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Abstract

Data warehouses provide a great deal of opportu-
nities for performing data mining tasks such as
classification and clustering. Typically, updates
are collected and applied to the datawarehouse pe-
riodically in a batch mode, e.g., during the night.
Then, al patterns derived from the warehouse by
some data mining algorithm have to be updated as
well. Dueto the very large size of the databases, it
is highly desirable to perform these updates incre-
mentally. In this paper, we present the first incre-
mental clustering algorithm. Our algorithm is
based on the clustering algorithm DBSCAN which
is applicable to any database containing data from
a metric space, e.g., to a spatial database or to a
WWW-|og database. Due to the density-based na-
ture of DBSCAN, the insertion or deletion of an
object affects the current clustering only in the
neighborhood of this object. Thus, efficient algo-
rithms can be given for incremental insertions and
deletions to an existing clustering. Based on the
formal definition of clusters, it can be proven that
theincremental algorithmyieldsthe sameresult as
DBSCAN. A performance evaluation of Incre-
mental DBSCAN on a spatial database as well as
onaWWW-|og databaseispresented, demonstrat-
ing the efficiency of the proposed algorithm. Incre-
mentalDBSCAN vyields significant speed-up
factors over DBSCAN even for large numbers of
daily updatesin adatawarehouse.

1 Introduction

Many companies have recognized the strategic impor-
tance of the knowledge hidden in their large databases and,
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therefore, have built data warehouses. A data warehouse is
acollection of data from multiple sources, integrated into a
common repository and extended by summary information
(such as aggregate views) for the purpose of analysis
[MQM 97]. When speaking of adatawarehousing environ-
ment, we do not anticipate any special architecture but we
address an environment with the following two characteris-
tics:

(1) Derived information is present for the purpose of

analysis.

(2) The environment is dynamic, i.e. many updates

occur.

In such an environment, either manual analyses support-
ed by appropriate visualization tools or (semi)automatic
data mining may be performed. Data mining has been de-
fined as the application of data analysis and discovery algo-
rithms that - under acceptable computational efficiency
limitations - produce a particular enumeration of patterns
over the data [ FPS 96]. Several datamining tasks have been
identified [FPS 96], e.g., clustering, classification and sum-
marization. Typical results of data mining are as follows:
 Clusters of items which are typically bought together by

some set of customers (clustering in a data warehouse

storing sales transactions).

» Symptoms distinguishing disease A from disease B (clas-
sification in amedical data warehouse).

 Description of the typical WWW access patterns (sum-
marization in the datawarehouse of an internet provider).

The task considered in this paper is clustering [KR 90],
i.e. grouping the objects of a database into meaningful sub-
classes. Recently, severa clustering algorithms for mining
inlarge databases have been developed [NH 94], [ZRL 96],
[EKSX 96].

Typically, a data warehouse is not updated immediately
when insertions and deletions on the operational databases
occur. Updates are collected and applied to the data ware-
house periodically in a batch mode, e.g., each night
[MQM 97]. Then, all patterns derived from the warehouse
by data mining algorithms have to be updated as well. This
update must be efficient enough to be finished when the
warehouse hasto be available for users again, e.g., the next
morning. Due to the very large size of the databases, it is
highly desirable to perform these updates incrementally
([FAAM 97], [Huy 97]), so asto consider only the old clus-



ters and the objects inserted or deleted during the day, in-
stead of applying the clustering algorithmto the (very large)
updated database.

Maintenance of derived information such as views and
summary tables has been an active area of research
[MQM 97], [Huy 97]. The problem of incrementally updat-
ing mined patterns on changes of the database, however,
has just recently started to receive more investigation.
[CHNW 96] and[FAAM 97] propose efficient methods for
incrementally modifying a set of association rules mined
from a database. [EW 98] introduces generalization algo-
rithms for incremental summarization in a data warehous-
ing environment.

In this paper, we present the first incremental clustering
algorithm. Our agorithm is based on DBSCAN
[EKSX 96], [SEKX 98] which is an efficient clustering al-
gorithm for metric databases (that is, databases with a dis-
tance function for pairs of objects) for mining in a data
warehousing environment. Due to the density-based nature
of DBSCAN, the insertion or deletion of an object affects
the current clustering only in the neighborhood of this ob-
ject. We demonstrate the high efficiency of incremental
clustering on a spatial database [Gue 94] as well as on a
WWW access log database [MJHS 96].

Therest of this paper is organized as follows. We discuss
related work on clustering algorithms in section 2. In
section 3, we briefly introduce the clustering algorithm DB-
SCAN. The algorithms for incrementally updating a clus-
tering on insertions and deletions of the database are pre-
sented in section4 and an extensive performance
evaluation is reported in section 5. Section 6 concludes
with a summary and some directions for future research.

2 Redated Work

The problem of incrementally updating mined patterns
after making changesto the database has just recently start-
ed to receive more attention.

The task of mining association rules has been introduced
by [AS 94]. An association ruleisarule 1, b 1, where |
and |, are disjoint subsets of a set of items|. For agiven da-
tabase DB of transactions (i.e. each record contains a set of
items bought by some customer in one transaction), al as-
sociation rules should be discovered having a support of at
least minsupport and a confidence of at |east minconfidence
in DB. The subsets of | that have at least minsupport in DB
are called frequent sets.

