
Incremental Component-Based Construction and
Verification of a Robotic System

Ananda Basu1 and Matthieu Gallien2 and Charles Lesire2 and Thanh-Hung Nguyen1 and

Saddek Bensalem1 and Félix Ingrand2 and Joseph Sifakis1

Abstract. Autonomous robots are complex systems that require the

interaction/cooperation of numerous heterogeneous software compo-

nents. Nowadays, robots are critical systems and must meet safety

properties including in particular temporal and real-time constraints.

We present a methodology for modeling and analyzing a robotic sys-

tem using the BIP component framework integrated with an existing

framework and architecture, the LAAS Architecture for Autonomous

System, based on Gen
oM. The BIP componentization approach has

been successfully used in other domains. In this study, we show how

it can be seamlessly integrated in the preexisting methodology. We

present the componentization of the functional level of a robot, the

synthesis of an execution controller as well as validation techniques

for checking essential “safety” properties.

1 Introduction

A central idea in systems engineering is that complex systems are

built by assembling components (building blocks). Components are

systems characterized by an abstraction that is adequate for composi-

tion and re-use. It is possible to obtain large components by compos-

ing simpler ones. Component-based design confers many advantages

such as reuse of solutions, modular analysis and validation, reconfig-

urability, controllability, etc.

Autonomous robots are complex systems that require the interac-

tion/cooperation of numerous heterogeneous software components.

They are critical systems as they must meet safety properties includ-

ing in particular, temporal and real-time constraints.

Component-based design relies on the separation between coordi-

nation and computation. Systems are built from units processing se-

quential code insulated from concurrent execution issues. The isola-

tion of coordination mechanisms allows a global treatment and anal-

ysis.

One of the main limitations of the current state-of-the-art is the

lack of a unified paradigm for describing and analyzing the informa-

tion flow between components. Such a paradigm would allow sys-

tem designers and implementers to formulate their solutions in terms

of tangible, well-founded and organized concepts instead of using

dispersed coordination mechanisms such as semaphores, monitors,

message passing, remote call, protocols, etc. It would allow in par-

ticular, a comparison of otherwise unrelated architectural solutions

and could be a basis for evaluating them and deriving implementa-

tions in terms of specific coordination mechanisms.

The designers of complex systems such as autonomous robots

need scalable analysis techniques to guaranteeing essential proper-

1 VERIMAG CNRS/University Joseph Fourier, Grenoble, France
2 LAAS/CNRS, Unversity of Toulouse, Toulouse, France.

ties such as the one mentioned above. To cope with complexity, these

techniques are applied to component-based descriptions of the sys-

tem. Global properties are enforced by construction or can be in-

ferred from component properties. Furthermore, componentized de-

scriptions provide a basis for reconfiguration and evolutivity.

We present an incremental componentization methodology and

technique which seamlessly integrate with the already existing

LAAS architecture for autonomous robot. The methodology con-

siders that the global system architecture can be obtained as the

hierarchical composition of larger components from a small set of

classes of atomic components. Atomic components are units pro-

cessing sequential code that offer interactions through their inter-

face. The technique is based on the use of the Behavior-Interaction-

Priority (BIP) [2] component framework which encompasses incre-

mental composition of heterogeneous real-time components.

The main contributions of the paper include:

• A methodology for componentizing and architecting autonomous

robot systems applied to the existing LAAS architecture.

• Composition techniques for organizing and enforcing complex

event-based interaction using the BIP framework.

• Validation techniques for checking essential properties, including

scalable compositional techniques relying on the analysis of the

interactions between components.

The paper is structured as follows. In Section 2 we illustrate with a

real example, the preexisting architecture (based on Gen
oM [6]) of an

autonomous robotic software developed at LAAS. From this archi-

tecture, we identify the atomic components used for the componen-

tization of the robot software in BIP. Section 3 provides a succinct

description of the BIP component framework. Section 4 presents a

methodology for building the BIP model of existing Gen
oM func-

tional modules and their integration with the rest of the software.

Controller synthesis results as well as “safety” properties analysis

are also presented. Section 5 concludes the paper with a state of the

art, an analysis of the current results and future work directions.

