
Incremental Clustering for Mining 
in a Data Warehousing Environment

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Michael Wimmer, Xiaowei Xu
Institute for Computer Science, University of Munich

Oettingenstr. 67, D-80538 München, Germany
email: {ester | kriegel | sander | wimmerm | xwxu}@informatik.uni-muenchen.de

Abstract

Data warehouses provide a great deal of opportu-
nities for performing data mining tasks such as
classification and clustering. Typically, updates
are collected and applied to the data warehouse pe-
riodically in a batch mode, e.g., during the night.
Then, all patterns derived from the warehouse by
some data mining algorithm have to be updated as
well. Due to the very large size of the databases, it
is highly desirable to perform these updates incre-
mentally. In this paper, we present the first incre-
mental clustering algorithm. Our algorithm is
based on the clustering algorithm DBSCAN which
is applicable to any database containing data from
a metric space, e.g., to a spatial database or to a
WWW-log database. Due to the density-based na-
ture of DBSCAN, the insertion or deletion of an
object affects the current clustering only in the
neighborhood of this object. Thus, efficient algo-
rithms can be given for incremental insertions and
deletions to an existing clustering. Based on the
formal definition of clusters, it can be proven that
the incremental algorithm yields the same result as
DBSCAN. A performance evaluation of Incre-
mentalDBSCAN on a spatial database as well as
on a WWW-log database is presented, demonstrat-
ing the efficiency of the proposed algorithm. Incre-
mentalDBSCAN yields significant speed-up
factors over DBSCAN even for large numbers of
daily updates in a data warehouse.

1 Introduction
Many companies have recognized the strategic impor-

tance of the knowledge hidden in their large databases and,

therefore, have built data warehouses. A data warehouse is
a collection of data from multiple sources, integrated into a
common repository and extended by summary information
(such as aggregate views) for the purpose of analysis
[MQM 97]. When speaking of a data warehousing environ-
ment, we do not anticipate any special architecture but we
address an environment with the following two characteris-
tics:

(1) Derived information is present for the purpose of
analysis.

(2) The environment is dynamic, i.e. many updates
occur.

In such an environment, either manual analyses support-
ed by appropriate visualization tools or (semi)automatic
data mining may be performed. Data mining has been de-
fined as the application of data analysis and discovery algo-
rithms that - under acceptable computational efficiency
limitations - produce a particular enumeration of patterns
over the data [FPS 96]. Several data mining tasks have been
identified [FPS 96], e.g., clustering, classification and sum-
marization. Typical results of data mining are as follows:
• Clusters of items which are typically bought together by

some set of customers (clustering in a data warehouse
storing sales transactions). 

• Symptoms distinguishing disease A from disease B (clas-
sification in a medical data warehouse). 

• Description of the typical WWW access patterns (sum-
marization in the data warehouse of an internet provider).
The task considered in this paper is clustering [KR 90],

i.e. grouping the objects of a database into meaningful sub-
classes. Recently, several clustering algorithms for mining
in large databases have been developed [NH 94], [ZRL 96],
[EKSX 96].

Typically, a data warehouse is not updated immediately
when insertions and deletions on the operational databases
occur. Updates are collected and applied to the data ware-
house periodically in a batch mode, e.g., each night
[MQM 97]. Then, all patterns derived from the warehouse
by data mining algorithms have to be updated as well. This
update must be efficient enough to be finished when the
warehouse has to be available for users again, e.g., the next
morning. Due to the very large size of the databases, it is
highly desirable to perform these updates incrementally
([FAAM 97], [Huy 97]), so as to consider only the old clus-
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ters and the objects inserted or deleted during the day, in-
stead of applying the clustering algorithm to the (very large)
updated database.

Maintenance of derived information such as views and
summary tables has been an active area of research
[MQM 97], [Huy 97]. The problem of incrementally updat-
ing mined patterns on changes of the database, however,
has just recently started to receive more investigation.
[CHNW 96] and [FAAM 97] propose efficient methods for
incrementally modifying a set of association rules mined
from a database. [EW 98] introduces generalization algo-
rithms for incremental summarization in a data warehous-
ing environment.

In this paper, we present the first incremental clustering
algorithm. Our algorithm is based on DBSCAN
[EKSX 96], [SEKX 98] which is an efficient clustering al-
gorithm for metric databases (that is, databases with a dis-
tance function for pairs of objects) for mining in a data
warehousing environment. Due to the density-based nature
of DBSCAN, the insertion or deletion of an object affects
the current clustering only in the neighborhood of this ob-
ject. We demonstrate the high efficiency of incremental
clustering on a spatial database [Gue 94] as well as on a
WWW access log database [MJHS 96]. 

The rest of this paper is organized as follows. We discuss
related work on clustering algorithms in section 2. In
section 3, we briefly introduce the clustering algorithm DB-
SCAN. The algorithms for incrementally updating a clus-
tering on insertions and deletions of the database are pre-
sented in section 4 and an extensive performance
evaluation is reported in section 5. Section 6 concludes
with a summary and some directions for future research.

2 Related Work
The problem of incrementally updating mined patterns

after making changes to the database has just recently start-
ed to receive more attention. 

