
Incremental Context-Dependent Analysis
for Language-Based Editors

THOMAS REPS, TIM TEITELBAUM, and ALAN DEMERS

Cornell University

Knowledge of a programming language's grammar allows language-based editors to enforce syntactic
correctness at all times during development by restricting editing operations to legitimate modifica-
tions ot ~ the program's context-free derivation tree; however, not all language constraints can be
enforced in this way because not all features can be described by the context-free formalism. Attribute
grammars permit context-dependent language features to be expressed in a modular, declarative
fashion and thus are a good basis for specifying language-based editors. Such editors represent
programs as attributed trees, Which are modified by operations such as subtree pruning and grafting.
Incremental analysis is performed by updating attribute values after every modification. This paper
discusses how updating can be carried out and presents several algorithms for the task, including one
that is asymptotically optimal in time.

Categories and Subject Descriptors: D.2.3 [Software Engineering]: Coding--program editors;
D.2.6 [Software Engineering]: Programming Environments; D.3.1 [Programming Languages]:
Formal Definitions and Theory--semantics; syntax

General Terms: Algorithms, Design

Additional Key Words and Phrases: Attribute grammars, incremental attribute evaluation, incremen-
tal semantic analysis, editor generators

1. INTRODUCTION

Our conce rn is the design a n d i m p l e m e n t a t i o n of in t e rac t ive e n v i r o n m e n t s for

c o m p u t e r p r o g r a m m i n g ; our goal is t he d e v e l o p m e n t of powerfu l language-speci f ic

tools t h a t suppo r t i n c r e m e n t a l p r o g r a m d e v e l o p m e n t a n d t e s t ing a n d t h a t exploi t

s t a t e -o f - the -a r t pe r sona l c o m p u t i n g hardware . We b e g a n in M a y 1978 wi th the

design of the Corne l l P r o g r a m Syn thes i ze r [38], a n in t e rac t ive l a n g u a g e - b a s e d

p r o g r a m m i n g e n v i r o n m e n t wi th syn tax -d i r ec t ed facil i t ies to edit , execute, a n d

debug programs. T h e example set by t h e Syn thes i ze r a n d o the r l a n g u a g e - b a s e d

sys tems such as E m i l y [12], M E N T O R [6, 7], P D E 1 L [27], a n d G a n d a l f [25] has

encouraged us to develop a tool for gene ra t i ng such sys t ems f rom l anguage

A preliminary version of this paper appeared in the Conference Record of the Ninth Annual ACM
Symposium on Principles of Programming Languages, January 1982 [35].
This work was supported in part by the National Science Foundation under grants MCS80-04218 and
MCS82-02677.
Authors' address: Department of Computer Science, Upson Hall, Cornell University, Ithaca, NY
14853.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0164-0925/83/0700-0449 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 5, -No. 3, July 1983, Pages 449-477.

450 T. Reps, T. Teitelbaum, and A. Demers

descriptions. Our current goal is the development of the Synthesizer Generator

[36], a processor that enables language-based environments for different lan-

guages to be created easily from formal specifications of the syntax, the display

format, and the semantics.

Simple language-based editors can easily be generated from a context-free

grammar that covers the given language; the editor generator builds tables

encoding the grammar in the form used by the language-independent kernel of

the system. However, the capabilities of such a system are limited by the

descriptive power of context-free grammars; the system would not be able to

build an editor with facilities that require widely separated parts of a program to

be interrelated or constrained in ways that vary depending on the context given

by the rest of the program.

Attribute grammars extend the descriptive power of context-free grammars.

First introduced by Knuth to assign semantics to context-free languages [19],

they have subsequently been used to describe translations [22], code optimizations

[30], correctness-preserving transformations [11], data-flow analysis [3, 9], and

program anomalies [2]. Furthermore, attribute grammars have been used as the

specification language for several compiler-writing systems, including FOLDS [8],

DELTA [23], MUG2 [10], HLP [33], APARSE [28], and GAG [16]. 1

Because of their utility in these applications, attribute grammars appeared to

us to be a good basis for specifying and generating language-based editors.

Accordingly, we have implemented a prototype Synthesizer Generator and have

used the system to build experimental editors in which attributes control pretty-

printing and code generation and detect program anomalies, type violations, and
errors in program proofs.

The subject of this paper is the algorithmic foundations of the attribute-

grammar approach to constructing language-based editors. Each editor represents

a program as an attributed tree, and programs are modified by derivation-tree

operations such as pruning, grafting, and deriving. A derivation-tree modification

directly affects the values of the attributes of the modification point; incremental

analysis is performed by updating attribute values throughout the tree in response
to modifications.

After each modification to a program tree, only a subset of attributes, denoted

by AFFECTED, require new values. It should be understood that, when updating

begins, it is not known which attributes are members of AFFECTED; AF-

FECTED is determined as a result of the updating process itself. This paper

presents algorithms that identify attributes in AFFECTED and recompute their

values. One of these algorithms has cost proportional to the size of AFFECTED,
which is asymptotically optimal in time because the work needed to update the

tree can be no less than I AFFECTED I- Another of our algorithms, although

suboptimal, may be preferable depending on the particular attribute grammar.

The paper compares our algorithms to one another and contrasts them with

alternative approaches to providing non-context-free facilities in language-based

editors. We consider here only arbitrary noncircular attribute grammars; optimal

algorithms for the restricted classes of L-attributed, ordered, and absolutely

noncircular grammars are presented in [34].

Reference [31] is an extensive b ib l iography of the a t t r ibu te g r a m m a r l i tera ture .

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Incremental Context-Dependent Analysis 451

2. ATTRIBUTE GRAMMARS

An a t t r ibute g r a m m a r is a context-free g r a m m a r extended by a t taching a t t r ibu tes

to the symbols of the g rammar . Associated with each product ion of the g r a m m a r

is a set of semantic equations; each equat ion defines one a t t r ibute as the value

of a semantic function applied to o ther a t t r ibu tes in the production. At t r ibu tes

are divided into two disjoint classes: synthesized at t r ibutes and inherited attr i-

butes. Each semant ic equat ion defines a value for a synthesized a t t r ibu te of the

left-side nonterminal or an inher i ted a t t r ibute of a right-side symbol. For brevi ty,

the a rguments of the semant ic function defining the value of a t t r ibu te b are

referred to as the a rguments of b.

Every a t t r ibute g r a m m a r can be put into a normal form, in which every

semant ic equat ion defines a value for a synthesized a t t r ibu te of the left-side

nonterminal , or an inheri ted a t t r ibute of a right-side symbol, in t e rms of zero or

more inheri ted a t t r ibutes of the left-side nontermina l and synthesized a t t r ibu tes

of the right-side symbols.

Example. T h e ambiguous context-free g r a m m a r

R O O T ---> S

S ~ S..S

S -* word1

S ---> w o r d n

generates sentences of one or more words separa ted by single blanks (-), selected

f rom a vocabulary word1 word, . Suppose sentences are to be displayed on

a screen of bounded width W such tha t each line contains as m a n y words as

possible and no word is split across a line. Assume tha t columns are n u m b e r e d

one to W and tha t no word is longer t han W. T h e n we m a y wish to associate wi th

each phrase S a synthesized a t t r ibu te S.last designating the column on the display

screen of the last charac te r of tha t phrase. To define this a t t r ibute , we mus t also

know the column of the last charac te r of the word immedia te ly preceding phrase

S, which we can represent in inher i ted a t t r ibu ted S.previous. T h e rules of the

normal - form g r a m m a r defining these a t t r ibutes are

ROOT--* S

S .p rev ious -- - 1

S, ~ 82uS3
S2.previous = S, .previous

S3.previous = S2.1ast

S1.1ast = S3.1ast

S--~ wordl

S.last = if S.previous + 1 + length(word,) ___ W

then S.previous + I + length(wordl)

e l se length(word1)

etc., where subscripts distinguish among mult iple occurrences of the same non-

terminal in the second production.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

452 T. Reps, T. Teitelbaum, and A. Demers

A derivation-tree node labeled X defines a set of attribute instances correspond-

ing to the attributes of X. A semantic tree is a derivation tree together with an

assignment of either a value or the special token nul l to each attribute instance

of the tree. We assume that nul l is a value outside the domain of every attribute.

