashion. Both of these are achieved while maintaining the efficiency
of the original encoding [18]. Additionally, our encoding is able to prove properties of
full PLTL with smaller bounds than previous methods for LTL [8,9], as these papers em-
ploy a method for translating generalised Büchi automata to standard (non-generalised)
Büchi automata in a way which does not preserve the minimal length of counterexam-
ples. We have implemented our method in the NuSMV model checker [19] and present
promising experimental results.

2 Bounded Model Checking for LTL

The main idea of bounded model checking [1] is to search forbounded witnessesfor a
temporal property. A bounded witness is an infinite path on which the property holds,
and which can be represented by a finite path of lengthk. A finite path can represent
infinite behaviour, in the following sense. Either it represents all its infinite extensions or
it forms aloop. Givenl > 0, an infinite pathπ = s0s1s2 . . . of states is a(k, l)-loop, if π =
(s0s1 . . .sl−1)(sl . . .sk)ω. In a finite state system we can restrict ourselves to searching
for counterexamples to an LTL (and also PLTL) property representable as a(k, l)-loop.
In BMC all possiblek-length bounded witnesses of thenegationof the specification
are encoded as a SAT problem. The boundk is increased until either a witness is found
(the instance is satisfiable) or a sufficiently high value ofk to guarantee completeness
is reached.

2.1 PLTL

PLTL is a commonly used specification logic with both past and future temporal oper-
ators. We refer to the sublogic consisting of only the future temporal operators as LTL.
The semantics of an PLTL formula is defined along infinite pathsπ = s0s1 . . . of states.
Each statesi is labelled by a labelling functionL such thatL(si)∈ 2AP, whereAP is a set
of atomic propositions. The states are part of a modelM with a total transition relation
T and initial state constraintI . Let πi denote the suffix ofπ starting from thei:th state.
The semantics is as follows:

πi |= ψ ⇔ ψ ∈ L(si) for ψ ∈ AP.
πi |= ¬ψ ⇔ πi 6|= ψ.
πi |= ψ1∨ψ2 ⇔ πi |= ψ1 or πi |= ψ2.
πi |= ψ1∧ψ2 ⇔ πi |= ψ1 andπi |= ψ2.
πi |= X ψ ⇔ πi+1 |= ψ.
πi |= ψ1 U ψ2 ⇔ ∃n≥ i such thatπn |= ψ2 andπ j |= ψ1 for all i ≤ j < n.
πi |= ψ1 R ψ2 ⇔ ∀n≥ i,πn |= ψ2 or π j |= ψ1 for somei ≤ j < n.
πi |= Y ψ ⇔ i > 0 andπi−1 |= ψ.
πi |= Z ψ ⇔ i = 0 or πi−1 |= ψ.
πi |= Oψ ⇔ π j |= ψ for some 0≤ j ≤ i.
πi |= H ψ ⇔ π j |= ψ for all 0≤ j ≤ i.
πi |= ψ1 Sψ2 ⇔ π j |= ψ2 for some 0≤ j ≤ i andπn |= ψ1 for all j < n≤ i.
πi |= ψ1 T ψ2 ⇔ for all 0≤ j ≤ i : π j |= ψ2 or πn |= ψ1 for somej < n≤ i.



When π0 |= ψ we simply writeπ |= ψ. With M |= ψ we denote thatπ |= ψ for all
infinite initialised pathsπ of M. Commonly used abbreviations are the standard Boolean
shorthands>≡ p∨¬p for somep∈AP,⊥≡¬>, p⇒ q≡¬p∨q, p⇔ q≡ (p⇒ q)∧
(q⇒ p), and the derived temporal operatorsFψ ≡ >U ψ (’finally’), Gψ ≡ ¬F¬ψ
(’globally’). It is always possible to rewrite any formula topositive normal form, where
all negations appear only in front of atomic propositions. This can be accomplished
by using dualities of the form¬(ψ1 U ψ2) ≡ ¬ψ1 R¬ψ2, which are available for all
operators. In the rest of the paper we assume that all formulas are in positive normal
form. The maximum number of nested past operators in PLTL formula is called thepast
operator depth.

Definition 1. The past operator depth for a PLTL formulaψ is denoted byδ(ψ) and is
inductively defined as:

δ(ψ) = 0 for ψ ∈ AP,
δ(◦φ) = δ(φ) for ◦ ∈ {¬,X ,F ,G} ,
δ(ψ1 ◦ ψ2) = max(δ(ψ1),δ(ψ2)) for ◦ ∈ {∨,∧,U,R} ,
δ(◦φ) = 1+δ(φ) for ◦ ∈ {Y ,Z ,O ,H } , and
δ(ψ1 ◦ ψ2) = 1+max(δ(ψ1),δ(ψ2)) for ◦ ∈ {S,T} .