2 Modular Architecture for Autonomous Systems

At LAAS, researchers have developed a framework, a global archi-

tecture, that enables the integration of processes with different tem-

poral properties and different representations. This architecture de-

composes the robot system into three main levels, having different

temporal constraints and manipulating different data representations

[1]. This architecture is used on a number of robots (e.g. DALA, an

iRobot ATRV) and is shown on Fig. 1. The levels in this architecture

are :



Execution controller (R2C)

Pos 

Y
Module 

X Functional Module Poster

Procedural 

executive

(open-PRS)

Planner and 
temporal executive

(IxTeT)

Execution control level

OR

Functional level

Decisional level

Antenna

PosPOM

Po

s
VME

Science

Aspect Obs

Laser 

RF
ScanCamera Im.

NDD Speed

PosRFLEX

Platine

Simulator
GAZEBO

Figure 1. An instance of the LAAS architecture for the DALA Robot.

• a functional level: it includes all the basic built-in robot action

and perception capacities. These processing functions and control

loops (e.g., image processing, obstacle avoidance, motion control,

etc.) are encapsulated into controllable communicating modules

developed using Gen
oM3. Each modules provide services which

can be activated by the decisional level according to the current

tasks, and posters containing data produced by the module and for

other (modules or the decisional level) to use.

• a decisional level: this level includes the capacities of producing

the task plan and supervising its execution, while being at the same

time reactive to events from the functional level.

• At the interface between the decisional and the functional levels,

lies an execution control level that controls the proper execution of

the services according to safety constraints and rules, and prevents

functional modules from unforeseen interactions leading to catas-

trophic outcomes. In recent years, we have used the R2C [14] to

play this role, yet it was programmed on the top of existing func-

tional modules, and controlling their services execution and inter-

actions, but not the internal execution of the modules themselves.

The organization of the overall system in layers and the functional

level in modules are definitely a plus with respect to the ease of in-

3 The GenoM tool can be freely downloaded from:
http://softs.laas.fr/openrobots/wiki/genom

tegration and reusability. Yet, an architecture and some tools are not

“enough” to warrant a sound and safe behavior of the overall system.

control 
poster

functional

poster

Control Task

Execution Tasks

activities

Functional 
IDS

Control IDS

P
o
ste

rs in
te

rfa
c
e

Request

Report

Services Interface

Figure 2. A GenoM module organization.

In this paper the componentization method we propose will allow

us to synthesize a controller for the overall execution of all the func-

tional modules and will enforce by construction the constraints and

the rules between the various functional modules. Hence, the ulti-

mate goal of this work is to implement both the current functional

level and execution control level with BIP.

2.1 GenoM Functional Modules

Each module of the LAAS architecture functional level is responsible

for a function of the robot. Complex modalities (such as navigation)

can be obtained by having modules “working” together. For example

in Fig. 1 (which only shows the data flow of the functional level),

there is an explicit periodical processing loop. The module Laser

RF acquires the laser range finder and store them in the poster Scan,

from which Aspect builds the obstacles map Obs. The module NDD

(responsible for the navigation) avoids these obstacles while period-

ically producing a Speed reference to reach a given target from the

current position Pos produced by POM. Finally, this Speed ref-

erence is used by RFLEX, which controls the speed of the robots

wheels, and also produces the odometry position to be used by POM

to generate the current position.4

All these modules are built using a unique generic canvas (Fig. 2)

which is then instantiated for a particular robot function.

Each module can execute several services started upon upper level

requests. The module can send information relative to the executed

requests to the client (such as the final report) or share data with

other modules using posters. E.g. the NDD module provides six

services corresponding to initializations of the navigation algorithm

(SetParams, SetDataSource andSetSpeed), launching and stopping

the path computation toward a given goal (Stop and GoTo) and a

4 This particular setup will serve as an example throughout the rest of the
paper.



permanent service (Permanent). To execute this path, NDD exports

the Speed poster which contains the speed reference.

The services are managed by a control task responsible for launch-

ing corresponding activities within execution tasks.

ETHER

START

EXEC IDLEFAIL

END

INTER

request(arg)/_ _/started

abort/_

abort/_

abort/__/interrupted

_/OK(ret)

_/failed

events :

   input / output

Figure 3. Execution automaton of an activity.