Functional dependencies among attributes in a production p or a semantic tree

T can be represented by a dependency graph, denoted D(p) or D(T) , respec-

tively, which is a directed graph defined as follows:

(1) For each attribute b, the graph contains a vertex b'.

(2) If attribute b is an argument of attribute c, the graph contains a directed edge

(b', c').

An edge from b' to c' has this meaning: b' is used to determine the value of c'.

Although closely related, an attribute instance b in T and the vertex b' in D(T)

are different objects. When this distinction is not made explicitly clear, the

intended meaning should be clear from the context. The notation TreeNode (b')

denotes the node of T with the attribute instance b corresponding to b'. Vertices

of D(T) with no incoming edges correspond to attribute instances defined by

zeroary semantic functions, that is, constants.

A semantic tree is fully attributed if each of its attribute instances is available,
that is, non-null. When all the arguments of an unavailable attribute instance

are available, we say it is ready for evaluation.

Example. Continuing our formatting example, fix the width of the display

screen at W = 13 and consider the displayed sentence

1234567890123

Candy is

dandy buC

liquor is

quicker

One of the possible derivation trees for this sentence is shown fully attributed

and together with its dependency graph in Figure 1. The semantic tree consists

of the instances of nonterminals ROOT and S, together with their respective

attributes shown in adjacent boxes. Nonterminals of the same production are

connected by dashed lines. The dependency graph consists of the attribute

instances, shown in boxes, linked by their functional dependencies, shown as solid

arrows. The constant -1 , strictly speaking, is neither a part of the semantic tree

nor a part of the dependency graph.

To further characterize semantic trees we introduce the notion of consistency.

An attribute instance b is consistent if

(1} the arguments of b are available and

(2) the value of b is equal to its semantic function applied to the arguments.

In all other cases, we say b is inconsistent. We extend the definition of consistency

to cover related concepts in semantic trees and dependency graphs; a semantic

tree or a dependency graph is consistent if all of its attribute instances are
consistent.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Incremental Context-Dependent Analysis 453

. - \ I c--' ' T - < - . , ,

I 1 I

I I I
I I I

candy iS danay but

ROOT
I

g

I

I
I

I

I

1

liquor is quicker

Fig. 1. An attr ibuted tree.

An attribute grammar is noncircular when the dependency graph of every

possible derivation tree is acyclic. Noncircularity is decidable [18] and, though of

inherently exponential complexity [14], is feasible to test in practice. An attribute

grammar is well formed when the terminal symbols of the grammar have no

synthesized attributes, the root symbol of the grammar has no inherited attri-

butes, and each production includes a semantic equation for all the synthesized

attributes of the left-side nonterminal and all the inherited attributes of the right-

side symbols. This paper deals only with attribute grammars that are well formed

and noncircular; unless stated otherwise, we also assume that the grammar is in

normal form.

3. A SIMPLE MODEL OF EDITING

This section opens the discussion of how attribute grammars can be used in a

system for generating language-based editors. We are initially concerned with the

simple model of editing described below [5]; later, we extend this basic model.

The basic idea is for each editor to represent a file as an attributed tree of the

attribute grammar. When editing operations modify the tree, analysis is carried

out by reestablishing consistent attribute values throughout the tree. Any display

formats and translation semantics that are defined in terms of attributes are

thereby updated. Attribute values indicating violation of context-sensitive lan-

guage constraints may be used to annotate the program display (if only error

detection is desired) or to initiate undoing the structural modification (if error

prevention is desired).

Creating a file using a language-based editor entails growing a semantic tree.

During development, a file tree is a partial derivation tree; that is, it contains

unexpanded nonterminals. This is potentially a problem because, at an unex-

panded nonterminal X, we have no means for giving values to the synthesized

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

454 T. Reps, T. Teitelbaum, and A. Demers

attributes of X or to any of their successors. This conflicts with our desire to

maintain values for every at tr ibute of the tree.

To avoid this problem, we require tha t the grammar include a completing

production X ---) ± for each nonterminal symbol X. The symbol ± denotes

"unexpanded," and the semantic equations of the completing product ion define

values for the synthesized at tr ibutes of X. By convention, an occurrence of an

unexpanded nonterminal is considered to have derived ±. By this device, all

partial derivation trees (from the user 's viewpoint) are considered complete

derivation trees (from the editor 's viewpoint}. Thus, as a program is derived, its

tree may be fully attributed.

Modifying a program entails restructuring a derivation tree by pruning and

grafting subtrees. Let T be a semantic tree and U be a subtree of T with root

node r labeled X. U is pruned from T by removing the subtree rooted at r. Let U '

be a semantic tree with root r' also labeled X. U ' is grafted onto T at leaf r

labeled X by assigning the synthesized at tr ibute values of r to the synthesized

attr ibute instances of r' and then replacing r by U' in T. 2 We define subtree

replacement of U by U' as the pruning of U followed by the grafting of U' in its

place.

At each stage during editing, the editing cursor is positioned at an interior

node of the semantic tree. An editing session is viewed as a succession of

replacement operations and cursor motions starting from the complete, fully

at tr ibuted semantic tree

R Q O T
I
I
I
I
I
I

±

with the cursor positioned at ROOT. Each insertion at an unexpanded nonter-

minal labeled X is viewed as the replacement of an instance of the completing

production of X by a freestanding tree U' with root X. For example, when a

derivation is made according to the product ion X --* A B C where A and C are

nonterminals, U' is

X

A B C
t I
f I
I t

± ±

Each deletion is viewed as the replacement of a subtree U (with root X) by an

instance of the completing product ion of X.

e The decision to save the synthesized attributes of r and the inherited attributes of r ' may at first
seem counterintuitive. The choice is somewhat arbitrary since, no matter which attributes are saved,
inconsistencies may be introduced that must subsequently be eliminated. Our definition has the
advantage of simplifying the presentation of our algorithms, as is explained in Section 4.1. More
refined selection criteria, for example, minimizing the number of initially inconsistent attributes, are
possible optimizations that do not influence the asymptotic worst case running times of our algorithms.

A C M T r a n s a c t i o n s o n P r o g r a m m i n g L a n g u a g e s a n d S y s t e m s , Vol . 5, N o . 3, J u l y 1983.

Incremental Context-Dependent Analysis 455

Because modifications may be made at any location in the program, the system

must deal with freestanding trees derived from any of the nonterminals of the

grammar, not just ones derived from the root symbol. For example, a subtree

removed at X becomes a freestanding tree with root X. Such trees are retained so

that they can be inserted into the program elsewhere.

The task of an incremental attribute evaluator is to produce a consistent, fully

attributed tree after each subtree replacement. Of course, any nonincremental

attribute evaluator could be applied to completely reevaluate the tree, but our

goal is to minimize work by confining the scope of reevaluation required after

each subtree replacement. The incremental viewpoint, and consequent concern

with how to update attributes, sets our work apart from earlier work on attribute

evaluation.