The set of subformulas of a PLTL formulaψ is denoted bycl(ψ) and is defined as
the smallest set satisfying the following conditions:

ψ ∈ cl(ψ),
if ◦ φ ∈ cl(ψ) for ◦ ∈ {¬,X ,F ,G ,Y ,Z ,O ,H } thenφ ∈ cl(ψ), and
if ψ1 ◦ ψ2 ∈ cl(ψ) for ◦ ∈ {∨,∧,U,R,S,T} thenψ1,ψ2 ∈ cl(ψ).

2.2 Incremental Bounded Model Checking for LTL

We start by presenting an incremental encoding for LTL based on our simple BMC
encoding [20,18]. There are a few considerations that need to be taken into account for
a good incremental encoding. First of all, the encoding needs to be formulated so that it
is easy to derive the casek= i +1 fromk= i. This is done by separating the encoding to
ak-invariantpart and ak-dependentpart. The information learned from thek-invariant
constraints can be reused when the bound is increased while the information learned
from thek-dependent constraints needs to be discarded. Thus we try to minimise the
use ofk-dependent constraints in our encoding. The so calledBase constraintsare also
k-invariant, but they are conditions that are constant for all 0≤ i ≤ k.

Given an LTL propertyψ, in our new encoding the state variables of the system are
split at each timei to the actual state variablessi of the system, to the set of variables for
all subformulas|[sψ]|i (one for each subformulaϕ ∈ cl(ψ)), and to the set of variables
for the so called auxiliary translation〈〈sψ〉〉i (one for eachF ,G ,U,R subformulaϕ ∈
cl(ψ)). The encoding also contains a few additional variables which will be referred to
explicitly. The rules of the encoding are given as a set of Boolean constraints.

Paths of lengthk are encoded usingmodel constraints. They encode initialised finite
paths of the modelM of lengthk:

|[M]|k := I(s0)∧
k̂

i=1

T(si−1,si),



whereI(s) is the initial state predicate andT(s,s′) is a total transition relation.

The loop constraintsemployk+ 2 freshloop selector variables l0, . . . , lk+1. They
constrain the finite path of the system to be: (a) a finite path, in which case none of
the l0, . . . , lk+1 variables is true, or (b) a(k, i)-loop, in which case the variablel i is true
and all otherl j variables are false. Manyk-dependent constraints of our original encod-
ing [20] have been eliminated by introducing a new special system statesE with fresh
(unconstrained) state variables acting as a proxy state for the endpoint of the path. In
thek-dependent part the proxy statesE is constrained to be equivalent tosk. The vari-
able InLoopi is true iff the statesi belongs to the loop part of a(k, l)-loop. The variable
LoopExists isk-dependent, and true whenπ is a(k, l)-loop and false otherwise. This is
encoded by conjuncting the constraints below and denoted by|[LoopConstraints]|k:

Base l0 ⇔ ⊥
InLoop0 ⇔ ⊥

k−invariant l i ⇒ (si−1 = sE)

1≤ i ≤ k InLoopi ⇔ InLoopi−1∨ l i ,

InLoopi−1 ⇒ ¬l i

k−dependent lk+1 ⇔ ⊥
sE ⇔ sk

LoopExists⇔ InLoopk

TheLTL constraintsrestrict the bounded path defined by the model constraints and loop
constraints to witnesses of the given LTL formulaψ. One intuition for understanding
the encoding is given by the fact that for(k, l)-loops the semantics of CTL and LTL
coincide [21,22,20]. Thus for(k, l)-loops the encoding can be seen as a CTL model
checker for the single(k, l)-loop selected by the loop constraints.

As mentioned above, the translation for LTL uses for each time pointi and each
subformulaϕ ∈ cl(ψ) one state variable denoted by|[ϕ]|di . The superscriptd is needed
in order to extend the encoding to the PLTL case butd = 0 holds for all LTL properties.
Note that although the transition relation is unrolled up toi = k, there are formula
state variables up toi = k+ 1. We will now start introducing constraints on these free
subformula variables.

We use a proxy statesL with associated (free) formula variables|[ϕ]|dL to simplify
the notation a bit. In the no-loop case they will all be forced to false in order to safely
underapproximate the semantics of LTL. In the loop case they will pick up the truth
value for each subformula in the loop statesL, i.e. the successor state ofsE. The k-
dependent rules bind the truth values of|[ϕ]|dE to |[ϕ]|dk and the truth values of|[ϕ]|dk+1

to |[ϕ]|min(d+1,δ(ϕ))
L (jump to the next unrolling leveld+1, needed for the PLTL case).