Control and execution tasks share data using the internal data

structures (IDS). Moreover execution tasks have periods in which the

several associated activities are scheduled. It is not necessary to have

fixed length periods if some services are aperiodic. Fig. 3 presents

the automata of an activity. Activity states correspond to the execu-

tion of particular elementary code (codels) available through libraries

and dedicated either to initialize some parameters (START state), to

execute the activity (EXEC state) or to safely end the activity leading

to reseting parameters, sending error signals, etc.

3 The BIP Component Framework

BIP5 [2] is a software framework for modeling heterogeneous real-

time components. The BIP component model is the superposition

of three layers: the lower layer describes the behavior of a compo-

nent as a set of transitions (i.e a finite state automaton extended with

data); the intermediate layer includes connectors describing the inter-

actions between transitions of the layer underneath; the upper layer

consists of a set of priority rules used to describe scheduling policies

for interactions. Such a layering offers a clear separation between

component behavior and structure of a system (interactions and pri-

orities).

BIP allows hierarchical construction of compound components

from atomic ones by using connectors and priorities.

An atomic component consists of a set of ports used for the syn-

chronization with other components, a set of transitions and a set of

local variables. Transitions describe the behavior of the component.

They are represented as a labeled relation between control states.

Fig. 4 shows an example of an atomic component with two ports

in, out, variables x, y, and control states empty, full. At control

state empty, the transition labeled in is possible if 0 < x. When

an interaction through in takes place, the variable x is eventually

modified and a new value for y is computed. From control state full,

the transition labeled out can occur.

Connectors specify the interactions between the atomic compo-

nents. A connector consists of a set of ports of the atomic components

5 The BIP tool-set can be downloaded from:
http://www-verimag.imag.fr/˜async/BIP/bip.html.

in

0<x

y:=f(x) out

x y

outin empty

full

Figure 4. An example of an atomic component in BIP.

which may interact. If all the ports of a connector are incomplete

then synchronization is by rendezvous. That is, only one interaction

is possible, the interaction including all the ports of the connector. If

a connector has one complete port then synchronization is by broad-

cast. That is, the complete port may synchronize with the other ports

of the connector. The possible interactions are the non empty sublists

containing this complete port. the feasible interactions of a connector

and in particular to model the two basic modes of synchronization,

rendezvous and broadcast.

Priorities in BIP are a set of rules used to filter interactions

amongst the feasible ones.

The model of a system is represented as a BIP compound com-

ponent which defines new components from existing components

(atoms or compounds) by creating their instances, specifying the

connectors between them and the priorities.

The BIP framework consists of a language and a toolset includ-

ing a front-end for editing and parsing BIP programs and a dedicated

platform for the model validation. The platform consists of an en-

gine and software infrastructure for executing simulation traces of

models. It also allows state space exploration and provides access to

model-checking tools like Evaluator [10]. This permits to validate

BIP models and ensure that they meet properties such as deadlock-

freedom, state invariants and schedulability.

The back-end, which is the BIP engine, has been entirely imple-

mented in C++ on Linux to allow a smooth integration of compo-

nents with behavior expressed using plain C/C++ code.

4 The Functional Layer in BIP

The LAAS architecture makes use of a generic module for its func-

tional layer. If we model this generic module and its components in

BIP and if we then instantiate it and connect the existing “codels”

to the resulting component, then we have a BIP model of the Gen
oM

modules. Adding the BIP model of the interaction between the mod-

ules will give us a BIP model of the overall functional layer.

In order to formalize the componentization approach, we propose

the following mapping (+ for one component or more, and . for com-

posing components):

functional level ::= (module)+

module ::= (service)+ . (execution task) . (poster)+

service ::= (service controler) . (activity)

execution task ::= (timer) . (scheduler activity)

As shown in Fig. 5, a component modeling a generic Service is

obtained from composing the atomic components service controller

and activity. The left sub-component represents the execution task

of a service. It is launched by synchronization through port trigger.



!"

56758 46;86

;<=86 595:

56758 4>55?

;<=86

#$%&$

'($)& %*+&$,)-

)(.

/%'0

)-)1

!"#

$#$%$2#%&'&()

1+($&+0

/%'0

)(.

%*+&$

'($)&

3)$4$%$2#3)$4$%$2#

3)$4$%$2#

3)$4$%$2#

#$%$2#

#$%&$#$%&$

)(.)(.