4. NAIVE INCREMENTAL ATTRIBUTE EVALUATORS

In this section, two simple approaches to incremental attribute evaluation are

presented: change propagation and nullification/reevaluation. The deficiencies of

the two naive algorithms are discussed and motivate the development, in Section

5, of an optimal-time change propagation algorithm. Aspects of the nullification/

reevaluation approach reappear later when the basic model of editing is extended

to include demand attributes.

4.1 Change Propagation

One approach to incremental attribute evaluation, called change propagation,
involves propagating changes of attribute values through a fully attributed tree.

Throughout the process, each attribute is available, although possibly inconsis-

tent. When the value of an attribute instance is changed to make it consistent, its

successors may become inconsistent; however, if reevaluating an attribute in-

stance yields a value equal to its old value, changes need not be propagated

further. Thus, change propagation can be accomplished by following attribute

dependencies and maintaining a work-list of possibly inconsistent attributes that

must be reevaluated because one of their arguments has changed value.

The algorithm for subtree replacement given as procedure REPLACE of

Algorithm 1 uses the change propagation procedure PROPAGATE to reestablish

consistent attribute values. REPLACE assumes that the freestanding tree U' to

be grafted into T at r is consistent and fully attributed. Note, however, that in

the freestanding tree U' the arguments of the inherited attributes of its root are

not in U'. Therefore, we extend the definition of consistent to allow inherited

attributes of the root of a freestanding tree to have arbitrary values. In general,

the tree resulting from the grafting of U' will not be consistent. However, by

virtue of our definition of grafting and the assumption that the grammar is in

normal form, the initial inconsistencies are confined to the attributes of the

modification point r. 3

Using change propagation as part of subtree replacement makes certain editing

operations inexpensive, such as inserting a subtree at a location where the

attributes are identical to the attributes of the root of the subtree. Unfortunately,

3 In Section 5.5, we show how the normal-form assumption can easily be dropped and the definition

of subtree replacement generalized.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

456 T. Reps, T. Teitelbaum, and A. Demers

R E P L A C E (T , r, U ') :

let

T = a consistent, fully attributed semantic tree

r = a node of T

U ' = a consistent, ~ l l y attributed semantic tree in which the syntactic label

of the root matches the syntactic label of r

in

prune the subtree at r from T

graft U' onto T at r

P R O P A G A T E (T , r)

P R O P A G A T E (T , r):

le t

T = a fully attributed semantic tree

r = a nonterminal node of T containing all inconsistent attributes of T

S -- a set of attribute instances

b = an attribute instance

Oldvalue, Newvalue = attribute values

in

S : = the set of inconsistent attribute instances of r

whi l e S ~ 0 do

Select and remove a vertex b from S

Oldvalue :-- value of b

evaluate b

Newvalue := value of b

i f Oldvalue ~ Newvalue then Insert all successors of b into S

od

Algorithm 1. Subtree replacement using naive change propagation.

the behavior of change propagation is sensitive to the order in which attributes

are chosen for evaluation, and, if attribute dependencies are followed blindly, as

in Algorithm 1, its behavior can be nonlinear in the number of attributes

reevaluated. This sort of nonlinear behavior occurs when updating a tree that

has a dependency graph in which attributes are connected by more than one

path. In the appendix, we give a simple attribute grammar for which Algorithm

1 requires quadratic time if PROPAGATE manipulates its work-list S in FIFO

(first in, first out) order, and exponential time if it manipulates S in LIFO (last in,

first out) order.

4.2 Nullification/Reevaluation

The nonlinear behavior of subtree replacement that can result from using the

change propagation algorithm described above can be avoided by using an

alternative method for subtree replacement called nullification~reevaluation,
given below as Algorithm 2. After U has been replaced by U' in T, the procedure

NULLIFY is used to set all attributes of the modification point to the special

value nul l and then to propagate nul l to all attributes that depend on them.

Then the procedure EVALUATE is used to propagate consistent new values

throughout the tree. Both NULLIFY and EVALUATE are essentially traversals

of the portion of the DAG D(T) reachable from r. As a "mark" indicating that an

attribute has already been visited in the traversal, NULLIFY uses the presence

of a nul l value whereas EVALUATE uses the presence of a non-nul l value. Both

NULLIFY and EVALUATE have the property that they only consider an

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Incremental Context-Dependent Analysis • 457

REPLACE(T, r, U'):

le t

T, U' = consistent, fully at tr ibuted semantic trees

r = a node of T

U = the subtree of T rooted at r

in

prune U from T

graft U' onto T at r

NULLIFY(T, {attributes of r})

EVALUATE(T, {attributes of r that are ready for evaluation})

NULLIFY(T, S):

le t

T = a consistent, hilly at tr ibuted semantic tree

S = a set of attr ibute instances

b, c = attr ibute instances

in

wh i l e S ~ ~ do

Select and remove an attribute instance b from S

nullify b

fo r each c that is a successor of b do

i f c is available t h e n Insert c into S

od

od

EVALUATE(T, S):

le t

T = a partially evaluated semantic tree in which all successors of unavailable

attributes are unavailable

S = the set of attribute instances of T that are ready for evaluation

b, c = attribute instances

in

wh i l e S ~ ~ do

Select and remove a vertex b from S

evaluate b

f o r each c that is a successor of b do

i f c is ready for evaluation t h e n Insert c into S

od

od

Algorithm 2. Subtree replacement using nullification/reevaluation.

attribute once, so the total work done by Algorithm 2 is linear in the number of
attributes considered.

4.3 Suboptimal Behavior

A derivation-tree modification directly affects the values of the attributes at the

point of modification. In our simple model of editing, attribute values must be

updated in response to each modification to leave the semantic tree consistent

and fully attributed. Out of the entire collection of attributes in the tree, only

certain ones require new values. To be more precise, let T' denote the inconsistent

tree resulting from a subtree replacement, and let T" denote T' after it has been

updated. We define A F F E C T E D to be the set of attribute instances that have
different values in the two trees. Because O([AFFECTED[) is the minimal

amount of work required to update T ' after subtree replacement, we say that an

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

458 T. Reps, T. Teitelbaum, and A. Demers

incremental evaluator is optimal-time if it runs in O(I AFFECTED I) steps, where

semantic function evaluations are counted as unit steps. It is important to bear

in mind that AFFECTED is not known a priori and can only be inferred from the

updating process itself.

The nullification/reevaluation evaluator given as Algorithm 2 is not optimal

because the size of the set of all attributes that depend on attributes of the

modification point is not related to the size of AFFECTED in any fixed way.

Consequently, the evaluator may do extensive propagations even when AF-

FECTED is a very small set.

The naive change propagation evaluator given as Algorithm 1 is very sensitive

to the order in which attributes are selected as candidates for new values. With

the right selections, a tree is updated optimally; however, there is no guarantee

that the right selections will be made; and, when attributes are selected in the

wrong order, not only is the algorithm suboptimal, but the time it uses can be

nonlinear in the number of attributes considered.

As a heuristic in developing an optimal-time change propagation algorithm, we

note the following. If, in the course of propagating new values, an attribute is

ever (temporarily) reassigned a value other than its correct final value, spurious

changes are apt to propagate arbitrarily far beyond the boundaries of AF-

FECTED, leading to suboptimal running time. To avoid this possibility, a change

propagator should schedule attribute reevaluations such that any new value

computed is necessarily the correct final value. That is, an attribute should not

be reevaluated until all of its arguments are known to have their correct final

values. This suggests that what is needed is an enumeration of AFFECTED in
topological order with respect to the dependency graph. In the case of nonincre-

mental evaluation, where all attributes of the tree T must be computed, Knuth's

topological sorting algorithm [20] has been applied to the dependency graph

D(T) to produce evaluators that run in time O(ID(T)I) [17, 22]. In our case of

incremental evaluation, what is needed is an algorithm that will generate AF-

FECTED in topological order in time O(I AFFECTED I).