For all ϕ ∈ cl(ψ) the following constraints are created:

0≤ d≤ δ(ϕ)

Base ¬LoopExists⇒
(
|[ϕ]|dL ⇔⊥

)
k−invariant,1≤ i ≤ k l i ⇒

(
|[ϕ]|dL ⇔ |[ϕ]|di

)
k−dependent |[ϕ]|dE ⇔ |[ϕ]|dk

|[ϕ]|dk+1 ⇔ |[ϕ]|min(d+1,δ(ϕ))
L

Atomic propositions, their negations and the basic Boolean connectives can be dealt
with straightforwardly in ak-invariant fashion. The encoding for the temporal subfor-
mulas follows the recursive semantic definition of LTL temporal subformulas. The Base
encoding guarantees in the(k, l)-loop case the following. If an until holds atsE then the
ψ2 subformula will hold in some state in the loop. In the release case ifψ2 is true on
all states along the loop, then also the release formula holds atsE. In the case of a non-
looping path we do not have to care about eventualities and thus the Base encoding is
disabled. Rules for finally and globally are just special case optimisations of these two.

ϕ

Base Fφ LoopExists⇒
(
|[Fφ]|δ(φ)

E ⇒ 〈〈Fφ〉〉δ(φ)
E

)
Gφ LoopExists⇒

(
|[Gφ]|δ(φ)

E ⇐ 〈〈Gφ〉〉δ(φ)
E

)
ψ1 U ψ2 LoopExists⇒

(
|[ψ1 U ψ2]|

δ(ϕ)
E ⇒ 〈〈Fψ2〉〉

δ(ψ2)
E

)
ψ1 R ψ2 LoopExists⇒

(
|[ψ1 R ψ2]|

δ(ϕ)
E ⇐ 〈〈Gψ2〉〉

δ(ψ2)
E

)
k−invariant p |[p]|di ⇔ pi

¬p |[¬p]|di ⇔¬pi

0≤ i ≤ k, ψ1∧ψ2 |[ψ1∧ψ2]|di ⇔ |[ψ1]|di ∧|[ψ2]|di
0≤ d≤ δ(ϕ) ψ1∨ψ2 |[ψ1∨ψ2]|di ⇔ |[ψ1]|di ∨|[ψ2]|di

X φ |[X φ]|di ⇔ |[φ]|di+1

Fφ |[Fφ]|di ⇔ |[φ]|di ∨|[Fφ]|di+1

Gφ |[Gφ]|di ⇔ |[φ]|di ∧|[Gφ]|di+1

ψ1 U ψ2 |[ψ1 U ψ2]|di ⇔ |[ψ2]|di ∨
(
|[ψ1]|di ∧|[ψ1 U ψ2]|di+1

)
ψ1 R ψ2 |[ψ1 R ψ2]|di ⇔ |[ψ2]|di ∧

(
|[ψ1]|di ∨|[ψ1 R ψ2]|di+1

)
Theauxiliary encoding〈〈ϕ〉〉di is used to enforce eventualities. As it is not referenced in
the no-loop case, we consider only the(k, l)-loop case. In that case〈〈Fφ〉〉dE (〈〈Gφ〉〉dE)
is true iff Fφ (Gφ) holds in the end statesE (in unrolling d for the PLTL case). For
〈〈Fφ〉〉dE, this is implemented by requiring that|[φ]|di holds in at least one state in the
loop, while〈〈Gφ〉〉dE requires that|[ψ]|di holds in all states of the loop. The formulation
of the auxiliary encoding is one of the main differences to the encoding of [18] and
allows several new optimisations in Sect. 5.



ϕ

Base Fφ 〈〈Fφ〉〉δ(φ)
0 ⇔⊥

Gφ 〈〈Gφ〉〉δ(φ)
0 ⇔>

k−invariant Fφ 〈〈Fφ〉〉δ(φ)
i ⇔ 〈〈Fφ〉〉δ(φ)

i−1 ∨
(

InLoopi ∧|[φ]|δ(φ)
i

)
1≤ i ≤ k Gφ 〈〈Gφ〉〉δ(φ)

i ⇔ 〈〈Gφ〉〉δ(φ)
i−1 ∧

(
¬InLoopi ∨|[φ]|δ(φ)

i

)
k−dependent Fφ 〈〈Fφ〉〉δ(φ)

E ⇔ 〈〈Fφ〉〉δ(φ)
k

Gφ 〈〈Gφ〉〉δ(φ)
E ⇔ 〈〈Gφ〉〉δ(φ)

k

Our incremental encoding is close to the symbolic Büchi automata construction for
LTL formulae presented in [23], were it to be adapted to an incremental BMC setting
(see also [5] for more on this connection). By restricting the encoding to looping coun-
terexamples, and replacing our auxiliary encoding with an encoding that would track
the Büchi acceptance conditions for until and finally formulas, the encoding for LTL
would essentially correspond to an incremental BMC version of [23].