[FAAM 97] describes two typical scenarios for mining
association rules in a dynamic database. For example, in a
medical database, one may seek associations between treat-
ments and results. The databaseis constantly updated and at
any given time, the medical researcher is interested in ob-
taining the current associations. In a database containing
news articles, e.g., patterns of co-occurrence amongst the
topics of articles may be of interest. An economic analyst
receivesalot of new articles every day and hewould liketo
find relevant associations based on all current articles.

[CHNW 96] proposes to apply a non-incremental algo-
rithm for mining association rules to the newly inserted da-
tabase objects, i.e. totheincrement of the database, and then

to combine the frequent sets of both the database and the in-
crement. The incremental algorithms presented in
[FAAM 97] are based on information about the frequency
of attribute pairs and border sets respectively. While the
space overhead for keeping track of these frequencies is
small, theincremental algorithmsyield aspeed-up of sever-
a orders of magnitude compared to the non-incremental al-
gorithm.

Summarization, e.g., by generalization, is another impor-
tant task of data mining. Attribute-oriented generalization
[HCC 93] of arelation is the process of replacing the at-
tribute values by a more general value, one attribute at a
time, until the number of tuples of the relation becomesless
than a specified threshold. The more general valueis taken
from a concept hierarchy which is typically available for
most attributes in a data warehouse.

[EW 98] presents algorithms for incremental attribute-
oriented generalization with the conflicting goals of good
efficiency and minimal overly generalization. The algo-
rithmsfor incremental insertions and deletions are based on
the materialization of arelation at an intermediate generali-
zation level, i.e. the anchor relation. Experiments demon-
strate that incremental generalization can be performed ef-
ficiently at alow degree of overly generalization.

This paper focuses on the data mining task of clustering
and, in the following, we review clustering algorithms from
adata mining perspective.

Partitioning algorithms construct a partition of a data-
base DB of n objectsinto aset of k clusterswherekisanin-
put parameter. Each cluster is represented by the center of
gravity of the cluster (k-means) or by one of the objects of
the cluster located near its center (k-medoid) [KR 90] and
each object is assigned to the cluster with its representative
closest to the considered object. Typically, partitioning al-
gorithms start with aninitial partition of DB and then usean
iterative control strategy to optimize the clustering quality,
e.g., the average distance of an object to its representative.

[NH 94] explores partitioning algorithms for mining in
spatial databases. An algorithm called CLARANS (Cluster-
ing Large Applications based on RANdomized Search) is
introduced which is more effective and more efficient than
previous partitioning algorithms.

Hierarchical algorithms create a hierarchical decompo-
sition of DB. The hierarchical decompositionisrepresented
by adendrogram, atreethat iteratively splitsDB into small-
er subsets until each subset consists of only one object. In
such ahierarchy, each level of the tree represents a cluster-
ing of DB.

The basic hierarchical clustering algorithm works as fol-
lows ([Sib 73], [Bou 96]). Initially, each object is placed in
a unique cluster. For each pair of clusters, some value of
dissimliarity or distance is computed. For instance, the dis-
tance may be the minimum distance of all pairs of points
from the two clusters (single-link method). [Bou 96] dis-
cusses alternative definitions of the distance and shows
that, in general, no one approach outperforms any other in
terms of clustering quality. In every step, the clusters with
the minimum distance in the current clustering are merged
until all points are contained in one cluster.



None of the above algorithms is efficient on large data-
bases. Therefore, some focusing techniques have been pro-
posed to increase the efficiency of clustering algorithms.

[EKX 95] presents an R*-tree based focusing technique
(1) creating a sample of the database that is drawn from
each R*-tree data page and (2) applying the clustering algo-
rithm only to that sample. [ZRL 96] proposes a special data
structure to condense information about subclusters of
points. A Clustering Feature (CF) is atriple that contains
the number of points, the linear sum and the square sum of
al pointsinthe cluster. Clustering features are organized in
a height balanced tree, i.e. the CF-tree. BIRCH (Balanced
Iterative Reducing and Clustering using Hierarchies)
[ZRL 96] is a CF-tree based multiphase clustering method.
First, the database is scanned to build an initia in-memory
CF-tree. In an optional second phase, this CF-tree can be
further reduced until a desired number of leaf nodes is
reached. In phase 3 an arbitrary clustering algorithmis used
to cluster the CF-values stored in the leaf nodes of the CF-
tree. Note that the CF-tree is an incremental structure but
phase 3 of BIRCH is non-incremental .

Recently, a new type of single scan clustering algorithms
has been introduced. The basic idea of a single scan algo-
rithm is to group neighboring objects of the database into
clusters based on alocal cluster condition, thus performing
only one scan through the database. Single scan clustering
algorithms are very efficient if theretrieval of the neighbor-
hood of an object is efficiently supported by the DBMS.
Different cluster conditions yield different cluster defini-
tions and algorithms. For instance, DBSCAN (Density
Based Spatial Clustering of Applications with Noise)
[EKSX 96] [SEKX 98] relies on a density-based notion of
clusters.

We use DBSCAN as a base for our incremental cluster-
ing algorithm due to the following reasons. First, DBSCAN
is one of the most efficient algorithms on large databases.
Second, whereas BIRCH is applicable only to spatial data-
bases (Euclidean vector space), DBSCAN can be applied to
any database containing data from a metric space (only as-
suming a distance function).