5. OPTIMAL-TIME CHANGE PROPAGATION

This section describes a second version of the change propagation algorithm

PROPAGATE that identifies attributes in AFFECTED and computes their

new, final values in topological order with respect to the dependency graph D(T)
[35]. Both the total number of semantic function applications and the total cost

of bookkeeping operations are proportional to the size of AFFECTED; conse-

quently, this PROPAGATE is asymptotically optimal in time.

The optimal-time version of PROPAGATE can be understood as a generaliza-

tion of Knuth's topological sorting algorithm. PROPAGATE (like topological

sorting) keeps a work-fist of attributes that are ready for reevaluation {enumer-

ation); an attribute is placed on the work-list when its in-degree is reduced to

zero in a scheduling graph whose edges reflect dependencies among attributes

that have not yet been reevaluated (enumerated). Whereas in topological sorting

the vertices of the scheduling graph are known a priori, in PROPAGATE the set

of vertices of the scheduling graph is generated dynamically at the same time as

it is being enumerated. What makes PROPAGATE asymptotically optimal is

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Incremental Contex t -Dependent Analysis • 459

tha t the scheduling graph never grows larger than O(]AFFECTEDI) ; on each

step, the size of the scheduling graph is proport ional to the number of a t t r ibutes

tha t have received new values since updating began. Vertices of the initial

scheduling graph represent just the at t r ibutes of the point of subtree replacement .

Thereaf ter , the scheduling graph expands only when changes propagate to

at t r ibutes tha t are arguments of a t t r ibutes outside the current graph.

5.1 Getting Started

Let us suppose a subtree replacement takes place at node r. By virtue of the way

at t r ibute values are exchanged during subtree replacement, all inconsistent

at t r ibutes are confined to r when change propagat ion is initiated. P R O P A G A T E

would not make any progress reevaluating at t r ibutes of o ther nodes, so it should

start off by reevaluating an a t t r ibute of r. Fur thermore , we wish to choose an

at t r ibute of r whose arguments are guaranteed not to change, thereby assuring

tha t the new value computed is the correct final value.

To make the right selection, it is necessary to know about transit ive dependen-

cies among the at t r ibutes of r. If b and c are at t r ibutes of r, and c transit ively

depends on b, then b must be reevaluated before c. These relationships can be

represented by a directed graph whose vertices are the at t r ibutes of r and whose

edges represent transit ive dependencies among the attributes.

To discuss this idea more precisely, we make the following definitions:

(1) Given directed graphs A = {VA, EA) and B = (VB, EB) tha t may or may not

be disjoint, the union of A and B is

A U B = (VA U VB, EA U EB).

{2} The deletion of B from A is

A - B = {VA, EA -- Es) .

Note that deletion deletes only edges.

(3} Given a directed graph A = (V, E) and a set of vertices V' C_ V, the projection

of A onto V' is

A / V ' = (V', E ')

where E ' = ((v, w) I v, w E V' and there exists a pa th from v to w in A tha t

does not contain any elements of V'}.

Transi t ive dependencies among at t r ibutes of a given nonterminal instance s

are represented locally by subordinate and superior characteristic graphs. We

let each node s in a semantic t ree be labeled with its subordinate characterist ic

graph, denoted s.C, its superior characterist ic graph, denoted s.C, or both. Th e

subordinate characteristic graph at node s is the project ion of the dependencies

of the subtree rooted at s onto the at t r ibutes of s. To form the superior

characteristic graph at node s, we imagine tha t the subtree rooted at s has been

pruned from the semantic tree and project the dependency graph of the remaining

tree onto the at t r ibutes of s. Note tha t the vertices of the characterist ic graphs at

s correspond to the at t r ibutes of s.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

460 T. Reps, T. Teitelbaum, and A. Demers

.

I

I I
I I t

chocolates are dandy

Fig . 2. A f r e e s t a n d i n g tree .

Formally, let s be a node in semantic tree T, let the subtree rooted at s be

denoted Ts, and let Vs denote the vertices of D (T) that correspond to the

attributes of s. The subordinate and superior characteristic graphs at s are de-
fined by

s.C =- D(Ts)/V~;

s.C =- (D(T) - D(T ,)) /Vs .

Knowing the subordinate and superior characteristic graphs at the point of

subtree replacement r allows us to construct the graph r.C U r.C. An edge of this

graph represents a transitive dependence between two attributes of r. An attribute

in this graph that has in-edges depends on one of the other attributes of r;

consequently, it is not a suitable first choice for reevaluation. An attribute with
in-degree zero does not depend on any of the other attributes of r and therefore

is a suitable first choice. There is at least one such attribute because we are

working with noncircular attribute grammars.

Example . Continuing our example, suppose the subtree "candy is dandy" of
Figure I is replaced by the freestanding tree shown in Figure 2, which apparently

originated in a context in which the previous word ended in column 2. Then, after

grafting but before change propagation, the attribute values at the point of

subtree replacement r are r.previous = 2 (from the inherited attribute of the root

of the replaced subtree) and r.last = 5 (from the synthesized attribute of the root

of the replacing subtree). At r, the subordinate characteristic graph r.C is

[] ~] ,

reflecting the transitive dependence of r.last on r.previous. The superior charac-

teristic graph r.C is

[] [] ,

the absence of edges reflecting the fact that r.previous does not at all depend on

r.last. The initial scheduling graph r.C U r.C is thus

[i!] fi];

consequently, change propagation starts by reevaluation of the inconsistent
attribute value r.previous -- 2.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Incremental Context-Dependent Analysis 461

5.2 The Updating Process

The previous section argues that the graph r.C U r.C must be constructed in

order to choose the first attribute for reevaluation. In general, this graph repre-

sents a partial order that PROPAGATE must respect t h r o u g h o u t the updating

process. As updating progresses it is necessary to know more than just the

dependency relationships among the attributes of r. When the value of an

attribute instance is changed, all attributes that use it as an argument may

become inconsistent; it is necessary to take into account the dependencies that
involve these attributes.

To schedule reevaluations, PROPAGATE employs a graph M, called the

model , and a set S, used as a work-fist. M is a generalization of the graph

discussed in the previous section, which represents dependencies among the

attributes of a connected region of the tree, rather than just dependencies among

the attributes of a single node. A vertex of M corresponds to an attribute; an edge

of M represents a functional dependence, which may be either a direct dependence
or a transitive dependence. In particular, M contains

(1) edges representing direct dependencies in the modeled region of the tree,

(2) edges of the superior characteristic graph of the apex of the region, and

(3) edges of the subordinate characteristic graphs of the frontier of the region.

Characteristic-graph edges represent transitive dependencies transmitted entirely
outside the modeled region of the tree.

M is initially r.C U r.C, and S is initially the set of vertices of M with in-degree

zero. As long as M covers the affected region of the tree, PROPAGATE does a

topological enumeration of M. As each attribute b is enumerated, it is reevaluated,

and the old value and the new value are compared; if they differ, and if b is an

argument of an attribute instance that is outside the current model M, then M is

expanded by one production instance so that it includes the successors of b.
To describe an expansion precisely, we define the functions Expanded-

Subordinate and ExpandedSuperior, which produce graphs that are refinements

of a node's characteristic graphs. If node So is the parent node in production

instance p: (So, S l Sk), we define

ExpandedSubordinate(so) - D (p) U s l .C U . . . U sk.C.