For LTL we have now generated the full encoding which will be extended to PLTL
in the next section, where we will also present the correctness claims. Let|[M,ψ]|k
denote the encoding above with the bound set tok. Intuitively, the LTL formulaψ has
a bounded witness of lengthk in M iff the encoding is satisfiable. Moreover, when
moving from an instance with boundk = i to an instance with boundk = i + 1 only
thek-dependent constraints (and of course things learned from them by the SAT solver)
need to be discarded.

3 Generalising to PLTL

The generalisation to full PLTL is based on our BMC encoding for PLTL [18]. With past
operators, encoding the BMC problem is slightly more complicated. The main source
of complexity is the fact that when a(k, l)-loop is traversed forward, each time we reach
the loop point, the future looks the same but the past is different. Fortunately, the ability
of a PLTL formulaψ to distinguish between different loop points is bounded by the past
formula nesting depthδ(ψ) [24,17]. Therefore the evaluations of past operators inside
the loop will eventually stabilise. This can be exploited in BMC byvirtually unrolling
the(k, l)-loop δ(ψ) times, to ensure that the evaluations of the past operators have sta-
bilised. Consider a simple counter that increments a variablex at each step. Whenx
reaches five the value ofx is reset to two. The counter has the single executionπ =
012(3452)ω that corresponds to a(6,3)-loop. Letϕ = (x = 3∧O (x = 4∧O (x = 5)))
which hasδ(ϕ) = 2. At the loop statei = 3 we have thatπ3 6|= ϕ. At the next corre-
sponding time stepi = 7 the formulaϕ still does not hold. However, when we reach
i = 11 the formulaϕ has stabilised andπ11 |= ϕ. In Fig. 1 the(6,3)-loop of the counter
system has been virtually unrolled to depthd = 2.. The corresponding state toi = 11 is
at depthd = 2 at i = 3. The encoding is modified by introducing for each time pointi
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Fig. 1. Virtual unrolling for δ(ψ) = 2 with a(6,3)-loop.

and each subformulaϕ∈ cl(ψ) the formula variables|[ϕ]|di , where 0≤ d≤ δ(ϕ). Please
refer to our paper on BMC for PLTL for details [18]. The first rule of the encoding for
PLTL is based on the property mentioned above: PLTL can only distinguish between
different unrollings of the loop up to the past depth of the formula.

0≤ d≤ δ(ϕ)

k−invariant |[ϕ]|di := |[ϕ]|δ(ϕ)
i , whend > δ(ϕ)

The encoding for the past operators is very similar to our encoding presented in [18].
The basic idea is to use the recursive definitions of the past temporal operators. The
history past operators should evaluate corresponds to the straight black arrows of Fig. 1.
An if-then-else construct is used to determine if the previous time point in the past
is si−1 at the current depth orsE at the previous depthd− 1 (see Fig. 1). We define
ite(a,b,c)≡ (a∧b)∨(¬a∧c) to obtain a more compact representation of the encoding.

The largest change to our previous encoding [18] is the translation ati = 0 whend >
0, which is now identical toi = 0 ofd = 0. This is done on purpose to make all the virtual
unrollings identical in the no-loop case (this allows some of the optimisations given
in Sect. 5). Moreover, references to subformulas at statesk have been replaced with
references to subformulas at the proxy statesE making all the constraintsk-invariant.

Combining all the components the encoding|[M,ψ]|k for PLTL is defined to be:

|[M,ψ]|k := |[M]|k∧|[LoopConstraints]|k∧|[ψ]|00.



ϕ
k−invariant Y φ |[Y φ]|00 ⇔⊥, |[Y φ]|0i ⇔ |[φ]|0i−1

Z φ |[Z φ]|00 ⇔>, |[Z φ]|0i ⇔ |[φ]|0i−1

1≤ i ≤ k+1, Oφ |[Oφ]|00 ⇔ |[φ]|00, |[Oφ]|0i ⇔ |[φ]|0i ∨|[Oφ]|0i−1

d = 0 H φ |[H φ]|00 ⇔ |[φ]|00, |[H φ]|0i ⇔ |[φ]|0i ∧|[H φ]|0i−1

ψ1 Sψ2 |[ψ1 Sψ2]|00 ⇔ |[ψ2]|00, |[ψ1 Sψ2]|0i ⇔ |[ψ2]|0i ∨
(
|[ψ1]|0i ∧|[ψ1 Sψ2]|0i−1