3 TheAlgorithm DBSCAN

The key idea of density-based clustering is that for each
object of a cluster the neighborhood of a given radius (Eps)
has to contain at least a minimum number of objects
(MinPts), i.e. the cardinality of the neighborhood has to ex-
ceed some threshold.

We will first give a short introduction to DBSCAN in-
cluding the definitions which are required for incremental
clustering. For a detailed presentation of DBSCAN see
[EKSX 96].

Definition 1: (directly density-reachable) An object pis
directly density-reachable from an object g wrt. Eps and
MinPtsin the set of objectsD if

1 pl Neps(@) (Neos(0) s the subset of D contained in the

Eps-neighborhood of q.)

2) Card(Ngys(9)) 2 MinPts.

Definition 2: (density-reachable) An object p is density-
reachable from an object q wrt. Eps and MinPtsin the set of

objects D, denoted as p >, q, if there is a chain of objects
P1, - P P1 = G, P, = pSuchthat p; T D and py, 4 is directly
density-reachable from p, wrt. Eps and MinPts.

Density-reachability is a canonical extension of direct
density-reachability. Thisrelation is transitive, but it is not
symmetric. Although not symmetric in general, it is obvi-
ousthat density-reachability is symmetric for objectsowith
Card(Ng,s(0)) * MinPts. Two “ border objects’ of a cluster
are possibly not density-reachable from each other because
there are not enough objects in their Eps-neighborhoods.
However, there must be a third object in the cluster from
which both “border objects’ are density-reachable. There-
fore, we introduce the notion of density-connectivity.

Definition 3: (density-connected) An object p isdensity-
connected to an object q wrt. Eps and MinPts in the set of
objects D if thereis an object o 1 D such that both p and g
are density-reachable from o wrt. Eps and MinPtsin D.

Density-connectivity isasymmetric relation. Figure 1il-
lustrates the definitions on a sample database of objects
from a 2-dimensional vector space. Note however, that the
above definitions only require a distance measure and will
also apply to data from a metric space.

p density-reachable from q

0o © g not density-reachable from p
@
e o :o p and g density-connected

to each other by o

Figure 1: : density-reachability and density-connectivity

A cluster is defined as a set of density-connected objects
which is maximal wrt. density-reachability and the noiseis
the set of objects not contained in any cluster.

Definition 4: (cluster) Let D be aset of objects. A cluster
C wrt. Epsand MinPtsin D is anon-empty subset of D sat-
isfying the following conditions:

1) Maximality: " p,q1 D:ifp1 Candq>p pwrt. Epsand

MinPts, thenalsoql C.
2) Connectivity: " p,q1 C: pisdensity-connected to
wrt. Eps and MinPtsin D.

Definition 5: (noise) Let C,,. . ., C, be the clusters wrt.
Eps and MinPtsin D. Then, we define the noise as the set of
objects in the database D not belonging to any cluster C; ,
i.e.noise={pi D|" i:pl C}.

We omit theterm “wrt. Eps and MinPts” in thefollowing
whenever it is clear from the context. There are two differ-
ent kinds of objects in a clustering: core objects (satisfying
condition 2 of definition 1) and non-core objects (other-
wise). Inthefollowing, wewill refer to this characteristic of
an object as the core object property of the object. The non-
core objectsin turn are either border objects (not a core ob-
ject but density-reachable from another core object) or
noise objects (not a core object and not density-reachable
from other objects).

The algorithm DBSCAN was designed to efficiently dis-
cover the clusters and the noise in a database according to



the above definitions. The procedure for finding acluster is
based on the fact that a cluster is uniquely determined by
any of its core objects:

* First, given an arbitrary object p for which the core object
condition holds, the set {o | 0 > p} of all objects o den-
sity-reachable from p in D forms a complete cluster C
andpl C.

« Second, given acluster C and an arbitrary core objectp1
C,Cinturnequalstheset {o|o>,p} (c.f.lemmaland
2in [EKSX 96]).

Tofind acluster, DBSCAN startswith an arbitrary object
pinD andretrieves all objects of D density-reachable from
p with respect to Eps and MinPts. If p is a core object, this
procedureyields acluster with respect to Eps and MinPts. If
pisaborder object, no objects are density-reachable from p
and p is assigned to the noise. Then, DBSCAN visits the
next object of the database D.

The retrieval of density-reachable objects is performed
by successiveregion queries. A region query returnsall ob-
jectsintersecting a specified query region. Such queriesare
supported efficiently by spatial access methods such as R* -
trees [BKSS 90] for data from a vector space or M-trees
[CPZ 97] for datafrom ametric space.

The algorithm DBSCAN is sketched in figure 2.

Algorithm DBSCAN (D, Eps, MinPts)
/I Precondition: All objectsin D are unclassified.
FORALL objectsoinD DO:
IF oisunclassified
call function expand_cluster to construct a cluster wrt.
Eps and MinPts containing o.