For any other node si in the production instance, we define

ExpandedSuperior(sj)

- D (p) O so.C U s l .C U . . • U s j - i .C W sj+~.C U . . • U sk.C.

A model is expanded by the procedure EXPAND, given in Figure 3. In addition

to deleting a characteristic graph from the model and augmenting the model with

the corresponding expanded characteristic graph, an expansion also involves
making insertions into the work-list S. At the time an attribute is brought into

the model, if its in-degree in the model is zero, it is inserted into the work-list
because it is ready to be reevaluated. Because an expansion is limited to a single

production, it has a bounded cost for a given grammar.

PROPAGATE, stated below as Algorithm 3, interleaves topological enumera-
tion and attribute reevaluation with calls to EXPAND. When PROPAGATE

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

462 T. Reps, T. Teitelbaum, and A. Demers

EXPAND(M, b, S):

le t

M = a directed graph

b, c = attr ibute instances

S = a set of attr ibute instances

in

i f there exists c, a successor of b in D(T) that is not in M

and TreeNode(c) is a child of TreeNode (b) t h e n

M := (M - TreeNode(b).C) U ExpandedSubordinate(TreeNode(b))

Insert into S all vertices of ExpandedSubordinate(TreeNode(b)) whose in-

degree in M is 0

i f there exists c, a successor of b in D (T) that is not in M

a n d TreeNode(c) is the parent of TreeNode(b) t h e n

M := (M - TreeNode(b).C) U ExpandedSuperior(TreeNode(b))

Insert into S all vertices of ExpandedSuperior(TreeNode(b)) whose in-

degree in M is 0

Fig. 3. Expanding a model.

PROPAGATE (T, r):

le t

T = a fully attr ibuted semantic tree

r = a nonterminal node of T containing any inconsistent at tr ibutes of T

S = a set of attr ibute instances

M = a directed graph

b, c = attribute instances

Oldvalue, Newvalue = attr ibute values

in

M : = r . C U r . C

S := the set of vertices of M with in-degree 0 in M

w h i l e S ~ O do

Select and remove a vertex b from S

Oldvalue := value of b

evaluate b

Newvalue := value of b

i f Oldvalue ~ Newvalue and M does not contain all the successors of

b in D(T) t h e n EXPAND(M, b, S)

fo r each c that is a successor of b in M do

Remove edge (b, c) from M

if in-degreeM(c) = 0 t h e n Insert c into S

od

od

Algorithm 3. Optimal-time change propagation.

terminates, M consists of all attributes of all production instances in which an

attribute has changed value. All dependency-graph edges of this region have been

inserted into M by the expansion process and have been removed from M by the
topological enumeration process.

The number of vertices and edges introduced into M by an expansion is

bounded by the size of the largest production in the grammar. M is only enlarged

when we find a new member of AFFECTED; consequently, its maximum size is

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Incremental Context-Dependent Analysis 463

. " \ II

" I I
I I

I I

chocolates are dandy but liquor is quicker

Fig. 4. P r o g r e s s i o n of mode l s .

O(IAFFECTEDI). The cost of considering a vertex is one semantic-function

application and a constant amount of bookkeeping work. The total number of

semantic-function applications and the total cost of bookkeeping operations in

PROPAGATE are O(I AFFECTED I); thus, PROPAGATE is asymptotically

optimal in time.

Characteristic-graph edges, representing transitive dependencies in D(T), are

crucial to the optimal behavior of PROPAGATE. The presence of characteristic-

graph edges ensures that an attribute is never updated until all its ancestors are
consistent; consequently, an attribute can never be assigned a temporarily incor-

rect value during updating. Removing a characteristic-graph edge allows PROP-

AGATE to skip, in unit time, arbitrarily large sections of D(T) in which values

do not change.

Example. As a result of replacing "candy is dandy" in Figure 1 with "chocolates
are dandy" from Figure 2, PROPAGATE updates attribute values in the deriva-

tion tree to reflect the desired change in display layout:

1234567890123

candy is

dandy but

liquor is

q u i c k e r

1234567890123

chocolates

are dandy but

Ziquor is

q u i c k e r

The progression of six models generated in the course of change propagation is

indicated in Figure 4. Attributes in AFFECTED appear as double boxes, with

original value above final value. Every attribute that is eventually included in the

model is reevaluated. Note that the model never expands to include the attributes

of either "is" or "quicker" because, although the attribute S.previous of the

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

464

M~

T. Reps, T. Teitelbaum, and A. Demers

M3 M4 j I ~ . ~ :] [~

/ / "~ [

f f

I - . - \ I

I / ' ~ " f - - - - : - ~ ~ I ,- \ I J
I I ~r -~ r-~ '~F-~ r - ~ l
I I ~ t I

I z I I I I I

chocolates are dandy chocolates are dandy but

Fig. 5. The first four models.

phrase "is quicker" is recomputed, it does not change value. In Figure 5, detailed

snapshots of the first four models just after expansion are shown. 4

5.3 Correcting a Shortcoming

As presented, P R O P A G A T E has a shortcoming: an at t r ibute instance tha t

becomes part of M eventually gets evaluated, even if none of its arguments

receives a new value. For example, Figure 4 contains nine at t r ibute instances

(marked with *'s} tha t need never have been reevaluated. Furthermore, this can

happen to an attr ibute instance not just once, but up to three times. For example,

note in Figure 5 tha t the appearance in model M4 of an edge to the at tr ibute

r.previous will result in its being reevaluated yet again, even though it clearly

cannot get a new value from the second reevaluation. Since, in general, evalua-

tions may be expensive, this is undesirable behavior. Note tha t this is not a

counterexample to the optimal time bound; in general, at tr ibutes at the cursor

location can be introduced into M (and evaluated) at most three times, while all

other at tr ibutes can be introduced into M at most twice.

Such needless evaluations can be avoided by using an additional set, named

NeedToBeEvaluated , as follows:

(1) NeedToBeEvalua ted is initialized to contain all the vertices of the initial

model;

4 Our sample attribute grammar serves to illustrate the behavior of the algorithm for arbitrary
noncircular attribute grammars, even though it is an instance of the restricted class of L-attributed
grammars, for which it is sufficient to reevaluate attributes during a left-to-right traversal starting at
node r, descending no further when attributes no longer change value, and halting upon finding an
ancestor of r whose attributes do not change value.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Incremental Context-Dependent Analysis 465

PROPAGATE(T, r):

let

T = a fully attributed semantic tree prepared for propagation at r

r = a nonterminal node of T containing any inconsistent attributes of T

S, NeedToBeEvaluated = sets of attribute instances

M = a directed graph

b, c = attribute instances

changed -- Boolean

Oldvalue, Newvalue = attribute values

in

M := r.C U r.C'

S := the set of vertices of M with in-degree 0 in M

NeedToBeEvaluated := the set of vertices of M

wh i l e S ~ O do

Select and remove a vertex b from S

changed :-- fa l se

i f b E NeedToBeEvaluated t h e n

Remove b from NeedToBeEvaluated

Oldvalue := value of b

evaluate b

Newvalue := value of b

i f Oldvalue ~ Newvalue t h e n

changed := t r u e

i f M does not contain all the successors of b in D(T) t h e n

EXPAND(M, b, S)

fo r each c that is a successor of b in M do

Remove edge (b, c) from M

i f in-degreeM(c) = 0 t h e n Insert c into S

if changed = t r u e t h e n Insert c into NeedToBeEvaluated

od

od

Algorithm 4. Improved optimal-time change propagation.