)
ψ1 T ψ2 |[ψ1 T ψ2]|00 ⇔ |[ψ2]|00, |[ψ1 T ψ2]|0i ⇔ |[ψ2]|0i ∧

(
|[ψ1]|0i ∨|[ψ1 T ψ2]|0i−1

)
k−invariant Y φ |[Y φ]|d0 ⇔⊥, |[Y φ]|di ⇔ ite

(
l i , |[φ]|d−1

E , |[φ]|di−1

)
Z φ |[Z φ]|d0 ⇔>, |[Z φ]|di ⇔ ite

(
l i , |[φ]|d−1

E , |[φ]|di−1

)
1≤ i ≤ k+1, Oφ |[Oφ]|d0 ⇔ |[φ]|00, |[Oφ]|di ⇔ |[φ]|di ∨ ite

(
l i , |[ϕ]|d−1

E , |[ϕ]|di−1

)
1≤ d≤ δ(ϕ) H φ |[H φ]|d0 ⇔ |[φ]|00, |[H φ]|di ⇔ |[φ]|di ∧ ite

(
l i , |[ϕ]|d−1

E , |[ϕ]|di−1

)
ψ1 Sψ2 |[ψ1 Sψ2]|d0 ⇔ |[ψ2]|00, |[ψ1 Sψ2]|di ⇔ |[ψ2]|di ∨

(
|[ψ1]|di ∧ ite

(
l i , |[ϕ]|d−1

E , |[ϕ]|di−1

))
ψ2 T ψ1 |[ψ1 T ψ2]|d0 ⇔ |[ψ2]|00, |[ψ1 T ψ2]|di ⇔ |[ψ2]|di ∧

(
|[ψ1]|di ∨ ite

(
l i , |[ϕ]|d−1

E , |[ϕ]|di−1

))

The correctness claims are stated below but proofs have been omitted due to space
considerations. Moreover, similarly to the LTL case, when moving from a PLTL encod-
ing instance|[M,ψ]|k to the instance|[M,ψ]|k+1 only thek-dependent constraints (and
of course things learned from them by the SAT solver) need to be discarded.

Theorem 1. Given a finite Kripke structure M and a PLTL formulaψ, M has a pathπ
such thatπ |= ψ iff there exists a k∈ N such that|[M,ψ]|k is satisfiable. Specifically, if
π = s0s1s2 . . . is a (k, l)-loop such thatπ |= ψ then|[M,ψ]|k is satisfiable.1

4 Completeness for PLTL

The incremental encoding above can easily be extended to prove properties. The basic
intuition is similar to the induction strengthening of [3] for invariants, restricted to the
forward direction but extended for PLTL.

The procedure starts with boundk = 0. First we create acompleteness formula,
denoted by|[M,ψ,k]|, which is satisfied only for the initialised finite paths of length
k which one might be able to extend to a bounded witness of formulaψ (of lengthk
or longer). Furthermore, the completeness formula should be conjuncted with asim-
ple pathformula which is satisfied for exactly those paths which do not contain two
“equivalent” states. If the conjunction of the completeness and simple path formulas is
unsatisfiable the model checked formula¬ψ holds in the system and the procedure can
be terminated. Otherwise thewitness formula|[M,ψ]|k is created which is satisfied for
bounded witnesses of lengthk to the formulaψ (see Theorem 1). If the witness formula
is satisfiable, a witness is found, and the procedure can terminate and the model checked
formula¬ψ does not hold. Otherwise, the procedure is repeated after incrementingk
by one.

The termination of the procedure above is guaranteed if there are only finitely many
equivalence classes of states considered by the simple path formula. The soundness

1 A direct corollary of this is that minimal length(k, l)-loop counterexamples can be detected.



and completeness of the procedure is more involved and basically requires the witness,
completeness, and simple path formulas to be compatible with each other.

In our case we will use as the completeness formula|[M,ψ,k]| the encoding|[M,ψ]|k
where all thek-dependent constraints have been discarded. Clearly, any witness formula
for bounds> k will contain all the constraints in|[M,ψ,k]| and thus if|[M,ψ,k]| is un-
satisfiable all more constrained formulas are going to be unsatisfiable as well.

The definition of which states are equivalent w.r.t. the simple path formula is a bit
more involved and the following definition is used: two statessi andsj are equivalent
if either: (i) they both do not belong to the loop and agree on the system statesi = sj

and the formula state restricted to the first virtual unrolling|[sψ]|0i = |[sψ]|0j , or (ii) they
both belong to the loop and agree on the system statesi = sj , on the formula state on
all unrollings|[sψ]|i = |[sψ]| j and on the auxiliary formula state〈〈sψ〉〉i = 〈〈sψ〉〉 j . The
simple path formula can thus be expressed by:

|[SimplePath]|k :=
V

0≤i< j≤k

(
si 6= sj ∨ InLoopi 6= InLoopj ∨|[sψ]|0i 6= |[sψ]|0j∨(
InLoopi ∧ InLoopj ∧

(
|[sψ]|i 6= |[sψ]| j ∨〈〈sψ〉〉i 6= 〈〈sψ〉〉 j

)))
.