FUNCTION expand_cluster (o, D, Eps, MinPts):
retrieve the Eps-neighborhood Ng,(0) of o;
IF | Ngps(0) | <MinPts  //i.e. oisnot a core object
mark o asnoise and RETURN;
ELSE//i.e. oisacoreobject
select a new cluster-id and mark all objectsin Ng,(0)
with this current cluster-id;
push all objects from Ng,(0)\{0} onto the stack seeds;
WHILE NOT seeds.empty() DO
currentObject : = seeds.top();
retrieve the Eps-neighborhood Ng(currentObject)
of currentObject;
IF | Ngps(currentObject) | 3 MinPts
select all objectsin N, (currentObject) not yet
classified or are marked as noise,
push the unclassified objects onto seeds
and mark all of these objectswith current
cluster-id;
seeds.pop();
RETURN

Figure 2: : Algorithm DBSCAN

4 IncrementalDBSCAN

DBSCAN, as introduced in [EKSX 96], is applied to a
static database. In adatawarehouse, however, the databases
may have frequent updates and thus may be rather dynamic.
For example, inaWWW access |og database, we may want
to find and monitor groups of similar access patterns by
clustering the access sequences of different users. These
patterns may change over time because each day new log-
entries are added to the database and ol d entries (past auser-
supplied expiration date) are deleted. After insertions and
deletions to the database, the clustering discovered by
DBSCAN has to be updated. In section 4.1, we examine
which part of an existing clustering is affected by an update
of the database. We present algorithms for incremental up-
dates of a clustering after insertions (section 4.2) and dele-
tions (section 4.3). Based on the formal notion of clusters, it
can be proven that the incremental algorithm yields the
same result as the non-incremental DBSCAN algorithm.
Thisis animportant advantage of our approach.

4.1 Affected Objects

We want to show that changes of some clustering of ada-
tabase D are restricted to a neighborhood of an inserted or
deleted object p. Objects contained in Ng,(p) can change
their core object property, i.e. core objects may become
non-core objects and vice versa. The objects contained in
Noeps(P) \ Neps(P) keep their core object property, but non-
core objects may change their connection status, i.e. border
objects may become noise objects or vice versa, because
their Eps-neighborhood may contain objects with a
changed core object property. For all objects outside of
Noeps(P), it holds that neither these objects themselves nor
objectsin their Eps-neighborhood change their core object
property. Therefore, the connection status of these objects
is unchanged.

After the insertion of some object p, non-core objects
(border objects or noise objects) in Ng,(p) may become
core objects implying that new density connections may be
established, i.e. chainspy, ..., P, Py = 1, P, = Swithp, 4 di-
rectly density-reachable from p; for two objectsr and s may
arise which were not density-reachable from each other be-
forethe insertion. Then, one of the p; for i < n must be con-
tained in Ngpo(p)-

When deleting some object p, core objects inNg,(p) may
become non-core objects implying that density connections
may be removed, i.e. there may no longer be a chain
Py - Py P1 = 1, Py = SWith p;, 4 directly density-reachable
from p, for two objects r and s which were density-reach-
able from each other before the deletion. Again, one of the
p; for i < nmust be contained in Ng,o(p)-

Figure 3 illustrates our discussion using a sample data-
base of 2D objects and an object p to beinserted or to be de-
leted. The objectsa and b are density connected wrt. Epsas
depicted and MinPts = 4 without using one of the elements
of Ngps(P). Therefore, a and b belong to the same cluster in-
dependently from p. On the other hand, the objectsd and e
in D\ Ng,(p) are only density-connected viac in Ng(p) if



the object p is present, so that the cluster membership of d
and eis affected by p.

9@)
a'....... @ . . N

Affected,(p)

Figure 3: : Affected objectsin a sample database

In general, on an insertion or deletion of an object p, the
set of affected objects, i.e. objects which may potentially
change cluster membership after the update, isthe set of ob-
jectsin Ngy(p) plus all objects density-reachable from one
of these objects inD E {p}. The cluster membership of all
other objects not in the set of affected objects will not
change. Thisisthe intuition of the following definition and
lemma. In particular, the lemma states that acluster cinthe
database isindependent of an insertion or deletion of an ob-
ject pif acore object of the cluster is outside the set Affect-
edp(p). Note that acluster is uniquely determined by any of
its core objects. Therefore, by definition of Affectedy(p) it
followsthat if one core object of acluster isoutside (inside)
Affected(p) then all core objects of the cluster are outside
(inside) the set Affectedy(p).

Definition 6: (affected objects) Let D be a database of
objects and p be some object (either in or not in D). We de-
fine the set of objectsin D affected by theinsertion or dele-
tionof p as . R .

Affectedn(p) =Neps(p) E {01801 Nepo(p) Ud >y O} -

Lemmal: Let D be aset of objectsand p be some object.
Then" ol D: ol Affectedp(p) P {q|q>pyy 0t ={alq
>pegp O - o R

Proof (sketch): 1) | : becauseD\{p} | DE {p}.2)E:
ifql {qlq >pep OF then thereissomechain 0y, - O d1
=0,0,= 0,0y | NEpS(q) and g;isacore object inD E {p}
foralli < nand, forali,itholdsthat g >pg;p, 0. Because
q; is a core object for aII i < n and density-reachability is
symmetric for core objects, it also holdsthat 0 >, . If
there existed ani < n such that g 1 NEpS(p) then g;>pg4 p P
implying also 0 >pe; p due to the transitivity of density-
reachability. By defi nmon of the set Affected,(p) it now fol-
lows that o T AffectedD(p) in contrast to the assumption.
Thus, q; | Neos(p) for al i < nimplying that all the objects
g, i < n, are core objects independent of pand also g, * p
because otherwise g, ;T Ng ps(P)- Thus, the chain gy, ..., qn
existsalsointheset D \{p} andthenq T{qlq >p\ip 0F- O

Duetolemmal, after inserting or deleting an object p, it
is sufficient to reapply DBSCAN to the set Affectedy(p) in
order to update the clustering. For that purpose, however, it
iS not necessary to retrieve the set first and then apply the
clustering algorithm. We simply have to start a restricted
version of DBSCAN which does not loop over the whole
database to start expanding a cluster but only over certain

“seed” -objects which are all located in the neighborhood of
p. These “ seed” -objects are core objectsafter the update op-
eration which arelocated in the Eps-neighborhood of acore
objectinD E {p} whichinturnislocated iNNgp(p). Thisis
the content of the next lemma.

