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Incremental Computation of Feature Hierarchies

Michael Felsberg

Linköping University, Department of Electrical Engineering, Sweden
mfe@isy.liu.se

Abstract. Feature hierarchies are essential to many visual object recog-
nition systems and are well motivated by observations in biological sys-
tems. The present paper proposes an algorithm to incrementally compute
feature hierarchies. The features are represented as estimated densities,
using a variant of local soft histograms. The kernel functions used for
this estimation in conjunction with their unitary extension establish a
tight frame and results from framelet theory apply. Traversing the fea-
ture hierarchy requires resampling of the spatial and the feature bins. For
the resampling, we derive a multi-resolution scheme for quadratic spline
kernels and we derive an optimization algorithm for the upsampling.
We complement the theoretic results by some illustrative experiments,
consideration of convergence rate and computational efficiency.

1 Introduction

The computation of feature hierarchies is an essential step in many state-of-
the-art visual object recognition systems. The hierarchical processing is well
motivated by observations in biological systems [1]. The present paper proposes
an algorithm for incremental computation of feature hierarchies.

Feature hierarchies can be build with respect to abstraction levels or resolu-
tion [2], p. 8–9, or a combination of both [3, 4]. Here, we focus on the resolution of
soft histograms as used in, e.g., [5], where matching is performed on histograms
with increasing resolution, i.e., coarse to fine. In this work, increasing spatial
resolution goes in hand with decreasing resolution in feature space. This is plau-
sible from a practical (computational effort) and statistical (significance) point
of view, and the reciprocal relation of resolution in the spatial and the feature
domain has an theoretical upper bound [6].

Computations in the joint spatio-featural space require a common framework
for spatial positions and generic features. Biological systems have been observed
to use a representation called population codes [7], in earlier work also called
channel codes [8, 9]. Channel representations as a computational framework, e.g.
for object recognition, have been introduced in [10], and are directly related to
kernel density estimation [11]. Channel representations of features are basically
soft-histograms or Parzen estimators with a smooth kernel function. They are
beneficial in many tasks due to their robustness [11, 23].

Applying channel representations to spatial coordinates results in low-pass fil-
ters or point-spread functions. Subsampled low-pass filters give rise to resolution
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pyramids [12, 13] and multi-resolution analysis. The complementing high-pass
filters became very popular in terms of wavelets [14], where signals are decom-
posed based on a orthonormal basis. The main drawback of discrete wavelets
is that if the scaling function (low-pass filter) is smooth, the wavelet becomes
highly non-smooth [15]. In contrast to wavelets, framelets can be selected to be
smooth, which is beneficial for stability, and contain redundancy, which improves
robustness. Similar to wavelets, framelets are compact, which results in limited
interaction and thus sparseness and efficiency in computations, e.g. exploited for
super-resolution still image extraction using C0 framelets [16].
In this paper, we extend the existing work in two ways: a) We derive a multi-
resolution scheme for quadratic spline channel representations (C1 kernels) us-
ing frame theory. b) We derive an algorithm for incrementally compute spatio-
featural hierarchies. Since we consider linear and periodic features, any feature
represented as a combination of linear and periodic parameters is covered.

The paper is structured as follows. The second section on methods gives the
required background and explains the proposed novel methods. In the subsequent
section on experiments and results we explain the performed tests, discuss the
results, and analyze the computational complexity. We conclude the paper with
a summary of achieved results.

2 Methods

2.1 Channel Representations and CCFMs

The channel representation as a computational framework goes back to [10]. In
channel representations features are represented by weights assigned to ranges
of feature values, similar to histograms but exploiting smooth bins. The closer
the current feature value ξ to the respective feature interval center n, the higher
the channel weight fn (for an example, the reader might refer to Section 3.3):

fn(ξ) = k(ξ − n) n ∈ N , (1)

where k(·) is a symmetric, unimodal kernel function and where ξ has been scaled
such that it has a suitable range (note that the channel centers are integers).

In what follows, we have been using quadratic B-splines as kernel function,
since they are smooth and easy to formulate in the z-domain [11]:

B2(ξ) =


3/4− ξ2 |ξ| ≤ 1/2
(|ξ| − 3/2)2/2 1/2 < |ξ| < 3/2
0 |ξ| ≥ 3/2

(2)

Comparing (1) with a kernel density estimator, the only difference is that the
kernel function is placed at equidistant positions and not on the samples drawn
from the distribution. Since the kernel is symmetric, the estimated coefficient
at the discrete position is the same in both cases and the distribution of the
stochastic variable ξ, pξ, is approximated by fn in expectation sense [11]:

Eξ{fn(ξ)} = (pξ ∗ k)(n) = (pξ ∗B2)(n) . (3)
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Fig. 1. Left: Going upwards in the spatio-featural pyramid reduces spatial resolution
and increases feature resolution. Top right: Downsampling for periodic boundary con-
ditions. The kernel functions are re-entering the domain from the respective opposite
side, i.e., the left most connection refers to the solid grey kernel. Bottom right: Down-
sampling for the zero padded case. The connections outside the existing channels get
zero weight. The four connections have the weights 1/8, 3/8, 3/8, 1/8 in both cases.