The intuition of case (i) is that if the statessi andsj agree on both the system state
and the formula state restricted to the first virtual unrolling, then the witness is of non-
minimal length and would have been already detected with boundk− ( j − i). Similar
reasoning also applies to case (ii), where in addition to the system state, all unrollings
have to agree on the formula state (please refer to Fig. 1) and the auxiliary formula state
has to be identical insi andsj in order not to erroneously remove any states from the
witness which are needed to fulfil the temporal eventualities.

The proof why this notion of state equivalence is a sound formulation in the con-
text of our procedure is slightly more involved but here we will give a sketch. As-
sume we have a bounded witness of lengthk which contains two equivalent statessi

andsj . In the case of two equivalent states of type either (i) or (ii) we can show by
(a slightly tedious but straightforward analysis of) the structure of the formulas|[M,ψ]|k
and|[M,ψ]|k−( j−i) that there exists a bounded witness of lengthk− ( j − i) to ψ where
all system statessm such thati < m≤ j have been removed and all system states with
indexesn > j have their indexes decreased byj − i. Thus if a witness contains two
equivalent states then also a shorter witness exists. Because repeating the procedure
will terminate in a situation where no two equivalent states exist, the simple path for-
mula does not remove any minimal length witnesses. We have the following result.

Theorem 2. Given a model M and a PLTL formulaψ, M |= ψ iff for some k∈ N
|[M,¬ψ,k]|∧ |[SimplePath]|k is unsatisfiable and|[M,¬ψ]|i is unsatisfiable for all0≤
i < k.

5 Optimising the Encoding

There are several straightforward ways of optimising the encoding. We present some
of them below. For example, many subformulas incl(ψ) do not need a formula state
variable bit as only subformulas to which other time points can refer to with tempo-
ral subformulas need to be included in|[sψ]|. In the following table we have included



several optimisations. The first class consists of binding formula variables in|[sψ]|E to
those insE and |[sψ]|L in a k-invariant manner. There are several optimisations which
exploit the monotonic nature of the unary LTL operators to infer things even before a
loop on the system side has been closed. For example, ifGφ holds in a states whose
future is a superset of the future of states′ then clearlyGφ has to also hold ins′. (Some
of these optimisations have to be enabled by InLoopi because the required subset rela-
tions only hold for the black nodes of Fig. 1.) Also the over (under) approximation of
the main encoding and auxiliary encoding for unary future formulas is exploited, and
so on.

Base,0≤ d≤ δ(ϕ) k−invariant,0≤ i ≤ k,0≤ d≤ δ(ϕ)

|[p]|dE ⇔ pE l i ⇒ LoopExists
|[¬p]|dE ⇔¬pE |[Gφ]|di ⇒ |[Gφ]|dE

|[ψ1∧ψ2]|dE ⇔ |[ψ1]|dE ∧|[ψ2]|dE InLoopi ⇒
(
|[Oφ]|di ⇒ |[Oφ]|dE

)
|[ψ1∨ψ2]|dE ⇔ |[ψ1]|dE ∨|[ψ2]|dE |[Fφ]|dE ⇒ |[Fφ]|di
|[X φ]|dE ⇔ |[φ]|min(d+1,δ(φ))

L InLoopi ⇒
(
|[H φ]|dE ⇒ |[H φ]|di

)
|[ψ1 U ψ2]|dE ⇔ |[ψ2]|dE ∨

(
|[ψ1]|dE ∧|[ψ1 U ψ2]|min(d+1,δ(ϕ))

L

)
|[ψ1 R ψ2]|dE ⇔ |[ψ2]|dE ∧

(
|[ψ1]|dE ∨|[ψ1 R ψ2]|min(d+1,δ(ϕ))

L

)
|[Fφ]|dE ⇔ |[φ]|dE ∨|[Fφ]|min(d+1,δ(ϕ))

L 〈〈Fφ〉〉δ(φ)
i ⇒ 〈〈Fφ〉〉δ(φ)

E

|[Gφ]|dE ⇔ |[φ]|dE ∧|[Gφ]|min(d+1,δ(ϕ))
L 〈〈Gφ〉〉δ(φ)

E ⇒ 〈〈Gφ〉〉δ(φ)
i

|[Gφ]|δ(φ)
E ⇒ 〈〈Gφ〉〉δ(φ)