(2) when the value of an attribute instance b is changed, every successor of b is

inserted into NeedToBeEvaluated;

(3) when b is removed from S, it is, reevaluated only if b E NeedToBeEvaluated.

These ideas are incorporated into the version of PROPAGATE presented as

Algorithm 4.

5.4 Characteristic Graphs, Cursor Motion, and Subtree Replacement

Until now, we have tacitly assumed that both subordinate and superior charac-

teristic graphs were maintained at each node of the tree. However, a subtree

replacement can radically alter transitive dependencies among attributes. In fact,

because a subtree replacement at node r can alter characteristic graphs arbitrarily

far away from r, maintaining every characteristic graph in the tree would make

subtree replacements too expensive.

Fortunately, PROPAGATE does not need every characteristic graph. After a

subtree replacement at node r, PROPAGATE never needs subordinate charac-

teristic graphs at any of the nodes on the path from r to the root of the tree, and

it never needs superior characteristic graphs anywhere else. PROPAGATE needs

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

466 T. Reps, T. Teitelbaum, and A. Demers

~ ~ S.C available

/ to) ~ both r.C and r.C available

Fig. 6. T prepared for propagation at r.

both characteristic graphs only at r. We say that T is prepared for propagation

at r when, as in Figure 6,

(1) r is labeled with both its subordinate characteristic graph, r.C, and its superior

characteristic graph, r.C;

(2) each node s on the path from r to root(T) is labeled with its superior

characteristic graph, s.C; and
(3) each node t not on the path from r to root(T) is labeled with its subordinate

characteristic graph, t.C.

The editor maintains the invariant that the semantic tree is prepared for

propagation at the position of the editing cursor. This invariant must be reestab-
lished after each movement of the editing cursor to a new location. Every cursor

motion can be defined as a sequence of the operations AscendToParent and

DescendToChild(j). Given that the editing cursor is positioned at node r of T

and that T is prepared for propagation at r, AscendToParent has the side effect

parent(r).C := ExpandedSubordinate(parent(r))/(attributes of parent(r)}.

DescendToChild(j) has the side effect

rj.C := ExpandedSuperior (rj) / (attributes of r i }

where rj denotes the j t h child of r. For a given grammar, each of these updates

has unit cost. A movement of the editing cursor over a path of length m in the

semantic tree costs O(m).

The invariant that the tree is prepared for propagation at the position of the

editing cursor must also be reestablished after a subtree replacement before

PROPAGATE is called. By retention of subordinate characteristic graphs when

a subtree is pruned, a freestanding tree is prepared for propagation at its root.

After a subtree U at node r is replaced by a freestanding tree U' with root s,

setting the superior characteristic graph at the cursor to be r.C and the subordi-

nate characteristic graph to be s.C reestablishes the invariant.

5.5 Operations Other Than Subtree Replacement

Existing language-based editors are either structure editors, such as Emily [12],

MENTOR [7], and the Gandalf editor [26], text editors that employ an incre-

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Incremental Contex t -Dependent Analysis • 467

mental parser, such as the CAPS editor [39] and the P D E I L editor [27], or hybrid
editors that combine both techniques, such as the editor of the Cornell Program

Synthesizer [38].

Nearly all these editors represent programs as derivation trees of the language's

abstract syntax, and the core of each system is a set of primitives for manipulating

abstract-syntax trees. Exactly which operations are included among the primitives

depends to a large extent on the system's user interface. In a structure editor,

editing consists of a sequence of deriving, pruning, and grafting operations

interleaved with cursor movements that shift the focus of attention in the tree.

An editor employing an incremental parser uses additional primitives, such as a

split operation that breaks up a tree into smaller trees and a join operation that

assembles smaller trees into a larger tree [13, 29].

So far, the only operations we have discussed are subtree replacement and

cursor movement. Insertion, deletion, and derivation have been treated as special

cases of subtree replacement; thus, the algorithms presented earlier are suitable

for language-based editors with a structural interface.

However, not all editing operations in language-based editors involve a single

subtree replacement. In an editor that employs an incremental parser, a single

program modification may involve a complex restructuring of the entire tree. In

an editor that supports transformations, operations alter nodes in the interior of

a tree, rather than a whole subtree. Although all editing operations in language-

based editors can be defined as a sequence of subtree replacements and cursor

motions, REPLACE is not suitable for such compositions of operations, because

REPLACE updates the tree with each subtree replacement. Instead, updating of

attribute values should be carried out only after the whole sequence of structural

modifications has been completed.

As presented above, PROPAGATE cannot be used to update a tree after an

arbitrary modification to a program tree, because until now we have assumed

that all inconsistencies are initially confined to the attributes of a single tree-

node. This restriction can be relaxed by making a simple change to PROPAGATE.

Let R denote the smallest connected region of T that includes all nodes affected

by a restructuring; all initially inconsistent attributes of T are attributes of this

region. Instead of passing PROPAGATE a single node r, we pass R; instead of

initializing the model M to r.C U r.C, PROPAGATE initializes M to

D(R) U root(R).C

U subordinate characteristic graphs of all

nodes on the frontier of R.

The set NeedToBeEvaluated is initialized to contain all attributes of R; the work-

list S is initialized to all vertices of M with in-degree zero. By starting off in this

way, with M containing all the inconsistent attributes, PROPAGATE will be able

to update the tree correctly.

Similarly, if the normal-form restriction is relaxed, then inconsistencies are not

~estricted to the attributes of r but may occur in attributes of the parent, siblings,

and children of r as well. By passing PROPAGATE the appropriate R, we may

drop the normal-form restriction that has been assumed throughout this paper.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

468 T. Reps, T. Teitelbaum, and A. Demers

6. EFFICIENCY CONSIDERATIONS

The discussion above has ignored questions of efficiency other than the asymp-

totic behavior. This section discusses three ways by which performance can be

improved, two of which are aimed at reducing the overhead of the attribute-

updating mechanism, and one that is aimed at reducing the overhead of building

and storing attribute values.

6.10ptimizations for Attributes Defined by Identity Functions

When change propagation is employed to update a semantic tree, the new

attribute value computed by each semantic-function application is compared to

the old attribute value to see if changes need to be propagated further. Because

testing equality of attribute values may be an expensive operation, it will be

advantageous if we can avoid performing some of the equality tests.

Such an optimization is possible for attributes defined by copy rules, that is,

defined by identity functions. This is an important optimization, because in

practice a large proportion of semantic functions are identity functions [40].

The basic idea is that, if the first attribute instance in a chain of copy rules

changes value, then the rest of the elements in the chain must also change value;

thus it is wasteful to test the rest of the elements of the chain to see if they

change value. It is important to note, however, that this is only true when the old

values in the chain are consistent (i.e., identical); change propagation may

terminate without reaching the end of the chain when some of the old values are
inconsistent. However, the only possible inconsistent instances of attributes

defined by copy rules are attributes of nonterminals in R, the region of the tree
that was modified. 5 Thus, it is necessary to treat each attribute of all nonterminals

in R that are defined by copy rules as if it were not part of any chain, and to test

its old value and its new value for equality whenever it is recomputed.

A further optimization is also possible for chains of copy rules. During change

propagation, every time the model expands, it expands to cover dependencies in

only a single additional production instance. For attributes defined by arbitrary

semantic functions, this is crucial to the optimal behavior of PROPAGATE,

because changes may not propagate beyond that production instance. However,

for attributes defined by identity functions, once we detect that a chain has

elements outside the model, the model may as well be expanded to include all

such elements as well as all of their immediate successors. By expanding the

model with this larger increment, we save the overhead involved in doing repeated

expansions. Again, it is necessary to treat the attributes of nonterminals in R that

are defined by copy rules as if they were not part of any chain.