A multi-dimensional channel representation for a set of features is formed by
taking the Cartesian product of the respective one-dimensional representations.
If the spatial coordinates are contained in the feature set, a channel-coded fea-
ture map (CCFM) [17] is generated by local averaging, representing the spatio-
featural density. For instance one might consider local orientation, hue, and
saturation as local image features, resulting in a 5D CCFM. For practical (com-
putational effort) and statistical (significance) reasons, the number of spatial
and featural channels is not independent, but should be chosen reciprocally [6].

As motivated in the introduction, many object recognition approaches require
a hierarchical spatio-featural representation, e.g., a pyramid of CCFMs. As an
example, let us consider an orientation-based CCFM scale-space. At the finest
spatial resolution, we have a minimum number of four orientation channels,
representing e.g. positive and negative responses of a Gaussian derivative. On the
second level, we obtain eight orientation channels, which, if combined with four
by four spatial channels, yields a structure similar to the SIFT descriptor [18],
although with quadratic histogram bins instead of linear ones.

Single level descriptors like SIFT are directly computed from filter outputs,
but if several different levels are to be considered, a staged process that builds
the pyramid successively is beneficial. This means that higher-resolution feature
density estimates are estimated from several lower-resolution estimates when
traversing the pyramid towards lower spatial resolutions, c.f. Fig.1 left.
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2.2 Multi-Resolution Analysis of Density Estimates

The first step to find a staged computation of the CCFM pyramid is to derive
the scaling function for quadratic B-splines (2). According to [19] it is given as

m0 =
1
8

[1, 3, 3, 1] . (4)

The scaling function allows to compute the scaled quadratic B-spline channel
directly from the unscaled B-spline channel coefficients. This is easily verified
either in the z-domain or by elementary calculus using (2).

If we combine (4) with a downsampling scheme, we compute new channel val-
ues between existing channels and leave out every other channel. This process
is illustrated in Fig. 1, right. For periodic features (periodic boundary condi-
tions), the corresponding matrix operator (subscript p) is a circular matrix with
every other row left out. For linear features, the channel vector is zero padded,
cf. Fig. 1, bottom right. The corresponding matrix operator (subscript l) is a
Toeplitz matrix with every other row left out.

Tp,0 =
1
8


3 3 1 0 . . . . . . 0 1
0 1 3 3 1 0 . . . 0
...

. . . . . .
...

0 . . . 0 1 3 3 1 0
1 0 . . . . . . 0 1 3 3

 Tl,0 =
1
8


3 1 0 . . . . . . 0 0
1 3 3 1 0 . . . 0

. . . . . . . . . . . .
0 . . . 0 1 3 3 1
0 0 . . . . . . 0 1 3

 (5)

The subscript p respectively l is omitted if it is obvious from the context.
Let f denote a channel vector. Assume further that g is a low-pass filtered

(with m0) and downsampled copy of f . In matrix notation we obtain

g = 2T0f , (6)

where the factor 2 is required to keep the channel vector g normalized.
We form tight frame filters by applying the unitary extension principle [20]

resulting in the two high-pass filters [21]

m1 =
1
8

[1, 3, −3, −1] m2 = −
√

3
4

[1, −1, 0, 0] . (7)

The matrix operators corresponding to m1 read

Tp,1 =
1
8


−3 3 1 0 . . . . . . 0 −1
0 −1 −3 3 1 0 . . . 0
...

. . . . . .
...

0 . . . 0 −1 −3 3 1 0
1 0 . . . . . . 0 −1 −3 3

 Tl,1 =
1
8


3 1 0 . . . . . . 0 0
−1 −3 3 1 0 . . . 0
. . . . . . . . . . . .
0 . . . 0 −1 −3 3 1
0 0 . . . . . . 0 −1 −3


and the matrix operators corresponding to m2 are formed accordingly. By basic
calculations, we verify the reconstruction formula

1
2
I =

2∑
j=0

TT
j Tj , (8)
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where I is the identity and the factor 1
2 originates from the downsampling.