The task of mining association rules has been introduced
by [AS 94]. An association rule is a rule I1 ⇒  I2 where I1
and I2 are disjoint subsets of a set of items I. For a given da-
tabase DB of transactions (i.e. each record contains a set of
items bought by some customer in one transaction), all as-
sociation rules should be discovered having a support of at
least minsupport and a confidence of at least minconfidence
in DB. The subsets of I that have at least minsupport in DB
are called frequent sets. 

[FAAM 97] describes two typical scenarios for mining
association rules in a dynamic database. For example, in a
medical database, one may seek associations between treat-
ments and results. The database is constantly updated and at
any given time, the medical researcher is interested in ob-
taining the current associations. In a database containing
news articles, e.g., patterns of co-occurrence amongst the
topics of articles may be of interest. An economic analyst
receives a lot of new articles every day and he would like to
find relevant associations based on all current articles. 

[CHNW 96] proposes to apply a non-incremental algo-
rithm for mining association rules to the newly inserted da-
tabase objects, i.e. to the increment of the database, and then

to combine the frequent sets of both the database and the in-
crement. The incremental algorithms presented in
[FAAM 97] are based on information about the frequency
of attribute pairs and border sets respectively. While the
space overhead for keeping track of these frequencies is
small, the incremental algorithms yield a speed-up of sever-
al orders of magnitude compared to the non-incremental al-
gorithm.

Summarization, e.g., by generalization, is another impor-
tant task of data mining. Attribute-oriented generalization
[HCC 93] of a relation is the process of replacing the at-
tribute values by a more general value, one attribute at a
time, until the number of tuples of the relation becomes less
than a specified threshold. The more general value is taken
from a concept hierarchy which is typically available for
most attributes in a data warehouse. 

[EW 98] presents algorithms for incremental attribute-
oriented generalization with the conflicting goals of good
efficiency and minimal overly generalization. The algo-
rithms for incremental insertions and deletions are based on
the materialization of a relation at an intermediate generali-
zation level, i.e. the anchor relation. Experiments demon-
strate that incremental generalization can be performed ef-
ficiently at a low degree of overly generalization.

This paper focuses on the data mining task of clustering
and, in the following, we review clustering algorithms from
a data mining perspective. 

Partitioning algorithms construct a partition of a data-
base DB of n objects into a set of k clusters where k is an in-
put parameter. Each cluster is represented by the center of
gravity of the cluster (k-means) or by one of the objects of
the cluster located near its center (k-medoid) [KR 90] and
each object is assigned to the cluster with its representative
closest to the considered object. Typically, partitioning al-
gorithms start with an initial partition of DB and then use an
iterative control strategy to optimize the clustering quality,
e.g., the average distance of an object to its representative.

[NH 94] explores partitioning algorithms for mining in
spatial databases. An algorithm called CLARANS (Cluster-
ing Large Applications based on RANdomized Search) is
introduced which is more effective and more efficient than
previous partitioning algorithms. 

Hierarchical algorithms create a hierarchical decompo-
sition of DB. The hierarchical decomposition is represented
by a dendrogram, a tree that iteratively splits DB into small-
er subsets until each subset consists of only one object. In
such a hierarchy, each level of the tree represents a cluster-
ing of DB. 

The basic hierarchical clustering algorithm works as fol-
lows ([Sib 73], [Bou 96]). Initially, each object is placed in
a unique cluster. For each pair of clusters, some value of
dissimliarity or distance is computed. For instance, the dis-
tance may be the minimum distance of all pairs of points
from the two clusters (single-link method). [Bou 96] dis-
cusses alternative definitions of the distance and shows
that, in general, no one approach outperforms any other in
terms of clustering quality. In every step, the clusters with
the minimum distance in the current clustering are merged
until all points are contained in one cluster.



None of the above algorithms is efficient on large data-
bases. Therefore, some focusing techniques have been pro-
posed to increase the efficiency of clustering algorithms.

[EKX 95] presents an R*-tree based focusing technique
(1) creating a sample of the database that is drawn from
each R*-tree data page and (2) applying the clustering algo-
rithm only to that sample. [ZRL 96] proposes a special data
structure to condense information about subclusters of
points. A Clustering Feature (CF) is a triple that contains
the number of points, the linear sum and the square sum of
all points in the cluster. Clustering features are organized in
a height balanced tree, i.e. the CF-tree. BIRCH (Balanced
Iterative Reducing and Clustering using Hierarchies)
[ZRL 96] is a CF-tree based multiphase clustering method.
First, the database is scanned to build an initial in-memory
CF-tree. In an optional second phase, this CF-tree can be
further reduced until a desired number of leaf nodes is
reached. In phase 3 an arbitrary clustering algorithm is used
to cluster the CF-values stored in the leaf nodes of the CF-
tree. Note that the CF-tree is an incremental structure but
phase 3 of BIRCH is non-incremental.

Recently, a new type of single scan clustering algorithms
has been introduced. The basic idea of a single scan algo-
rithm is to group neighboring objects of the database into
clusters based on a local cluster condition, thus performing
only one scan through the database. Single scan clustering
algorithms are very efficient if the retrieval of the neighbor-
hood of an object is efficiently supported by the DBMS.
Different cluster conditions yield different cluster defini-
tions and algorithms. For instance, DBSCAN (Density
Based Spatial Clustering of Applications with Noise)
[EKSX 96] [SEKX 98] relies on a density-based notion of
clusters.