Lemma 2: Let D be a set of objects. Additionally, let
D'=D E {p} after insertion of an object por D'=D \ {p} af-
ter deletion of p and let c be acore object in D"

C= {0 | 0>p.c}isaclusterinD" and C1 Affectedy(p) ()
$a9.9:q T Ng @), O ] Neps(P), C>p* g, qiscoreobjectin
D" andq |scoreobject inDE {p}.

Proof (sketch): IfD" =D E {p} orci Neps(P), thelemma
is obvious by definiti on of Affectedp(p). Therefore, we con-
sider onIythecaseD D\{p} andcl Ng os(P)-

“=>": C | Affectedy(p) and C t A Then there exists
ol Neps(P) and ¢ >peqpy O, i.€. there is a chain of directly
densny—reachable objects from o to c. Now, because
¢ I Ng(p) we can construct a chain 0=0y, . . ., Op=C,
O 1 NEps(o) with the property that thereisj £ n such that
foral k,j EKEn, ol NEps(p) and for all k, 1£ k< j,
Oy T Ng osP)- Then g= 0J Ng (R 1) qg= =01 ] NEps(p)
C>p* 0;, 0;isacoreobject in D and 0 1 |sacoreobject in
DE {p].
‘<=":o0bviously,C={0]|0>p. c} isacluster (seethe com-
ments on the algorithm after definition 5). By assumption, ¢
is density-reachable from acore objectqinD" and qis den-
sity-reachable from an object o' T Ng,o(p) in D E {p}. Then
also c and hence all objectsin C are density-reachable from
q inDE {p}. Thus, Ci Affectedy(p).00

Duetolemma?2, the general strategy for updating a clus-
tering would be to start the DBSCAN algorithm only with
core objects that are in the Eps-neighborhood of a (previ-
ous) core object in Ng,o(p). However, it is not necessary to
rediscover density-connections which are known from the
previous clustering and which are not changed by the up-
date operation. For that purpose, we only need to look at
core aobjects in the Eps-neighborhood of those objects that
changetheir core object property asaresult of the update. In
case of an insertion, these objects may be connected after
the insertion. In case of a deletion, density connections be-
tween them may belost. In general, this information can be
determined by using very few region queries. The remain-
ing information needed to adjust the clustering can be de-
rived from the cluster membership before the update. Defi-
nition 7 introduces the formal notions which are necessary
to describe this approach. Remember: objects with a
changed core object property are all located in Ng,(p).

Definition 7: (seed objects for the update) Let D be a set
of objects and p be an object to beinserted or deleted. Then,
we define the following notions:

UpdSeed, . ={q|qisacoreobjectinD E {p},

$q': g IscoreobjectinD E {p} butnotinD
and q I NEps(q’)}

UpdSeedDd ={qg|qisacoreobjectinD\{p},

$q':q iscoreobjectinD but notinD \{p}
and q [ NEps(q )}

Wecall theobjectsq UpdSeed“ seed objects for the up-
date’. Note that these sets can be computed rather efficient-
ly if we additionally store for each object the number of ob-



jects in its neighborhood when initially clustering the
database. Then, we need only to perform a single region
guery for the object p to be inserted or deleted to detect al
objects g with a changed core object property (i.e. objects
in Nepo(p) With number = MinPts-1 in case of an insertion,
objects in Ngpg(p) with number = MinPts in case of a dele-
tion). Only for these objectsq’ (if there are any) do we have
to retrieve Ng,(q') to determine all objects q in the set
UpdSeed. Since at this point of time the Eps-neighborhood
of pisstill inmain memory wefirst check this set for neigh-
bors of g and perform an additional region query only if
there are more objects in the neighborhood of ' than al-
ready contained in Ngg(p). Our experiments, however, in-
dicate that objects with achanged core object property after
an update (different from the inserted or deleted object p)
arenot very frequent (see section 5). Therefore, in most cas-
eswe just have to perform the Eps-neighborhood query for
p and to change the counter for the number of objectsin the
neighborhood of the retrieved objects.

4.2 Insertions

When inserting a new object p, new density-connections
may be established, but none are removed. Inthiscase, itis
sufficient to restrict the application of the clustering proce-
dure to the set UpdSeed,,,. If we have to change cluster
membership for an object from C to D we perform the same
change of cluster membership for all other objects in C.
Changing cluster membership of these objects does not in-
volve the application of the clustering algorithm but can be
handled by simply storing the information about which
clusters have been merged.

When inserting an object p into the database D, we can
distinguish the following cases:

(1) (Noise)
UpdSeed,gisempty, i.e. thereareno “new” coreobjectsaf-
ter insertion of p. Then, p isanoise object and nothing else
is changed.