2.3 Upsampling Channel Vectors

If we traverse the spatio-featural hierarchy upwards, we downsample spatially
after1 having upsampled the feature dimensions. The downsampling is fully cov-
ered in terms of the matrices (5). The upsampling of g is achieved by combining
the reconstruction formula (4.13) in [21] with the iterative scheme in [20]. Plug-
ging (6) into (8) results in

1
2
f =

2∑
j=0

TT
j Tjf =

1
2
TT

0 g + TT
1 T1f + TT

2 T2f . (9)

Using an explicit approach, we obtain the iterative scheme

f (k+1) = TT
0 g + 2(TT

1 T1 + TT
2 T2)f (k) . (10)

Iterating this equation results in the solution of the underdetermined problem

min
f
‖g − 2T0f‖22 . (11)

Unrolling the iteration (10), we obtain

f (k+1) = ∆k+1f (0) + (∆k + . . .+∆+ I)TT
0 g (12)

where ∆ = 2(TT
1 T1 + TT

2 T2). The M rows of T0 are linearly independent and
span an M -d space. Let PM denote the N × N projection matrix onto this
M -dimensional subspace (non-zero eigenvectors of TT

0 T0). We obtain

f (k+1) = ∆k+1f (0) + (∆kPM + . . .+∆PM + I)TT
0 g

= ∆k+1f (0) + ((∆PM )k + . . .+∆PM + I)TT
0 g

because PM = P2
M and PM commutes with ∆ = I − 2TT

0 T0. In the limit, we
obtain

f (∞) = (I−PM )f (0) + (I−∆PM )−1TT
0 g (13)

because ∆PM has a spectral radius smaller than one.
This means that the N -dimensional solution f of our iteration is determined

by an M -dimensional constraint given in terms of g. The remaining N − M
dimensions, i.e., the null-space of PM , is determined to have norm zero if we
start from f (0) = 0, i.e., we obtain the minimum norm solution of (11). In
our particular problem, however, we are not interested in the minimum norm
solution, but we require to have a non-negative solution instead, since kernel
density estimates are non-negative. Hence, we should choose f (0) such that f (∞)

is non-negative everywhere.
1 If we downsampled first, we would lose information.
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For the periodic case, we know that N = 2M and for the linear case, we
obtain N = 2M − 2 since all channels are doubled except for those at the
boundaries. Hence, we need 2M −M = M respectively 2M − 2 −M = M − 2
equations that are not linearly dependent on the rows of T0. These can be
obtained in terms of I − PM , but we can easily derive another set of vectors
spanning the null-space of T0. Define the two matrices

Sp =
1
8


−3 3 −1 0 . . . . . . 0 1
0 1 −3 3 −1 0 . . . 0
...

. . . . . .
...

0 . . . 0 1 −3 3 −1 0
−1 0 . . . . . . 0 1 −3 3

 Sl =
1
8

 1 −3 3 −1 0 . . . 0
. . . . . . . . . . . .
0 . . . 0 1 −3 3 −1

 .

We verify that
SpTT

p,0 = 0 and SlTT
l,0 = 0 (14)

i.e., Sp (Sl) is in the null-space of Tp,0 (Tl,0). Furthermore, since Sp is of rank
M and Sl is of rank M − 2, we conclude that they span the null-space of Tp,0

respectively Tl,0.
In order to obtain a solution according to (11) with non-negative coefficients,

a straightforward idea is to simply set all negative coefficients to zero in each
iteration of (10). However, this does not lead to stable results in our experiments.
Instead, we compute the projection of the negative coefficients onto the null-
space. For this purpose, we define the vector fneg component-wise

fneg,n =

{
fn fn < 0
0 fn ≥ 0

n = 1, . . . , N . (15)

This vector is then projected onto the null-space (·† denotes the pseudoinverse)

fnull = STST
†
fneg . (16)

Subtracting this vector from the current solution brings us closer to the non-
negative solution without leaving our solution space, but we need to determine
the step-length λ. A greedy approach is to use the ratio of the largest negative
value of fneg and the corresponding coefficient of fnull:

n0 = arg min
n
fneg,n λ = fneg,n0/fnull,n0 . (17)

To achieve numerical stability, the coefficient λ must be bounded in the positive
and negative range, e.g., by requiring |fnull,n0 | > 10−5. Finally, we update

f (k+1) ⇐ f (k+1) − λfnull . (18)

3 Experiments

We have applied our algorithm (10,15-18) in three experiments: Convergence
tests, image reconstruction from upsampled densities, and orientation pyramids.
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Fig. 2. Convergence of our algorithm: Hellinger distance plotted versus the number of
iterations. Left: no noise. Right: Gaussian noise (5% standard deviation).

3.1 Convergence Behavior

For analyzing the convergence behavior of our upsampling algorithm, we have
generated sets of samples from a linear ramp function. One data set consists of
the function values without noise and the second contains 5% Gaussian noise.
The samples have been collected in soft histograms (channels vectors) with 3, 4,
and 6 bins respectively. These vectors have then been upsampled to 4, 6, and 10
bins and compared to the directly encoded noise-free data h, using the Hellinger
distance (which is often used in kernel-based matching [22]

d2(f ,h) =
1
2

∑
n

(
√
fn −

√
hn)2 = 1−

∑
n

√
fnhn (19)

where the right hand-side is obtained since the coefficients of f and h sum to
one. The right-most term is called Bhattacharyya coefficient [22].