E |[Gφ]|δ(φ)
i ⇒ 〈〈Gφ〉〉δ(φ)

i

〈〈Fφ〉〉δ(φ)
E ⇒ |[Fφ]|δ(φ)

E 〈〈Fφ〉〉δ(φ)
i ⇒ |[Fφ]|δ(φ)

i

|[Gφ]|dE ⇒ |[Gφ]|d+1
E , whend < δ(φ) InLoopi ⇒

(
|[Gφ]|di ⇒ |[Gφ]|d+1

i

)
, whend < δ(φ)

|[Oφ]|dE ⇒ |[Oφ]|d+1
E , whend < δ(φ) InLoopi ⇒

(
|[Oφ]|di ⇒ |[Oφ]|d+1

i

)
, whend < δ(φ)

|[Fφ]|d+1
E ⇒ |[Fφ]|dE , whend < δ(φ) InLoopi ⇒

(
|[Fφ]|d+1

i ⇒ |[Fφ]|di
)

, whend < δ(φ)

|[H φ]|d+1
E ⇒ |[H φ]|dE , whend < δ(φ) InLoopi ⇒

(
|[H φ]|d+1

i ⇒ |[H φ]|di
)

, whend < δ(φ)

6 Experiments

We have implemented our work in version 2.2.3 of the NuSMV model checker [19].
We have built an incremental SAT solver interface to NuSMV allowing one to add con-
straints to the solver either in a permanent or a temporary manner. The temporary con-
straints can be removed from the solver, automatically also removing all the constraints
that the solver has learned based on those. The incremental SAT solvers currently sup-
ported by the interface are MiniSat [25] and ZChaff [26]. In the experiments we use
the latest version 2004.11.15 of ZChaff as the SAT solver. The memory was limited to
900MiB and the cumulative time to one hour. No cone of influence reductions are used
during benchmarking and our implementation doesnot contain any invariant (or any
other property class) specific optimisations (left for further work). As the benchmark
problems we use: (i) the systems involving PLTL specifications that we have used ear-
lier in [18] (the VMCAI/* problems), (ii) IBM benchmarks from [27], and (iii) some
systems in the standard NuSMV distribution involving LTL specifications which we
could prove to be true.

Table 1 reports some of the results. The NuSMV 2.2.3 column refers to the non-
incremental PLTL BMC model checker of NuSMV 2.2.3, the VMCAI column refers to



Table 1.Experimental results.

NuSMV 2.2.3 VMCAI new inc. new non-inc. new inc. new non-inc.
counter-ex. counter-ex. completenesscompleteness

problem t/f k time t/f k time t/f k time t/f k time t/f k time t/f k time
VMCAI2005/abp4 f 16 70 f 16 47 f 16 56 f 16 55 f 16 26 f 16 68
VMCAI2005/brp 28 152 1771 166 89 39
VMCAI2005/dme4 23 49 56 51 57 39
VMCAI2005/pci 15 18 f 18 2388 17 18 17
VMCAI2005/srg5 12 242 736 210 54 44
IBM/IBM FV 200201 f 14 90 f 14 113 f 14 44 f 14 87 f 14 54 f 14 113
IBM/IBM FV 200203 f 32 134 f 32 206 f 32 32 f 32 200 f 32 74 f 32 727
IBM/IBM FV 200204 f 24 38 f 24 91 f 24 12 f 24 90 f 24 38 f 24 156
IBM/IBM FV 200205 f 31 258 f 31 421 f 31 17 f 31 251 f 31 52 f 31 617
IBM/IBM FV 200206 f 31 573 f 31 732 f 31 77 f 31 723 f 31 270 f 31 2032
IBM/IBM FV 200209 232 84 787 81 81 76
IBM/IBM FV 200215 f 9 38 f 9 40 f 9 3 f 9 4 f 9 3 f 9 9
IBM/IBM FV 200218 26 27 f 29 2362 26 f 29 1789 24
IBM/IBM FV 200219 f 29 3057 29 f 29 86 28 f 29 300 23
IBM/IBM FV 200220 27 27 35 26 35 24
IBM/IBM FV 200221 f 29 2276 f 29 3442 f 29 144 f 29 2741 f 29 239 24
IBM/IBM FV 200222 25 26 49 25 42 20
IBM/IBM FV 200223 25 25 31 24 31 21
IBM/IBM FV 200227 f 25 298 f 25 291 f 25 15 f 25 322 f 25 44 f 25 406
IBM/IBM FV 200228 f 14 1046 f 14 973 f 14 245 f 14 1023 f 14 278 f 14 1160
IBM/IBM FV 200229 14 15 17 14 20 14
bmc/barrel5 28 28 67 26 t 11 63 t 11 314
ctl-ltl/counter1 181 970 8025 3019 t 24 0 t 24 0
ctl-ltl/mutex 196 728 6855 2578 t 19 0 t 19 0
ctl-ltl/periodic 561 331 2063 781 t 201 593 t 201 2596
ctl-ltl/ring 159 264 713 165 t 66 3203 44 3598
ctl-ltl/short 182 870 2496 800 t 11 0 t 11 0