(2) (Creation)
UpdSeed, ¢ contains only core objectswhich did not belong
to acluster beforethe insertion of p, i.e. they were noise ob-
jects or equal to p, and anew cluster containing these noise
objectsaswell aspiscreated.

(3) (Absorption)
UpdSeed; g contains core objects which were members of
exactly one cluster C before the insertion. The object p and
possibly some noise objects are absorbed into cluster C.

(4) (Merge)
UpdSeed, ¢ contains core objects which were members of
several clusters before the insertion. All these clusters and
the object p are merged into one cluster.

Figure 4 illustrates the most simple forms of the different
cases when inserting an object p into a sample database of
2D points, using parameters Eps as depicted and MinPts=3.

case 1: noise

case 3: absorption

case 2: creation

case 4: merge

Figure 4: : The different cases of the insertion algorithm

Figure 5 presents a more complicated example of merg-
ing clusters when inserting an object p. In this example the
value for Epsis as depicted and MinPts = 6. Then, the in-
serted point p is not a core object, but 04, 0,, 03 and o4 are
core objects after the update. The previous clustering can be
adapted by analyzing only the Eps-neighborhood of these
objects: cluster A ismerged with cluster B and C becauseo,
and o4 as well as 0, and 03 are mutual directly density-
reachable, implying the merge of B and C. The changing of
cluster membership for objects in case of merging clusters
can be done very efficiently by simply storing the informa-
tion about the clustersthat have been merged. Note that this
kind of “transitive” merging can only occur if MinPts is
larger than 5, because otherwise p would be a core object
and then all objects in Ng,(p) would already be density-
reachable from p.

« o objects from cluster A
4 2 objects from cluster B
= o objects from cluster C

Figureb: : “ Transitive” merging of clustersA, B, C by the
insertion algorithm



4.3 Deletions

As opposed to an insertion, when deleting an object p,
density-connections may be removed, but no new connec-
tions are established. The difficult case for deletion occurs
when the cluster C of p is no longer density-connected via
(previous) core objects in Ng,(p) after deleting p. In this
case, we do not know in general how many objects we have
to check before it can be determined whether C has to be
split or not. In most cases, however, this set of objects is
very small because the split of acluster is not very frequent
and in general a non-split situation will be detected in a
small neighborhood of the deleted object p.

When deleting an object p from the database D we can
distinguish the following cases:

(1) (Removal)

UpdSeedp is empty, i.e. there are no core objects in the
neighborhood of objectsthat may havelost their core object
property after the deletion of p. Then p is deleted from D
and eventually other objects in Ng,(p) change from a
former cluster C to noise. If this happens, the cluster C is
completely removed because then C cannot have core ob-
jects outside of Ng,o(p).

(2) (Reduction)

All objects in UpdSeedpy are directly density-reachable
from each other. Then pis deleted from D and some objects
in Ngos(p) may become noise.

(3) (potential Split)

The objects in UpdSeedpy are not directly density-reach-
able from each other. These objects belonged to exactly one
cluster C before the deletion of p. Now we have to check
whether or not these objects are density-connected by other
objectsin the former cluster C. Depending on the existence
of such density-connections, we can distinguish a split and
anon-split situation.

Figure 6 illustrates the different cases when deleting p
from a sample database of 2D points using parameters Eps
as depicted and MinPts = 3. Note that the situations de-
scribed in case 3 may occur simultaneously.

case 1. removal

case 2: reduction

,split /Split

. : . :III [
. e PR

/ " ... . 4 .l "

case3: split  case 3: split and no split

Figure6: : The different cases of the deletion algorithm

If case (3) occurs, then the clustering procedure must also
consider objects outside of UpdSeedp, but it stopsin case

of a non-split situation as soon as the objects from the set

UpdSeedp 4 are density-connected to each other.

Case (3) is implemented by a procedure similar to the
function expand_cluster in algorithrm DBSCAN (see
figure 2) starting in parallel from the elements of the set
UpdSeedpy. The main difference is that the candidates for
further expansion are managed in aqueueinstead of astack.
Thus, abreadth-first search for the missing density-connec-
tionsis performed which is more efficient than a depth-first
search due to the following reasons:

* Inanon-split situation, we stop as soon as all members of
UpdSeedy are found to be density-connected to each
other. The breadth-first search implies that density-con-
nections with the minimum number of objects (requiring
the minimum number of region queries) are detected
first.

» A splitsituationisin general the more expensive case be-
causethe parts of the cluster to be split actually haveto be
discovered. The algorithm stopswhen all but thelast part
have been visited. Usually, acluster is split only into two
parts and one of them isrelatively small. Using breadth-
first search we only have to visit the smaller part and a
small percentage of the larger one.

5 Performance Evaluation

In this section, we evaluate the efficiency of Incremen-
talDBSCAN versus DBSCAN. We present an experimental
evaluation using a 2D spatial database as well as a WWW
access|og database. For this purpose, weimplemented both
algorithmsin C++ based on implementations of the R* -tree
[BKSS90] (for the 2D spatial database) and the M-tree
[CPZ 97] (for the WWW log database) respectively. Fur-
thermore, we present an analytical comparison of both al-
gorithms and derive the speed-up factorsfor typical param-
eter values depending on the database size and the number
of updates.