We use DBSCAN as a base for our incremental cluster-
ing algorithm due to the following reasons. First, DBSCAN
is one of the most efficient algorithms on large databases.
Second, whereas BIRCH is applicable only to spatial data-
bases (Euclidean vector space), DBSCAN can be applied to
any database containing data from a metric space (only as-
suming a distance function).

3 The Algorithm DBSCAN
The key idea of density-based clustering is that for each

object of a cluster the neighborhood of a given radius (Eps)
has to contain at least a minimum number of objects
(MinPts), i.e. the cardinality of the neighborhood has to ex-
ceed some threshold. 

We will first give a short introduction to DBSCAN in-
cluding the definitions which are required for incremental
clustering. For a detailed presentation of DBSCAN see
[EKSX 96]. 

Definition 1: (directly density-reachable) An object p is
directly density-reachable from an object q wrt. Eps and
MinPts in the set of objects D if 

1) p ∈  NEps(q) (NEps(q) is the subset of D contained in the 
Eps-neighborhood of q.) 

2) Card(NEps(q)) ≥ MinPts.
Definition 2: (density-reachable) An object p is density-

reachable from an object q wrt. Eps and MinPts in the set of

objects D, denoted as p >D q, if there is a chain of objects
p1, ..., pn, p1 = q, pn = p such that pi ∈ D and pi+1 is directly
density-reachable from pi wrt. Eps and MinPts.

Density-reachability is a canonical extension of direct
density-reachability. This relation is transitive, but it is not
symmetric. Although not symmetric in general, it is obvi-
ous that density-reachability is symmetric for objects o with
Card(NEps(o)) ≥  MinPts. Two “border objects” of a cluster
are possibly not density-reachable from each other because
there are not enough objects in their Eps-neighborhoods.
However, there must be a third object in the cluster from
which both “border objects” are density-reachable. There-
fore, we introduce the notion of density-connectivity. 

Definition 3: (density-connected) An object p is density-
connected to an object q wrt. Eps and MinPts in the set of
objects D if there is an object o ∈ D such that both p and q
are density-reachable from o wrt. Eps and MinPts in D.

Density-connectivity is a symmetric relation. Figure 1 il-
lustrates the definitions on a sample database of objects
from a 2-dimensional vector space. Note however, that the
above definitions only require a distance measure and will
also apply to data from a metric space.

A cluster is defined as a set of density-connected objects
which is maximal wrt. density-reachability and the noise is
the set of objects not contained in any cluster.

Definition 4: (cluster) Let D be a set of objects. A cluster
C wrt. Eps and MinPts in D is a non-empty subset of D sat-
isfying the following conditions:

1) Maximality : ∀ p,q ∈ D: if p ∈ C and q >D p wrt. Eps and 
MinPts, then also q ∈ C. 

2) Connectivity: ∀ p,q ∈  C: p is density-connected to q 
wrt. Eps and MinPts in D.

Definition 5: (noise) Let C1 ,. . ., Ck be the clusters wrt.
Eps and MinPts in D. Then, we define the noise as the set of
objects in the database D not belonging to any cluster Ci ,
i.e. noise = {p ∈ D | ∀  i: p ∉ Ci}.

We omit the term “wrt. Eps and MinPts” in the following
whenever it is clear from the context. There are two differ-
ent kinds of objects in a clustering: core objects (satisfying
condition 2 of definition 1) and non-core objects (other-
wise). In the following, we will refer to this characteristic of
an object as the core object property of the object. The non-
core objects in turn are either border objects (not a core ob-
ject but density-reachable from another core object) or
noise objects (not a core object and not density-reachable
from other objects).

The algorithm DBSCAN was designed to efficiently dis-
cover the clusters and the noise in a database according to

p

qo

p

q

Figure 1: : density-reachability and density-connectivity
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the above definitions. The procedure for finding a cluster is
based on the fact that a cluster is uniquely determined by
any of its core objects:
• First, given an arbitrary object p for which the core object

condition holds, the set {o | o >D p} of all objects o den-
sity-reachable from p in D forms a complete cluster C
and p ∈  C. 

• Second, given a cluster C and an arbitrary core object p ∈
C, C in turn equals the set {o | o >D p} (c.f. lemma 1 and
2 in [EKSX 96]). 
To find a cluster, DBSCAN starts with an arbitrary object

p in D and retrieves all objects of D density-reachable from
p with respect to Eps and MinPts. If p is a core object, this
procedure yields a cluster with respect to Eps and MinPts. If
p is a border object, no objects are density-reachable from p
and p is assigned to the noise. Then, DBSCAN visits the
next object of the database D. 

The retrieval of density-reachable objects is performed
by successive region queries. A region query returns all ob-
jects intersecting a specified query region. Such queries are
supported efficiently by spatial access methods such as R*-
trees [BKSS 90] for data from a vector space or M-trees
[CPZ 97] for data from a metric space. 

The algorithm DBSCAN is sketched in figure 2. 