/%'0/%'0

'($)&'($)&

%*+&$,)-

/%'0

/%'0

3)$4$%$2#

3)$4$%$2#

$&'33)&

$&'33)&

$&'33)&

1+($&+0

#$%&$

%*+&$

%*+&$

%*+&$,)-

%*+&$,)-

)&&+&

)-)1

)-)1

)(.

)(.

#$%&$

#$%&$

'($)&

'($)&

Figure 5. BIP model of a service.

!"#$%&

'&()*+&

'&()*+&,

-"./("%&(

0+1)*/2

'&()*+&

'&()*+&,

-"./("%&(

0+1)*/2

3"4/&(

3"4/&(

5,5,5

5,5,5

67&+$1".,894:

8*;&( '+<&#$%&(,0+1)*/2

67&+$1".,894:

8*;&( '+<&#$%&(,0+1)*/2

3"4/&(

5,5,5

Figure 6. A componentized GenoM module.

The service controller then controls the validity of the parameters of

the request (if available) and will either reject the request or start

the activity by synchronizing with the activity component (right sub-

component). In each state, the status of the execution task is available

by synchronizing through port status. The activity will then wait for

execution (i.e. synchronization on the exec port with the control task)

and will either safely end, fail, or abort. Each of the transitions con-

trol, start, exec, fail, finish and inter may call an external function.

The service components are further composed with execution task

and poster components to obtain a module component (See Fig. 6).

4.1 A Functional Module in BIP

The full BIP description of the functional level of the robot, which

consists of several modules, is beyond the scope of this paper. We

rather focus on the modeling of the NDD module.

The NDD module contains six services, a poster and a control

task as sub-components and the connectors between them, as shown

in Fig. 7.

The control task wakes up periodically (managed by the bottom-

left component with alternating sleep and trigger transitions) and al-

ways triggers the Permanent service at the beginning of each pe-

riod. During a period, the services will have authorization to execute

through interactions with the control task.

Moreover, the BIP formalism allows complex relations to be de-

fined, such as:

• interruptions, as modeled by the connector joining Stop.exec and

GoTo.abort; if service Stop is executed, the GoTo algorithm will

be aborted;

• constraints, as modeled by the goTo connector (in blue); ser-

vice GoTo can be launched only if SetParams, SetSpeed and Set-

DataSource have been already completed (information available

through their status port).

The BIP tool-chain generates code from the BIP model, which can

be executed by the BIP engine. The code contains calls to functions

from libraries originally designed for Gen
oM modules, which exe-

cutes the real activities of the robotic system. The code generated for

the NDD module has been integrated and executed. In particular, it

was fully integrated with the decisional layer by replacing the func-

tional layer originally modeled with Gen
oM with the one modeled in

BIP.

4.2 Functional Level Controller Synthesis

Previously, in the LAAS architecture, a centralized controller (R2C)

was used to control the proper execution of the services and to en-

force the safety constraints and modules interactions. On the con-

trary, in the BIP model, the proper execution order and the safety

properties are enforced by the BIP connectors between the con-

trollers of different services. A BIP connector has guarded actions as-

sociated to each of its possible interactions. Dependency between the



NDD

SetParams

trigger getStatus abort

start exec end fail inter

SetSpeed

trigger getStatus abort

start exec end fail inter

Stop

trigger getStatus abort

start exec end fail inter

Init

trigger getStatus abort

start exec end fail inter

GoTo

trigger getStatus abort

start exec end fail inter

Permanent

trigger getStatus abort

start exec end fail inter

Poster

write

read

a b c d
e

f
g

Timer
trigger

trigger

a b c

d
ef

g

trigger

Execution 

Task

InitSetParams SetSpeed GoTo Stop

Poster

Figure 7. The NDD module.

controllers of service in different modules are modeled by connectors

associated with guards which represents either some valid execution

condition or some safety rule. The composite behavior of these local

controllers, synchronized by the connectors and restricted by priori-

ties, is equivalent to the behavior of the centralized controller.

As an example, we had to enforce a rule between the NDD and

the POM modules which states that the robot can navigate using the

GoTo service of the NDD module only if the module POM has al-

ready executed successfully its Run service (which updates poster

Pos). Such a rule is enforced by constructing a connector between

port trigger of the Goto service and port status of the Run service,

and guarded by the status value.