6.2 Demand Attributes

Until now, we have abided by the requirement that each attribute in a program

tree be given a consistent value after every editing operation. The assumption of

this requirement is open to challenge. In particular, if the value of an attribute is

in no way observable immediately after an editing operation, then there is no

reason to insist on that value being correct. Instead, we could delay reevaluation

5 Recall that, in the case of subtree replacement, R consists of a single node.

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 3, Ju ly 1983.

Incremental Context-Dependent Analysis 469

until the value is needed in the computation of some aspect of the environment

that is observable to the user. One may argue that the cost of such unobserved

reevaluations is best prorated across many editing transactions in the interest of

instantaneous response when the value finally is needed. On the other hand,

repeated useless reevaluations of the attributes that are only rarely used might

well destroy the ability of an editor to respond quickly to frequent, commonplace

transactions.

We address this argument by extending our simple model of editing with a

class of d e m a n d attributes that are given values only when necessary, that is,

when a demand is placed on them for their value. A demand would arise either

directly from a user query, from a need to display an attribute on the screen, or

from a neighboring attribute needing to use the value as an argument. In some

situations, it will be advantageous to intermix demand attributes and regular

attributes, so we allow demand attributes to be arguments of regular attributes

and vice versa.

Before discussing incremental evaluation of demand attributes, it is worthwhile

to consider the demand concept as a paradigm for (nonincremental) evaluation.

Earlier, in Section 4.3, we discussed how topological sorting can be turned into an

algorithm for attribute evaluation by evaluating a vertex's semantic function

when the vertex would normally be enumerated in the topological order [17].

However, there is another well-known algorithm for producing a linear ordering

of a directed acyclic graph: start from the vertices with no successors, treat the

graph as if all edges had been reversed in direction, and do a depth-first search,

listing the vertices in endorder. This algorithm can also be turned into an attribute

evaluation algorithm by evaluating a vertex's semantic function when the vertex

is ready to be enumerated in the linear order. This algorithm can be thought of

as a d e m a n d evaluator that fulfills demands for the values of the attributes with

no successors.

In the version of PROPAGATE stated below as Algorithm 5, the demand

attributes are treated just like the regular attributes when none of their arguments

changes value; that is, a demand attribute keeps its old value if it is not a member

of NeedToBeEvaluated when it is removed from the work-list. If one of its

arguments has changed value, a demand attribute is given the value null, and

receives a value later only if the value is needed for evaluating a regular attribute.

Note that the subordinate and superior characteristic graphs used by PROP-

AGATE may be thought of as demand attributes that are linked to the cursor.

The computations referred to earlier as side effects of AscendToParent() and

DescendToChild() , namely,

r.C := ExpandedSubordinate(r)/{attributes of r}

and

r.C := ExpandedSuperior(r)/{attributes of r},

are just the semantic equations that define two graph-valued attributes. When

the cursor is moved to node r or when a subtree replacement takes place at node

r, a demand is placed on r.C and r.C.

It has not escaped our attention that allowing user-defined, cursor-linked,

demand attributes could be a valuable mechanism for certain facilities of lan-

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

470 T. Reps, T. Teitelbaum, and A. Demers

PROPAGATE (T, r):

let

T ffi a fully attributed semantic tree prepared for propagation at r

r ffi a nonterminal node of T containing any inconsistent attributes of T

S, NeedToBeEvaluated = sets of attribute instances

M ffi a directed graph

b, c ffi attribute instances

changed --- Boolean

Oldvalue, Newvalue - attribute values

in

M : = r . C U r . C

S := the set of vertices of M with in-degree 0 in M

NeedToBeEvaluated : = the set of vertices of M

whi le S ~ O do

Select and remove a vertex b from S

changed :-- false

i f b ~ NeedToBeEvaluated t h e n

Remove b from NeedToBeEvaluated

Oldvalue := value of b

i f b is a demand attribute t h e n set b to nul l

else for each argument c of b that is a demand attribute do

DEMANDVALUE(c)

od

evaluate b

Newvalue :ffi value of b

if Oldvalue ~ Newvalue t h e n

changed := t rue

i f M does not contain all the successors of b in D(T) t h e n

EXPAND(M, b, S)

for each c that is a successor of b in M do

Remove edge (b, c) from M

ifin-degreeM(c) = 0 t h e n Insert c into S

if changed = t rue t h e n Insert c into NeedToBeEvaluated

od

od

DEMANDVALUE(b)

let

b, c = attribute instances

in

whi le there exists c, an unavailable argument of b, do

DEMANDVALUE(c)

od

evaluate b

Algorithm 5. Change propagation in the presence of demand attributes.

g u a g e - b a s e d e d i t o r s . F o r e x a m p l e , i f o n e w e r e t o b u i l d a p r o g r a m - t r a n s f o r m a t i o n

e d i t o r u s i n g t h e s c h e m e d e s c r i b e d in [11], t h e a p p r o p r i a t e w a y t o t r e a t t h e " l e f t -

f o r w a r d " a n d " r i g h t - b a c k w a r d " a t t r i b u t e s , w h i c h a r e u s e d t o d e t e r m i n e i f a

t r a n s f o r m a t i o n p r e s e r v e s c o r r e c t n e s s i n a g i v e n c o n t e x t , w o u l d b e t o m a k e t h e m

d e m a n d a t t r i b u t e s o f t h e c u r s o r .

6.3 Efficient Representations of Large Attributes

A t t r i b u t e g r a m m a r s o f t e n e m p l o y a t t r i b u t e s b e l o n g i n g t o d a t a t y p e s t h a t r e q u i r e

a l a r g e d a t a s t r u c t u r e t o r e p r e s e n t a s i n g l e v a l u e . F o r i n s t a n c e , a t t r i b u t e g r a m m a r s

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Incremental Context-Dependent Analysis 471

for programming languages commonly use at t r ibutes whose values are symbol

tables. Both the space needed for storing large value-structures and the t ime

needed for creating them may impose a great deal of overhead on an at tr ibute-

grammar-based system.

It is common practice for large at t r ibutes to be accessed through one level of

indirection so tha t a single s t ructure represents the value of several a t t r ibute

instances tha t have identical values [32, 37]. A second benefi t of this s trategy is

tha t semantic functions tha t are identi ty functions can copy pointers ra the r than

having to copy entire structures.

This s trategy can be taken a step fur ther by arranging for the s t ructures tha t

represent nearly identical values to share most of the same substructure in

common. When this is done, storing two nearly identical values requires only

marginally more space than storing just one of the values; a semantic function

tha t re turns a value nearly identical to one of its arguments requires little t ime to

construct the re turn value.

For example, a symbol table can be represented by a linked list tha t is accessed

through a pointer to the head of the fist. A linked-fist representa t ion of a symbol

table is a sharable data s t ructure because, when the names contained in one table

are a subset of the names contained in the other table, both tables can be

represented using a single list tha t has the common names at the tail of the list.

A new name can be added to the symbol table by concatenat ing it to the head of

the list. The hill set of names is accessed through a pointer to the head of the list;

the smaller set of names is accessed through a pointer to the common taft. Th e

idea of implementing symbol-table at t r ibutes with linked lists so tha t storage can

be shared in common is not a new one, but, to the authors ' knowledge, linked

lists have been the only sharable s t ructures previously used in a t t r ibute-grammar-

based systems.