the implementation of our earlier non-incremental PLTL translation [18] ported on top
of NuSMV 2.2.3, while “new inc. completeness” (“new non-inc. completeness”, resp.)
is an incremental (non-incremental, resp.) implementation of the new translation with
completeness. The “new inc. counter-ex.” (“new non-inc. counter-ex.”) column refers
to a “counter-example only” version of the new (non-incremental) implementation in
which the completeness check is disabled (and thus the simple path constraint is not
used). The “t/f” column shows whether the implementation was able to show that the
property is either true or false, thek column shows the maximumk that was reached
within the memory and time limits, and time is the cumulative time in seconds used to
solve the problem.

The results show many interesting things. First of all, it can be seen that incre-
mentality usually significantly improves the running times and thus also enables higher
bounds to be reached faster. Furthermore, it never degraded the performance consider-
ably. Second, compared to the counter-example only version, the completeness check is
sometimes essentially free but sometimes it significantly slows down the search. Third,
with the incremental SAT solver technology and the new translation it was possible
to build a BMC procedure with completeness that usually performs much better than
the standard NuSMV BMC procedure (without completeness) even when the specifi-
cations are simple invariants (the IBM problems). Last, our new incremental imple-
mentation is significantly better than the previously suggested compact encoding for
PLTL (the VMCAI column). The implementation and experiments are available from:
http://www.tcs.hut.fi/˜tjunttil/experiments/CAV05/

http://www.tcs.hut.fi/~tjunttil/experiments/CAV05/


7 Discussion and Conclusions

We have created an efficient incremental and complete BMC procedure for full PLTL
detecting counterexamples at minimal bounds, an improvement over complete BMC
procedures for LTL based on non-generalised Büchi automata [9,8]. The encoding most
similar to ours is [5], which is unsurprising as it is also based on the joint work [18].
However, the main aim of [5] was to create a BDD based symbolic model checker,
without incremental BMC in mind.

An interesting feature of our new PLTL encoding (unlike the earlier version [18])
is that it is sound also in the case we replace the functionδ(·) with a constant function
that always returns 0. In this case the size of the encoding will be linear in|ψ| (similar
to [28], see [5]). In fact, we can limit the maximum virtual unrolling depth of formulas
to any value between zero (minimal size encoding, potentially longer counterexamples)
andδ(ψ) (minimal length counterexamples, larger encoding) and Theorem 2 still holds.
Limiting the number of virtual unrollings to zero can be beneficial in order to sometimes
prove completeness with a smaller bound.

In order to enhance the performance of the completeness part of the translation,
more efficient ways of handling simple path constraints are needed. Thus an interesting
future improvement in the SAT solver technology would be to enhance the constraint
language of solvers so that they could handle mutual disequality of sets of Boolean vec-
tors natively. An alternative approach would be to develop an incremental version of the
more compact loop free predicate presented in [2]. In addition, we haven’t tried adding
the simple path constraints lazily on-demand as is done in [14]. Our current implemen-
tation of the new translation can be improved in many ways. Firstly, we suspect that
the simple path formula can be refined, and several newk-independent formula invari-
ants can be developed. Several interesting subsets of PLTL could possibly benefit from
special case treatment, especially w.r.t. completeness. Also incremental and complete
BMC for PLTL using backward traversal is left for further work.

Acknowledgements The authors would like to thank Viktor Schuppan for interesting
discussions on the topic.
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International Journal on Software Tools for Technology Transfer4 (2002) 57–70

23. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking. Formal
Methods in System Design.10 (1997) 47–71

24. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past. In: LICS,
IEEE Computer Society Press (2002) 383–392

25. Eén, N., S̈orensson, N.: An extensible SAT-solver. In: SAT 2003. Volume 2919 of LNCS.,
Springer (2004) 502–518

26. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient
SAT solver. In: Design Automation Conference, IEEE (2001)

27. Zarpas, E.: Simple yet efficient improvements of SAT based bounded model checking. In:
FMCAD. Volume 3312 of LNCS., Springer (2004) 174–185

28. Kesten, Y., Pnueli, A., Raviv, L.: Algorithmic verification of linear temporal properties. In:
ICALP 1998. Volume 1443 of LNCS., Springer (1998) 1–16


	 Keijo Heljanko, Tommi Junttila. and Timo Latvala 