4.3 Verification of Safety Properties

The BIP tool-set can perform an exhaustive state-space exploration

of the system. Additionally, it can detect potential deadlocks in the

system. These features have been used to verify some properties in

the model of the robot and for detection of deadlocks. Two kinds of

properties have been verified.

4.3.1 Safety Properties

A safety property guarantees that something unexpected will never

happen. For the verification of such properties, we used methods

based on state-space exploration. The basic idea is to generate all

reachable states and state changes of the system under consideration,

and represent this as a directed graph called the state-space. Two dif-

ferent methods have been applied.

Model checking [15, 3] We used the model-checker tool Evalua-

tor [10] which performs on-the-fly verification of temporal properties

on the state-space generated by the BIP engine on exploration of the

system. As an example, we describe the usage of this method in ver-

ifying a safety property of the NDD module. It is required that the

GoTo service is triggered only after a successful termination of Set-

Speed service. To ensure this, in the BIP model of NDD, we need

to guarantee that the interaction GoTo:trigger occurs only after the

occurrence of the interaction SetSpeed:finish. We checked for viola-

tions of this property, i.e finding a transition sequence in the state-

space where GoTo:trigger is not preceded by SetSpeed:finish. The

result obtained by Evaluator proves that the initialization property is

preserved in the NDD module.

Verification using Observers [17, 13] For a given system S and

a safety property P , we construct first an observer for P , i.e. an au-

tomaton which monitors the behavior of S and reports an error on

violation of P . The verification consists of exploring the state-space

of the product system. Such a method has been used to verify a tim-

ing property in the NDD module. It is needed to verify that the total

time taken by all the services called within a period does not exceeds

the period.

In BIP, it is possible to model time as symbolic time [2] by us-

ing tick ports and clock variables in every timed component. Time

progress is by strong synchronization of all the tick ports. The clock

variables are incremented on a tick, to model function execution

times. Fig. 8 shows the observer component used to verify the tim-

ing property of the NDD module. It has a clock variable c and a

parameter p representing the period of the control task. It synchro-

nizes with the control task and tracks the cumulative time taken by



ERROR

trigger

IDLE EXEC
trigger 
c := 0

tick
c < p
c := c+1

tick 
c >= pfinish

tick finish

tick

p c

Figure 8. Observer for the control task period verification.

the services triggered by control task. If this time exceeds the period

p, the observer moves to the ERROR state. During exploration, if a

global system state, containing the ERROR state of the observer is

reachable, then the property is violated.

4.3.2 Deadlock Freedom

This is an essential correctness property as it characterizes a system’s

ability to perform some activity over its life time. The BIP toolset

allow detection of potential deadlocks by static analysis of the con-

nectors in the BIP model [7]. It generates a dependency graph and

for each cycle in this graph, a boolean formula is generated. The

satisfiability of the formula is then checked by the tool minisat [4],

where a solution corresponds to a potentially deadlocked global state.

Presence of an actual deadlock can then be verified by reachability

analysis of the deadlocked states, starting from the initial state of the

system. The analysis for the NDD module found a potential deadlock

for the state where all services are in the EXEC state, all activities are

in the ETHER state, and the control task is in the Q0 state. However,

this state is unreachable, hence the deadlock is not possible.

5 State of the Art, Current Results and Prospective

The design and development of autonomous robots and systems is

a very active research field. There are other architectures address-

ing similar problems: to provide an efficient, reusable and formally

sound organization of robot software. CLARAty [12], used on var-

ious NASA research rovers, provides a nice object oriented hierar-

chical organization over two layers, but there is no formal model

of the component interactions, nor modules canvas. IDEA [5] and

T-REX [11], developed at NASA Ames and MBARI, have an inter-

esting modular/component organization with a temporal constraint

based formalism. However, complexity of constraint propagation is

an obstacle for effective deployment on real-time functional mod-

ules. RMPL [9, 18] and its associated tools, propose a system based

on a model-based approach. The programmers specify state evolu-

tion with invariants expressed in an “Esterel like” language and a

controller maintaining them.

In [8], the authors present the CIRCA SSP planner for hard real-

time controllers. This planner synthesizes off-line controllers from

a domain description and then deduce the corresponding timed au-

tomata to control the system on-line. These automata can be formally

validated with model checking techniques. However, this work fo-

cuses on the decisional part of the overall architecture. In [16] the

authors present a system which allows the translation from MPL

(Model-based Processing Language) and TDL (Task Description

Language) to SMV, a symbolic model checker language. Compared

to our approach, this does not address componentization and is de-

signed for the high level specification of the decisional level.