The plots in Fig. 2 show the Hellinger distance as a function of the num-
ber of iterations. We can clearly see that the more iterations are required the
more channels are to be reconstructed. On the other hand, achieving the same
Hellinger distance for a larger number of bins means to achieve a higher accu-
racy per bin, and thus more information needs to be recovered. If the number
of iterations is normalized with the number of bins, convergence speed is about
the same.

One conclusion of this observation is that if the upsampling of feature distri-
butions is combined with a downsampling in the 2D spatial domain, the algo-
rithm has constant computational complexity, independent of the actual level in
the pyramid. This complexity is linear in the number of pixels and the number of
initial channels. This has been confirmed by the observed runtimes, which were
all in the sub-second range (Matlab implementation).

Another observation we make in Fig. 2 is that convergence speed seems to
be unaffected by noise, but the final error level depends on the noise. Since the
reconstruction is compared against the noise-free density estimates, the fixed
Gaussian noise has growing influence for decreasing kernel widths.
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Fig. 3. A car image from [23] reconstructed from CCFMs, clipped to 512× 256. Left:
reconstruction from direct CCFM encoding. Right: reconstruction from successive en-
coding using the proposed algorithm.

3.2 Image Reconstruction

In this experiment we visualize the similarities and differences of direct encoding
of CCFMs and successiv encoding using the proposed algorithm. The images are
taken from [23], size 512 × 512. We have reproduced the experiment from [6],
generating CCFMs with a resolution of 66×66×10 channels, and reconstructing
images with a resolution of 512× 512 using the method from [6]. The encoding
has been done in two different ways: a) by directly encoding the CCFM at the
final resolution and b) by encoding into three channels point-wise and subsequent
three-fold upsampling of the feature (greyscale) channel and downsampling of
the spatial channels, resulting in the sequence 514× 514× 3→ 258× 258× 4→
130×130×6→ 66×66×10. The two reconstructions for one example (an image
of a police car) are depicted in Fig. 3. In the ideal case, the two images should
be identical; the absolute reconstruction quality is not of relevance here.

Up to minor differences, the two reconstructions are identical. The main dif-
ferences occur at some few edges of medium greyscale difference, which are more
crispy in the direct encoding case. The reason for this minor difference is presum-
ably that some information loss is caused by the fact that spatial downsampling
is performed in 2D while the feature upsampling is only 1D. However, the level at
which edges are blurred is far beyond the original scale of channels. Using three
channels to encode the whole range is identical to linear smoothing of the image,
i.e., the proposed algorithm has succeeded in recovering robust smoothing from
initially uni-modal representations. In addition to that, the striking advantage
of the new method is that all intermediate CCFMs are also available, whereas
the direct method needs to encode from scratch for any change of resolution.

3.3 Illustration of Orientation Density Estimates

This experiment illustrates the spatio-featural hierarchy for orientation. We have
chosen a siemens star as input since its orientation channels are easy to analyze
visually. The orientation channels respond on respective antipodal sides and the
bow length corresponds to the width of the kernel, see Fig. 4. The first orientation
channel (out of four) at level n = 1 responds with a quite large variance.
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Fig. 4. Orientation pyramid. From left to right: image and hierarchy levels n = 1, . . . , 4.

Running our upsampling algorithm results in eight channels and the first two
are depicted, together covering about the same range as the previous one. After
another run, we obtain 16 channels, of which we show the first four. Finally, we
obtain 32 channels of which we show eight.

This illustrates how we obtain increasingly distinct estimates of the orienta-
tion by gathering information from a growing spatial support. We can repeat the
procedure until we reach a global histogram. The features are not at all restricted
to either greyscale or orientation. Any (combination) of features including color,
texture, depth, motion, etc. is possible, but more difficult to illustrate.

4 Conclusion

We have presented a framelet-theory based framework for resampling channel-
based density estimates up and down. We have further derived an optimiza-
tion algorithm that produces the required high-pass components for upsampling
density estimates with a non-negativity constraint. The algorithm is stable and
converges rapidly towards the correct solution. The presented framework is well
suited to generate feature hierarchies. Such hierarchies can be traversed up and
down, allowing for bottom-up driven detection and top-down driven priming
and adaptation of lower levels by simply multiplying prior distributions to the
higher-level representations.

In some illustrative experiments, we have shown that the derived framework
can be applied as intended. The optimization converges rapidly and is efficient to
compute. The greyscale reconstruction results are as close to the direct encoding
as it can be expected. A periodic feature (orientation) has been illustrated on
four levels of the hierarchy. What remains for future work is to apply the new
framework in an object recognition system and to verify its benefits on a more
applied level.
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