4 IncrementalDBSCAN 

DBSCAN, as introduced in [EKSX 96], is applied to a
static database. In a data warehouse, however, the databases
may have frequent updates and thus may be rather dynamic.
For example, in a WWW access log database, we may want
to find and monitor groups of similar access patterns by
clustering the access sequences of different users. These
patterns may change over time because each day new log-
entries are added to the database and old entries (past a user-
supplied expiration date) are deleted. After insertions and
deletions to the database, the clustering discovered by
DBSCAN has to be updated. In section 4.1, we examine
which part of an existing clustering is affected by an update
of the database. We present algorithms for incremental up-
dates of a clustering after insertions (section 4.2) and dele-
tions (section 4.3). Based on the formal notion of clusters, it
can be proven that the incremental algorithm yields the
same result as the non-incremental DBSCAN algorithm.
This is an important advantage of our approach.

4.1 Affected Objects

We want to show that changes of some clustering of a da-
tabase D are restricted to a neighborhood of an inserted or
deleted object p. Objects contained in NEps(p) can change
their core object property, i.e. core objects may become
non-core objects and vice versa. The objects contained in
N2Eps(p) \ NEps(p) keep their core object property, but non-
core objects may change their connection status, i.e. border
objects may become noise objects or vice versa, because
their Eps-neighborhood may contain objects with a
changed core object property. For all objects outside of
N2Eps(p), it holds that neither these objects themselves nor
objects in their Eps-neighborhood change their core object
property. Therefore, the connection status of these objects
is unchanged.

After the insertion of some object p, non-core objects
(border objects or noise objects) in NEps(p) may become
core objects implying that new density connections may be
established, i.e. chains p1, ..., pn, p1 = r, pn = s with pi+1 di-
rectly density-reachable from pi for two objects r and s may
arise which were not density-reachable from each other be-
fore the insertion. Then, one of the pi for i < n must be con-
tained in NEps(p).

When deleting some object p, core objects in NEps(p) may
become non-core objects implying that density connections
may be removed, i.e. there may no longer be a chain
p1, ..., pn, p1 = r, pn = s with pi+1 directly density-reachable
from pi for two objects r and s which were density-reach-
able from each other before the deletion. Again, one of the
pi for i < n must be contained in NEps(p).

Figure 3 illustrates our discussion using a sample data-
base of 2D objects and an object p to be inserted or to be de-
leted. The objects a and b are density connected wrt. Eps as
depicted and MinPts = 4 without using one of the elements
of NEps(p). Therefore, a and b belong to the same cluster in-
dependently from p. On the other hand, the objects d and e
in D \ NEps(p) are only density-connected via c in NEps(p) if

Algorithm DBSCAN (D, Eps, MinPts)
// Precondition: All objects in D are unclassified.

FORALL objects o in D DO: 
IF o is unclassified

call function expand_cluster to construct a cluster wrt.
Eps and MinPts containing o.

FUNCTION expand_cluster (o, D, Eps, MinPts):
retrieve the Eps-neighborhood NEps(o) of o;
IF | NEps(o) | < MinPts // i.e. o is not a core object

mark o as noise and RETURN; 
ELSE // i.e. o is a core object 

select a new cluster-id and mark all objects in NEps(o) 
with this current cluster-id;
push all objects from NEps(o)\{o} onto the stack seeds;
WHILE NOT seeds.empty() DO

currentObject := seeds.top(); 
retrieve the Eps-neighborhood NEps(currentObject)
of currentObject;
IF | NEps(currentObject) | ≥ MinPts 

select all objects in NEps(currentObject) not yet
classified or are marked as noise, 
push the unclassified objects onto seeds 

 and mark all of these objects with current 
 cluster-id;

seeds.pop();
RETURN

Figure 2: : Algorithm DBSCAN



the object p is present, so that the cluster membership of d
and e is affected by  p.

In general, on an insertion or deletion of an object p, the
set of affected objects, i.e. objects which may potentially
change cluster membership after the update, is the set of ob-
jects in NEps(p) plus all objects density-reachable from one
of these objects in D ∪  {p}. The cluster membership of all
other objects not in the set of affected objects will not
change. This is the intuition of the following definition and
lemma. In particular, the lemma states that a cluster c in the
database is independent of an insertion or deletion of an ob-
ject p if a core object of the cluster is outside the set Affect-
edD(p). Note that a cluster is uniquely determined by any of
its core objects. Therefore, by definition of AffectedD(p) it
follows that if one core object of a cluster is outside (inside)
AffectedD(p) then all core objects of the cluster are outside
(inside) the set AffectedD(p).

Definition 6: (affected objects) Let D be a database of
objects and p be some object (either in or not in D). We de-
fine the set of objects in D affected by the insertion or dele-
tion of p as 

AffectedD(p) = NEps(p) ∪ {q | ∃ o ∈ NEps(p) ∧  q >D∪ {p} o}.
Lemma 1: Let D be a set of objects and p be some object. 

Then ∀  o ∈  D: o ∉ AffectedD(p) ⇒  {q | q >D\{p} o} = {q | q
>D∪ {p} o}.