For thefirst set of experiments, we used a synthetic data-
base of 1,000,000 2D points with k = 40 clusters of similar
sizes. 21.7% of al points are noise, uniformly distributed
outside of the clusters, and al other points are uniformly
distributed inside the clusters with a significantly higher
density than the noise. In this database, the goal of cluster-
ing is to discover groups of neighboring objects. A typical
real world application for thistype of database is clustering
earthquake epicenters stored in an earthquake catalog.
Earthquake epicenters occur along seismically activefaults,
and are measured with some errors, so that over time ob-
served earthquake epicenters should be clustered along
such seismic faults [AF 96].

In this type of application, there are only insertions. The
Euclidean distance was used as distance function and an
R*-tree [BKSS 90] as an index structure. Eps was set to
4.48 and MinPts was set to 30. Note that the MinPts value
had to be rather large due to the high percentage of noise.
We performed experiments on several other synthetic 2D
databases with n varying from 100,000 to 1,000,000, k
varying from 7 to 40 and with the noise percentage varying
from 10% up to 20%. Since we always obtained similar re-
sults, werestrict the discussion to the above database.



romblon.informatik.uni-muenchen.de lopa- [04/Mar/1997:01:44:50 +0100] "GET /~lopa/ HTTP/1.0" 200 1364
romblon.informatik.uni-muenchen.delopa- [04/Mar/1997:01:45:11 +0100] "GET /~lopa/x/ HTTP/1.0" 200 712
fixer.sega.co.jp unknown - [04/Mar/1997:01:58:49 +0100] "GET /dbs/porada.html HTTP/1.0" 200 1229
scooter.pa-x.dec.com unknown - [04/Mar/1997:02:08:23 +0100] "GET /dbs/kriegel_e.html HTTP/1.0" 200 1241

Figure7: : Sample WWW access log entries

For the second set of experiments, we used a WWW ac-
cess log database of the Institute for Computer Science of
the University of Munich. This database contains 1,400,000
entries following the Common Log Format specified as part
of theHTTP protocol [Luo 95]. Figure 7 depicts some sam-
plelog entries.

All log entrieswith identical IP addressand user id within
a given maximum time gap are grouped into a session and
redundant entries, i.e. entries with filename suffixes such as
“gif”, “jpeg”, and “jpg” areremoved [MJIHS 96]. A session
has the following structure:

session::= <ip_address, user_id, [url,, .. ., url,]>

In this application, the goal of clustering is to discover
groups of similar sessions. A WWW provider may use the
discovered clusters as follows:

» The users associated with the sessions of a cluster form
some kind of user group which may be used to develop
marketing strategies.

» The URLs of the sessions contained in a cluster seem to
be logically correlated and should be made easily acces-
sible from each other via appropriate links.

Entries are deleted from the WWW access log database
after six months. Assuming a constant daily number of
WWW accesses, the numbers of insertions and deletions
are the same. We used the following distance function for
pairs of sessions's; and s, :

Cardinality(s;\s,) + Cardinality(s,\s,)
Cardinality(s;) + Cardinality(s,)

dist(s;, s,) =

Thedomain of dististheinterval [0. . 1],dist(s,s) =0, dist
issymmetric andit fulfillsthetriangleinequality. Other dis-
tance functions may use the hierarchy of the directories to
define the degree of similarity between two URLSs. The da-
tabase was indexed by an M-tree [CPZ 97]. Eps was set to
0.4 and MinPtsto 2.

In the following, we compare the performance of Incre-
mental DBSCAN versus DBSCAN. Typically, the number
of page accessesis used asacost measurefor database algo-
rithms because the /O time heavily dominates CPU time.
In both agorithms, region queries are the only operations
reguiring page accesses. Since the number of page accesses
of a single region query is the same for DBSCAN and for
Incremental DBSCAN, we only have to compare the num-
ber of region queries. Thus, we use the number of region
queries as the cost measure for our comparison. Note that
we are not interested in the absol ute performance of the two
algorithms but only in their relative performance, i.e. in the
speed-up factor as defined below. To validate this ap-
proach, we performed a set of experiments on our test data-
bases and found that the experimental speed-up factor al-
ways was slightly larger than the analytically derived
speed-up factor (experimental value 1.6 times the expected
valuein all experiments).

DBSCAN performs exactly one region query for each of
the n objects of the database (see algorithmin figure 2), i.e.
the cost of DBSCAN for clustering n objects, denoted by

Costpscan(n), is

Costpgscan() = n

The number of region queries performed by Incremen-
talDBSCAN depends on the application and, therefore, it
must be determined experimentally. In general, a deletion
affects more objects than an insertion. Thus, we introduce
two parametersr;, and r 4 denoting the average number of
region queries for an incremental insertion resp. deletion.
Let f,s and f,4 denote the percentage of insertions resp. de-
letions in the number of all incremental updates. Then, the
cost of Incremental DBSCAN for performing mincremental
updates, denoted by Cost)pqrementaipescan (M), 1S asfollows:

COStIncrementalDBSCAN(m) =m’ (fins ’ Fins + fdeI rdel)

Table 1 lists the parameters of our performance evalua-
tion and the values obtained for the 2D spatial aswell asfor
the WWW-log database. To determine the average values