The paper presents an approach integrating component-based con-

struction and validation of robotic systems. It shows that a complex

robotic system can be considered as the composition of a small set

of atomic components. Even if we build up on the pre-existing mod-

ular LAAS architecture for autonomous robots, and model in BIP all

the generic components of this architecture, such an approach could

be used with other robot software architectures and tools. The ap-

proach has been implemented and we now have a BIP controller for

a subset of the functional layer of DALA, running in simulation and

on the robot. The paper shows that it is possible to combine stan-

dard verification techniques, based on global state exploration, with

structural analysis techniques for deadlock detection. A useful work

direction is the online monitoring of the functional level execution

using observer components, which would be able to generate feed-

back actions for the decisional level which can be useful for error-

recovery. Another work direction is to extend the BIP model to take

into account the decisional capabilities of autonomous systems (ac-

tion planning, execution control).

REFERENCES

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, ‘An archi-
tecture for autonomy’, IJRR, Special Issue on Integrated Architectures

for Robot Control and Programming, 17(4), (1998).
[2] A. Basu, M. Bozga, and J. Sifakis, ‘Modeling heterogeneous real-time

components in BIP’, in SEFM, Pune, India, (2006).
[3] E. M. Clarke and E. A. Emerson, ‘Synthesis of synchronization skele-

tons for branching time temporal logic’, in Workshop on Logic of Pro-

grams, Yorktown Heights, NY, USA, (1981).
[4] N. Eén and N. Sörensen, ‘An extensible SAT−solver’, in SAT,

Portofino, Italy, (2003).
[5] A. Finzi, F. Ingrand, and N. Muscettola, ‘Robot action planning and

execution control’, in IWPSS, Darmstadt, Germany, (2004).
[6] S. Fleury, M. Herrb, and R. Chatila, ‘GenoM: A tool for the specifica-

tion and the implementation of operating modules in a distributed robot
architecture’, in IROS, Grenoble, France, (1997).

[7] G. Goessler and J. Sifakis, ‘Component-based construction of
deadlock-free systems’, in FSTTCS, Bombay, India, (2003).

[8] R. P. Goldman and D. J. Musliner, ‘Using model checking to plan
hard real-time controllers’, in AIPS Workshop on Model-Theoretic Ap-

proaches to Planning, Breckenridge, CO, USA, (2000).
[9] P. Kim, B. C. Williams, and M. Abramson, ‘Executing reactive, model-

based programs throgh graph-based temporal planning’, in IJCAI, Seat-
tle, WA, USA, (2001).

[10] R. Mateescu and M. Sighireanu, ‘Efficient on-the-fly model-checking
for regular alternation-free mu-calculus’, Technical Report 3899, IN-
RIA Rhône-Alpes, France, (2000).

[11] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and R. McEwen,
‘T-REX: A deliberative system for AUV control’, in ICAPS WS on

Planning and Plan Execution for Real-World Systems, Providence, RI,
USA, (2007).

[12] I.A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and T. Estlin,
‘CLARAty and challenges of developing interoperable robotic soft-
ware’, in IROS, Las Vegas, NV, USA, (2003).

[13] M. Phalippou, ‘Executable testers’, in IWPTS, Tokyo, Japan, (1994).
[14] F. Py and F. Ingrand, ‘Dependable execution control for autonomous

robots’, in IROS, Sendai, Japan, (2004).
[15] J-P. Queille and J. Sifakis, ‘Specification and verification of concurrent

systems’, in Int. Symposium on Programming, Torino, Italy, (1982).
[16] R. Simmons, C. Pecheur, and G. Srinivasan, ‘Towards automatic verifi-

cation of autonomous systems’, in IROS, Takamatsu, Japan, (2000).
[17] J. Tretmans, ‘A formal approach to conformance testing’, in IWPTS,

Tokyo, Japan, (1994).
[18] B. C. Williams, M. D. Ingham, S. Chung, P. Elliott, M. Hofbaur, and

G. T. Sullivan, ‘Model-based programming of fault-aware systems’, Ar-

tificial Intelligence, 24(4), (2003).