Proof (sketch): 1) ⊆ : because D \ {p} ⊆  D ∪  {p}. 2) ⊇  :
if q ∈ {q | q >D∪ {p} o}, then there is some chain q1, ..., qn, q1
= o, qn = q, qi+1 ∈ NEps(qi) and qi is a core object in D ∪  {p}
for all i < n and, for all i, it holds that qi >D∪ {p} o. Because
qi is a core object for all i < n and density-reachability is
symmetric for core objects, it also holds that o >D∪ {p} qi. If
there existed an i < n such that qi ∈ NEps(p), then qi >D∪ {p} p
implying also o >D∪ {p} p due to the transitivity of density-
reachability. By definition of the set AffectedD(p) it now fol-
lows that o ∈ AffectedD(p), in contrast to the assumption.
Thus, qi ∉ NEps(p) for all i < n implying that all the objects
qi, i < n, are core objects independent of p and also qn ≠  p
because otherwise qn-1 ∈ NEps(p). Thus, the chain q1, ..., qn
exists also in the set D \ {p} and then q ∈ {q | q >D \ {p} o}. o

Due to lemma 1, after inserting or deleting an object p, it
is sufficient to reapply DBSCAN to the set AffectedD(p) in
order to update the clustering. For that purpose, however, it
is not necessary to retrieve the set first and then apply the
clustering algorithm. We simply have to start a restricted
version of DBSCAN which does not loop over the whole
database to start expanding a cluster but only over certain

“seed”-objects which are all located in the neighborhood of
p. These “seed”-objects are core objects after the update op-
eration which are located in the Eps-neighborhood of a core
object in D ∪  {p} which in turn is located in NEps(p). This is
the content of the next lemma.

Lemma 2: Let D be a set of objects. Additionally, let
D*=D ∪  {p} after insertion of an object p or D*=D \ {p} af-
ter deletion of p and let c be a core object in D*. 
C = {o | o >D* c} is a cluster in D* and C ⊆  AffectedD(p) ⇔
∃ q, q’: q ∈ NEps(q’), q’ ∈ NEps(p), c >D∗ q, q is core object in
D* and q’ is core object in D ∪  {p}.

Proof (sketch): If D* = D ∪  {p} or c ∈  NEps(p), the lemma
is obvious by definition of AffectedD(p). Therefore, we con-
sider only the case D* = D \ {p} and c ∉  NEps(p). 
“=>”: C ⊆  AffectedD(p) and C ≠ ∅ . Then, there exists
o ∈  NEps(p) and c >D∪ {p} o, i.e. there is a chain of directly
density-reachable objects from o to c. Now, because
c ∉  NEps(p) we can construct a chain o=o1, . . ., on=c,
oi+1 ∈ NEps(oi) with the property that there is j ≤ n such that
for all k, j ≤ k ≤ n, ok ∉  NEps(p) and for all k, 1≤ k< j,
ok ∈  NEps(p). Then q=oj ∈  NEps(oj-1), q’=oj-1 ∈ NEps(p),
c >D∗ oj, oj is a core object in D* and oj-1 is a core object in
D ∪  {p}. 
“<=”: obviously, C = {o | o >D* c} is a cluster (see the com-
ments on the algorithm after definition 5). By assumption, c
is density-reachable from a core object q in D* and q is den-
sity-reachable from an object q’∈ NEps(p) in D ∪  {p}. Then
also c and hence all objects in C are density-reachable from
q’ in D ∪  {p}. Thus, C ⊆  AffectedD(p).o

Due to lemma 2, the general strategy for updating a clus-
tering would be to start the DBSCAN algorithm only with
core objects that are in the Eps-neighborhood of a (previ-
ous) core object in NEps(p). However, it is not necessary to
rediscover density-connections which are known from the
previous clustering and which are not changed by the up-
date operation. For that purpose, we only need to look at
core objects in the Eps-neighborhood of those objects that
change their core object property as a result of the update. In
case of an insertion, these objects may be connected after
the insertion. In case of a deletion, density connections be-
tween them may be lost. In general, this information can be
determined by using very few region queries. The remain-
ing information needed to adjust the clustering can be de-
rived from the cluster membership before the update. Defi-
nition 7 introduces the formal notions which are necessary
to describe this approach. Remember: objects with a
changed core object property are all located in NEps(p).

Definition 7: (seed objects for the update) Let D be a set
of objects and p be an object to be inserted or deleted. Then,
we define the following notions: 

UpdSeedIns = {q | q is a core object in D ∪  {p}, 
∃ q’: q’ is core object in D ∪  {p} but not in D 
and q ∈ NEps(q’)}

UpdSeedDel = {q | q is a core object in D \ {p}, 
∃ q’: q’ is core object in D but not in D \ {p}
and q ∈ NEps(q’)}

We call the objects q ∈  UpdSeed “seed objects for the up-
date”. Note that these sets can be computed rather efficient-
ly if we additionally store for each object the number of ob-

NEps(p)

Figure 3: : Affected objects in a sample database
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jects in its neighborhood when initially clustering the
database. Then, we need only to perform a single region
query for the object p to be inserted or deleted to detect all
objects q’ with a changed core object property (i.e. objects
in NEps(p) with number = MinPts-1 in case of an insertion,
objects in NEps(p) with number = MinPts in case of a dele-
tion). Only for these objects q’ (if there are any) do we have
to retrieve NEps(q’) to determine all objects q in the set
UpdSeed. Since at this point of time the Eps-neighborhood
of p is still in main memory we first check this set for neigh-
bors of q’ and perform an additional region query only if
there are more objects in the neighborhood of q’ than al-
ready contained in NEps(p). Our experiments, however, in-
dicate that objects with a changed core object property after
an update (different from the inserted or deleted object p)
are not very frequent (see section 5). Therefore, in most cas-
es we just have to perform the Eps-neighborhood query for
p and to change the counter for the number of objects in the
neighborhood of the retrieved objects. 