Table 1. Parameters of the performance evaluation

P ot Meanin Vauefor 2D Value for
arameter eaning spatial WWW-log
n number of database objects 1,000,000 69,000
m number of (incremental) updates varying varying
Fins average number of region queries for an incremental insertion 1.58 11
Mol average number of region queries for an incremental deletion 6.9 6.6
foe relative frequency of deletions in the number of all updates 0 0.5
fins relative frequency of insertions in the number of all updates (1- f;y) 1.0 0.5
(ri,sandr 4g), the whole databases were incremental ly insert-
ed and deleted, although f;y = O for the 2D spatial database. 100 —
Now, we can calculate the speed-up factor of Incremen- - Egg‘a”;’s"f
tal DBSCAN versus DBSCAN. We define thespeed-up fac- 80 ,,,,,,,,./’
tor astheratio of the cost of DBSCAN (applied to the data- 5 / ~- 1,000
base after al insertions and deletions) and the cost of m g 60 iiboggo
calls of Incremental DBSCAN (once for each of the inser- e / 1|~ 25,000
tionsresp. deletions), i.e.: 3 40 e — 50,000
a2 / / o -~ 100,000
Cost n+f .~ m—f,, m 20 .
SpeedupFactor - DBSCAN( ins del ) // — ]
COStl ncrementalDBSCAN(m) 0 :J::{ j‘ﬁ%ﬁj‘g—;‘cﬁ}*?ﬁ*{jﬁi?’;f?fi 1—% .
0 500,000 1,000,000 1,500,000 2,000,000

(n+fins' m_fdel ] m)

m (fins rins"'fdel rdel)

Figure 8 and figure 9 depict the speed-up factors depend-
ing on n for several values of m. For relatively small num-
bers of daily updates, e.g., m= 1,000 and n = 1,000,000, we
obtain speed-up factors of 633 for the 2D spatial database
and 260 for the WWW-log database. Even for rather large
numbers of daily updates, eg., m = 25,000 and n =
1,000,000, Incremental DBSCAN vyields speed-up factors
of 26 and 10 for the 2D spatial aswell asfor the WWW-log
database.

100 / —~

90 number of

80 / / updates
) Y I A— oo
2 ] ) 5,000
8 & / -+ 10,000
2 50 —~ 25,000
3 40 50,000
S 30 [ 100,000
a // -

20 -

10 /@, — -

o

0 500,000 1,000,000 1,500,000 2,000,000

size of database (n)

Figure 8: : Speed-up factors for 2D spatial database

size of database (n)
Figure9: : Speed-up factors for WWW:-log database

When setting the speed-up factor to 1.0, we obtain the
number of updates (denoted by MaxUpdates) up to which
the multiple application of Incremental DBSCAN for each
update is more efficient than the single application of
DBSCAN to the whole updated database. Figure 10 depicts
the values of MaxUpdates depending on n for fyy values of
up to 0.5 which is the maximum value to be expected in
most real applications. This figure was derived by setting
l'ns 10 1.34 and r 4y to 6.75 which are the averages over the
respective values obtained for our test databases. Note that
- in contrast to the significant differences of other character-
istics of the two applications - the differences of both r;.g
and ryy are rather small indicating that the average values
area realistic choice for many applications. The MaxUp-
datesvalues obtained are much larger than the actual num-
bers of daily updates in most real databases. For databases
without deletions (that is, fyy = 0), MaxUpdatesis approxi-
mately 3 * n, i.e. the cost for 3 * n updates on a database of
n objects using Incremental DBSCAN is the same as the
cost of DBSCAN on the updated database containing 4 * n
objects. Even in the worst case of f,4 = 0.5, MaxUpdatesis
approximately 0.25* n. These results clearly emphasize
the relevance of incremental clustering.
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Figure 10: MaxUpdates depending on database size for
different relative frequencies of deletions

6 Conclusions

Datawarehouses provide agreat deal of opportunitiesfor
performing data mining tasks such as classification and
clustering. Typically, updates are collected and applied to
the data warehouse periodically in a batch mode, e.g., dur-
ing the night. Then, all patterns derived from the warehouse
by some data mining algorithm have to be updated as well.

In this paper, we presented the first incremental cluster-
ing algorithm - based on DBSCAN - for mining in a data
warehousing environment. DBSCAN requires only a dis-
tance function and, therefore, it is applicable to any data-
base containing data from a metric space. Due to the densi-
ty-based nature of DBSCAN, theinsertion or deletion of an
object affects the current clustering only in a small neigh-
borhood of this object. Thus, efficient algorithms could be
given for incremental insertions and deletions to a cluster-
ing. Based on the formal definition of clusters, it was prov-
en that the incremental algorithm yields the same result as
DBSCAN.

A performance evaluation of Incremental DBSCAN ver-
sus DBSCAN using a spatial database as well as a WWW-
log database was presented, demonstrating the efficiency of
the proposed algorithm. For relatively small numbers of
daily updates, e.g., 1,000 updates in a database of size
1,000,000, Incremental DBSCAN vyielded speed-up factors
of several hundred. Even for rather large numbers of daily
updates, e.g., 25,000 updatesin a database of 1,000,000 ob-
jects, we obtained speed-up factors of more than 10 versus
DBSCAN.

In this paper, we assumed that the parameter values Eps
and MinPts of DBSCAN do not change significantly when
inserting and deleting objects. However, there may be ap-
plications where this assumption does not hold, i.e. the pa-
rameters may change after many updates of the database. In
our future work, we plan to investigate this case. In this pa-
per, sets of updates are processed one at atime without con-
sidering the rel ationships between the single updates. Inthe
future, bulk insertions and deletions will be considered to
further improve the efficiency of Incremental DBSCAN.
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