4.2 Insertions

When inserting a new object p, new density-connections
may be established, but none are removed. In this case, it is
sufficient to restrict the application of the clustering proce-
dure to the set UpdSeedIns. If we have to change cluster
membership for an object from C to D we perform the same
change of cluster membership for all other objects in C.
Changing cluster membership of these objects does not in-
volve the application of the clustering algorithm but can be
handled by simply storing the information about which
clusters have been merged. 

When inserting an object p into the database D, we can
distinguish the following cases:

(1) (Noise)
UpdSeedIns is empty, i.e. there are no “new” core objects af-
ter insertion of p. Then, p is a noise object and nothing else
is changed. 

(2) (Creation)
UpdSeedIns contains only core objects which did not belong
to a cluster before the insertion of p, i.e. they were noise ob-
jects or equal to p, and a new cluster containing these noise
objects as well as p is created.

(3) (Absorption)
UpdSeedIns contains core objects which were members of
exactly one cluster C before the insertion. The object p and
possibly some noise objects are absorbed into cluster C.

(4) (Merge)
UpdSeedIns contains core objects which were members of
several clusters before the insertion. All these clusters and
the object p are merged into one cluster.

Figure 4 illustrates the most simple forms of the different
cases when inserting an object p into a sample database of
2D points, using parameters Eps as depicted and MinPts=3.

Figure 5 presents a more complicated example of merg-
ing clusters when inserting an object p. In this example the
value for Eps is as depicted and MinPts = 6. Then, the in-
serted point p is not a core object, but o1, o2, o3 and o4 are
core objects after the update. The previous clustering can be
adapted by analyzing only the Eps-neighborhood of these
objects: cluster A is merged with cluster B and C because o1
and o4 as well as o2 and o3 are mutual directly density-
reachable, implying the merge of B and C. The changing of
cluster membership for objects in case of merging clusters
can be done very efficiently by simply storing the informa-
tion about the clusters that have been merged. Note that this
kind of “transitive” merging can only occur if MinPts is
larger than 5, because otherwise p would be a core object
and then all objects in NEps(p) would already be density-
reachable from p. 

Figure 4: : The different cases of the insertion algorithm
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4.3 Deletions

As opposed to an insertion, when deleting an object p,
density-connections may be removed, but no new connec-
tions are established. The difficult case for deletion occurs
when the cluster C of p is no longer density-connected via
(previous) core objects in NEps(p) after deleting p. In this
case, we do not know in general how many objects we have
to check before it can be determined whether C has to be
split or not. In most cases, however, this set of objects is
very small because the split of a cluster is not very frequent
and in general a non-split situation will be detected in a
small neighborhood of the deleted object p.

When deleting an object p from the database D we can
distinguish the following cases:

(1) (Removal)
UpdSeedDel is empty, i.e. there are no core objects in the
neighborhood of objects that may have lost their core object
property after the deletion of p. Then p is deleted from D
and eventually other objects in NEps(p) change from a
former cluster C to noise. If this happens, the cluster C is
completely removed because then C cannot have core ob-
jects outside of NEps(p).

(2) (Reduction)
All objects in UpdSeedDel are directly density-reachable
from each other. Then p is deleted from D and some objects
in NEps(p) may become noise. 

(3) (potential Split)
The objects in UpdSeedDel are not directly density-reach-
able from each other. These objects belonged to exactly one
cluster C before the deletion of p. Now we have to check
whether or not these objects are density-connected by other
objects in the former cluster C. Depending on the existence
of such density-connections, we can distinguish a split and
a non-split situation. 

Figure 6 illustrates the different cases when deleting p
from a sample database of 2D points using parameters Eps
as depicted and MinPts = 3. Note that the situations de-
scribed in case 3 may occur simultaneously. 

If case (3) occurs, then the clustering procedure must also
consider objects outside of UpdSeedDel, but it stops in case

of a non-split situation as soon as the objects from the set
UpdSeedDel are density-connected to each other. 

Case (3) is implemented by a procedure similar to the
function expand_cluster in algorithm DBSCAN (see
figure 2) starting in parallel from the elements of the set
UpdSeedDel. The main difference is that the candidates for
further expansion are managed in a queue instead of a stack.
Thus, a breadth-first search for the missing density-connec-
tions is performed which is more efficient than a depth-first
search due to the following reasons:
• In a non-split situation, we stop as soon as all members of

UpdSeedDel are found to be density-connected to each
other. The breadth-first search implies that density-con-
nections with the minimum number of objects (requiring
the minimum number of region queries) are detected
first.

• A split situation is in general the more expensive case be-
cause the parts of the cluster to be split actually have to be
discovered. The algorithm stops when all but the last part
have been visited. Usually, a cluster is split only into two
parts and one of them is relatively small. Using breadth-
first search we only have to visit the smaller part and a
small percentage of the larger one.

5 Performance Evaluation
In this section, we evaluate the efficiency of Incremen-

talDBSCAN versus DBSCAN. We present an experimental
evaluation using a 2D spatial database as well as a WWW
access log database. For this purpose, we implemented both
algorithms in C++ based on implementations of the R*-tree
[BKSS 90] (for the 2D spatial database) and the M-tree
[CPZ 97] (for the WWW log database) respectively. Fur-
thermore, we present an analytical comparison of both al-
gorithms and derive the speed-up factors for typical param-
eter values depending on the database size and the number
of updates.

For the first set of experiments, we used a synthetic data-
base of 1,000,000 2D points with k = 40 clusters of similar
sizes. 21.7% of all points are noise, uniformly distributed
outside of the clusters, and all other points are uniformly
distributed inside the clusters with a significantly higher
density than the noise. In this database, the goal of cluster-
ing is to discover groups of neighboring objects. A typical
real world application for this type of database is clustering
earthquake epicenters stored in an earthquake catalog.
Earthquake epicenters occur along seismically active faults,
and are measured with some errors, so that over time ob-
served earthquake epicenters should be clustered along
such seismic faults [AF 96].

In this type of application, there are only insertions. The
Euclidean distance was used as distance function and an
R*-tree [BKSS 90] as an index structure. Eps was set to
4.48 and MinPts was set to 30. Note that the MinPts value
had to be rather large due to the high percentage of noise.
We performed experiments on several other synthetic 2D
databases with n varying from 100,000 to 1,000,000, k
varying from 7 to 40 and with the noise percentage varying
from 10% up to 20%. Since we always obtained similar re-
sults, we restrict the discussion to the above database.

Figure 6: : The different cases of the deletion algorithm
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For the second set of experiments, we used a WWW ac-
cess log database of the Institute for Computer Science of
the University of Munich. This database contains 1,400,000
entries following the Common Log Format specified as part
of the HTTP protocol [Luo 95]. Figure 7 depicts some sam-
ple log entries.

All log entries with identical IP address and user id within
a given maximum time gap are grouped into a session and
redundant entries, i.e. entries with filename suffixes such as
“gif”, “jpeg”, and “jpg” are removed [MJHS 96]. A session
has the following structure: 

session::= <ip_address, user_id, [url1, . . ., urlk]>

In this application, the goal of clustering is to discover
groups of similar sessions. A WWW provider may use the
discovered clusters as follows:
• The users associated with the sessions of a cluster form

some kind of user group which may be used to develop
marketing strategies.

• The URLs of the sessions contained in a cluster seem to
be logically correlated and should be made easily acces-
sible from each other via appropriate links.
Entries are deleted from the WWW access log database

after six months. Assuming a constant daily number of
WWW accesses, the numbers of insertions and deletions
are the same. We used the following distance function for
pairs of sessions s1 and s2 :

The domain of dist is the interval [0 . . 1], dist(s,s) = 0, dist
is symmetric and it fulfills the triangle inequality. Other dis-
tance functions may use the hierarchy of the directories to
define the degree of similarity between two URLs. The da-
tabase was indexed by an M-tree [CPZ 97]. Eps was set to
0.4 and MinPts to 2. 

In the following, we compare the performance of Incre-
mentalDBSCAN versus DBSCAN. Typically, the number
of page accesses is used as a cost measure for database algo-
rithms because the I/O time heavily dominates CPU time.
In both algorithms, region queries are the only operations
requiring page accesses. Since the number of page accesses
of a single region query is the same for DBSCAN and for
IncrementalDBSCAN, we only have to compare the num-
ber of region queries. Thus, we use the number of region
queries as the cost measure for our comparison. Note that
we are not interested in the absolute performance of the two
algorithms but only in their relative performance, i.e. in the
speed-up factor as defined below. To validate this ap-
proach, we performed a set of experiments on our test data-
bases and found that the experimental speed-up factor al-
ways was slightly larger than the analytically derived
speed-up factor (experimental value 1.6 times the expected
value in all experiments).

DBSCAN performs exactly one region query for each of
the n objects of the database (see algorithm in figure 2), i.e.
the cost of DBSCAN for clustering n objects, denoted by
CostDBSCAN(n), is 

The number of region queries performed by Incremen-
talDBSCAN depends on the application and, therefore, it
must be determined experimentally. In general, a deletion
affects more objects than an insertion. Thus, we introduce
two parameters rins and rdel denoting the average number of
region queries for an incremental insertion resp. deletion.
Let fins and fdel denote the percentage of insertions resp. de-
letions in the number of all incremental updates. Then, the
cost of IncrementalDBSCAN for performing m incremental
updates, denoted by CostIncrementalDBSCAN (m), is as follows:

Table 1 lists the parameters of our performance evalua-
tion and the values obtained for the 2D spatial as well as for
the WWW-log database. To determine the average values

Figure 7: : Sample WWW access log entries

romblon.informatik.uni-muenchen.de lopa - [04/Mar/1997:01:44:50 +0100] "GET /~lopa/ HTTP/1.0" 200 1364

romblon.informatik.uni-muenchen.de lopa - [04/Mar/1997:01:45:11 +0100] "GET /~lopa/x/ HTTP/1.0" 200 712

fixer.sega.co.jp unknown - [04/Mar/1997:01:58:49 +0100] "GET /dbs/porada.html HTTP/1.0" 200 1229

scooter.pa-x.dec.com unknown - [04/Mar/1997:02:08:23 +0100] "GET /dbs/kriegel_e.html HTTP/1.0" 200 1241

dist s1 s2,( ) Cardinality s1\s2( ) Cardinality s2\s1( )+
Cardinality s1( ) Cardinality s2( )+

------------------------------------------------------------------------------------------------------=

Cost DBSCAN n( ) n=

Cost IncrementalDBSCAN m( ) m fins rins× fdel rdel×+( )×=



(rins and rdel), the whole databases were incrementally insert-
ed and deleted, although fdel = 0 for the 2D spatial database.

Now, we can calculate the speed-up factor of Incremen-
talDBSCAN versus DBSCAN. We define the speed-up fac-
tor as the ratio of the cost of DBSCAN (applied to the data-
base after all insertions and deletions) and the cost of m
calls of IncrementalDBSCAN (once for each of the inser-
tions resp. deletions), i.e.:

Figure 8 and figure 9 depict the speed-up factors depend-
ing on n for several values of m. For relatively small num-
bers of daily updates, e.g., m = 1,000 and n = 1,000,000, we
obtain speed-up factors of 633 for the 2D spatial database
and 260 for the WWW-log database. Even for rather large
numbers of daily updates, e.g., m = 25,000 and n =
1,000,000, IncrementalDBSCAN yields speed-up factors
of 26 and 10 for the 2D spatial as well as for the WWW-log
database.

When setting the speed-up factor to 1.0, we obtain the
number of updates (denoted by MaxUpdates) up to which
the multiple application of IncrementalDBSCAN for each
update is more efficient than the  single application of
DBSCAN to the whole updated database. Figure 10 depicts
the values of MaxUpdates depending on n for fdel values of
up to 0.5 which is the maximum value to be expected in
most real applications. This figure was derived by setting
rins to 1.34 and rdel to 6.75 which are the averages over the
respective values obtained for our test databases. Note that
- in contrast to the significant differences of other character-
istics of the two applications - the differences of both rins
and rdel are rather small indicating that the average values
are a realistic choice for many  applications. The  MaxUp-
dates values obtained are much larger than the actual num-
bers of daily updates in most real databases. For databases
without deletions (that is, fdel = 0), MaxUpdates is approxi-
mately 3 * n, i.e. the cost for 3 * n updates on a database of
n objects using IncrementalDBSCAN is the same as the
cost of DBSCAN on the updated database containing 4 * n
objects. Even in the worst case of fdel = 0.5, MaxUpdates is
approximately 0.25 * n. These results clearly emphasize
the relevance of incremental clustering.

Table 1:  Parameters of the performance evaluation

Parameter Meaning Value for 2D 
spatial

Value for 
WWW-log

n number of database objects 1,000,000 69,000

m number of (incremental) updates varying varying

rins average number of region queries for an incremental insertion 1.58 1.1

rdel average number of region queries for an incremental deletion 6.9 6.6

fdel relative frequency of deletions in the number of all updates 0 0.5

fins relative frequency of insertions in the number of all updates (1- fdel) 1.0 0.5

SpeedupFactor
CostDBSCAN n fins m× fdel m×–+( )

Cost IncrementalDBSCAN m( )
-------------------------------------------------------------------------------------=

n fins m× fdel m×–+( )
m fins rins× fdel rdel×+( )×
------------------------------------------------------------------=
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Figure 8: : Speed-up factors for 2D spatial database
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6 Conclusions

Data warehouses provide a great deal of opportunities for
performing data mining tasks such as classification and
clustering. Typically, updates are collected and applied to
the data warehouse periodically in a batch mode, e.g., dur-
ing the night. Then, all patterns derived from the warehouse
by some data mining algorithm have to be updated as well.

In this paper, we presented the first incremental cluster-
ing algorithm - based on DBSCAN - for mining in a data
warehousing environment. DBSCAN requires only a dis-
tance function and, therefore, it is applicable to any data-
base containing data from a metric space. Due to the densi-
ty-based nature of DBSCAN, the insertion or deletion of an
object affects the current clustering only in a small neigh-
borhood of this object. Thus, efficient algorithms could be
given for incremental insertions and deletions to a cluster-
ing. Based on the formal definition of clusters, it was prov-
en that the incremental algorithm yields the same result as
DBSCAN. 

A performance evaluation of IncrementalDBSCAN ver-
sus DBSCAN using a spatial database as well as a WWW-
log database was presented, demonstrating the efficiency of
the proposed algorithm. For relatively small numbers of
daily updates, e.g., 1,000 updates in a database of size
1,000,000, IncrementalDBSCAN yielded speed-up factors
of several hundred. Even for rather large numbers of daily
updates, e.g., 25,000 updates in a database of 1,000,000 ob-
jects, we obtained speed-up factors of more than 10 versus
DBSCAN. 

In this paper, we assumed that the parameter values Eps
and MinPts of DBSCAN do not change significantly when
inserting and deleting objects. However, there may be ap-
plications where this assumption does not hold, i.e. the pa-
rameters may change after many updates of the database. In
our future work, we plan to investigate this case. In this pa-
per, sets of updates are processed one at a time without con-
sidering the relationships between the single updates. In the
future, bulk insertions and deletions will be considered to
further improve the efficiency of IncrementalDBSCAN.
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