However, a 2-3 tree is also a sharable s t ructure if the t ree is manipulated in a

slightly nonstandard way. Normally, the elements of an ordered set are associated

with the leaves of a t ree in increasing order from left to right, and each interior

node of the tree is labeled with five items: the addresses of its two or three

children, the value of the largest e lement stored in the subtree rooted at the

leftmost child, and the value of the largest e lement stored in the subtree rooted

at the middle child [1]. During the course of such operations as I N S E R T ,

D E L E T E , MIN, SPLIT, and C O N C A T E N A T E , the tree may be restructured, in

which case these fields take on new values.

We define a sharable 2-3 tree to be a s tandard 2-3 t ree on which all operations

are carried out in the usual fashion, except that , whenever one of the fields of an

interior node M would normally be changed, we create a new node N tha t

duplicates M, and we change the field in N. Of course, to be able to t rea t N as the

child of parent(M), it is necessary to change the appropriate child-field in

parent"~M}, so we create a new node tha t duplicates parent (M), and so on, all the

way t~Jthe root of the tree. Thus, new nodes are in t roduced for each of the

original nodes along the pa th from M to the root of the tree. Because an operat ion

tha t restructures a s tandard 2-3 t ree may modify all of the nodes on the pa th to

the root anyway, and because a single operat ion on a s tandard 2-3 tree tha t has

n nodes takes at most O(log n) steps, the same operat ion on a sharable 2-3 t ree

introduces at most O(log n) additional nodes and also takes a t most O(log n)

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

472 ° T. Reps,T. Teitelbaum, and A. Demers

steps. The new tree resulting from the operation shares the entire structure of

the original tree except for the nodes on a path from N to the root, plus at most

O(log n) other nodes that may be introduced in order to maintain the 2-3

property.

Sharable 2-3 trees are very versatile structures that can be used to implement

efficient INSERT, DELETE, MEMBER, MIN, SPLIT, and CONCATENATE

operations on ordered sets. For symbol tables, a sharable 2-3 tree representation

is better than a linked-list representation because MEMBERship tests and

INSERT operations on an n-entry symbol table require at most O(log n) steps

with a sharable 2-3 tree, but O(n) steps (expected time) with a linked-list

representation.

For further discussion of efficient representations of large attributes, the reader

is referred to [34].

7. COMPARISON WITH ALTERNATIVE METHODS

The techniques presented above can be used in the design of systems capable of

generating editors with context-dependent facilities. What sets this work apart

from other work on language-based editors is the use of a formal framework for

implementing such facilities. One approach that has been taken by previous

systems for generating language-based editors has been to provide built-in mech-

anisms for a few special problems, such as block-structured scoping of variable

names. This approach, which is used in the generator for Emily [12] and the

generator for PCM [41], has the drawback that new applications will inevitably

run up against the system's limitations.
A second approach, which is called the semantic-action approach, is to support

designer-specified, semantic-action routines for making updates to the internal

program representation; during editing, each operation that affects a node of type

X invokes an action associated with the category X. An action is an imperative

routine that can walk the program tree making updates to nodes of the tree as

well as to global data structures. This approach is used in the generator for AVID

[21] and the generator for Gandalf [24].

The major drawback of the semantic-action approach is the imperative nature

of the editor specification. In addition to specifying semantic actions to occur

when elements are inserted into a program, it is also necessary to specify semantic

retractions to occur when elements are deleted from a program; the latter routines

must provide a method for undoing the effects of the semantic actions. Though

the procedures are associated with individual nonterminals of the grammar, such

a specification is not as modular as it might first appear. Each routine controls a

tree-walk and may depend on the structure of the entire tree; consequently, the

structure of much of the grammar may have to be hard-coded into each routine.

Because the order in which programs are developed is not fixed in advance, in

writing the semantic routines the editor-designer is faced with the task of devising

an updating strategy that maintains the data structure consistently, regardless of

the order in which the program is developed. In practice, there may also be

routines for other operations besides insertion and deletion, for example, opera-

tions associated with moving the editing cursor [26]. In general, the task of getting

all of these procedures and their side effects to cooperate as desired may place a

considerable burden on the editor-designer.

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 3, Ju ly 1983.

Incremental Context-Dependent Analysis 473

In contrast, the approach described in this paper, in which the syntax and

semantics of the target language are specified with an attribute grammar, avoids

the complexity inherent in the semantic-action approach because of the declar-

ative nature of attribute grammars. An attribute grammar describes relationships

between attributes, and the propagation of semantic information throughout a

program tree is implicit in the formalism. As we have shown in this paper, when

a program is modified, consistent relationships among the attributes can be

reestablished automatically; consequently, there is no need for an explicit notion

of undoing a semantic action or reversing the effect of a semantic analysis. When

an editor is specified with an attribute grammar, the method for achieving a

consistent state after an editing modification is not part of the specification.

The advantages of attribute grammars are offset by certain efficiency problems.

Because attributes are defined by semantic equations with strictly local depen-

dencies, when a program is modified (and attribute values recomputed), new

values can flow from attribute to attribute only along edges of the derivation

tree. With the semantic-action approach, however, the editor-designer is allowed

to write action routines that update the tree by other means. In particular, by

using data structures that record nonlocal dependencies in the tree, the updating

routines can skip over arbitrarily large sections of the tree that an incremental

attribute evaluator must visit node by node.

For example, suppose we want to enforce the constraint that the declarations

and uses of identifiers in a program be consistent. With the semantic-action

approach, this constraint can be implemented using a symbol table for each block

in which the entry for an identifier i points to a chain of all uses of i in that block

[15, 26]. When a declaration is deleted, the use chains are employed to immedi-

ately access uses of variables that were formerly declared. Of course, the action

routines must also handle the additional task of maintaining the consistency of

the nonlocal-dependency structures. For example, when a group of statements is

deleted, the entire group must be traversed to find all uses that must be deleted

from their use chains.

With the attribute-grammar approach, the constraint can be expressed with a

grammar that threads a symbol-table attribute through the tree, as described in

[4]. When declarations are inserted or deleted, the recomputed symbol-table

attribute value propagates through the entire scope of the declarations; when a

group of statements are inserted, the incremental evaluator essentially traverses

the entire group, reevaluating semantic functions that check for undeclared-

variable errors. On the other hand, a group of statements can be deleted by a

simple subtree-pruning operation without traversing the group.

Johnson and Fischer have considered a combination of the attribute-grammar

and the semantic-action approaches in which the standard definition of an

attribute grammar is extended with the concept of nonsyntactic attribute flow

[15]. Their objective is to have attributes flow "directly to where they are needed,

rather than being restricted in their flow to paths in the parse tree of a program."

They extend standard attribute-grammar notation with assertions on grammar

symbols, where the assertions may contain quantifiers and some special relational

operators for describing intersymbol relationships. The virtue of such an extension

is that it allows a more perspicuous specification of context dependencies than

the normal rule-by-rule specification, yet it remains formal and declarative.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

474 T. Reps, T. Teitelbaum, and A. Demers

While their goal is laudable, in [15] Johnson and Fischer, unfortunately, do not

show how editors can be generated from their extended specification language.

The essential difference between their approach and the semantic-action ap-

proach is that they make a distinction between the process of updating l inks

between nonterminals related by an assertion and the process of updating

attribute values; they use an incremental attribute evaluator for updating attri-

bute values, but use action routines for updating links. For the example of type

checking in an ALGOL-like language, reasonably efficient hand-coded "pseudo-

evaluation" and "roll-back" actions for maintaining links are shown; what is not

shown is how such an implementation can be derived automatically from the

assertions of their extended specification language.

A second problem is that the incremental attribute-evaluation algorithm pre-

sented in [15] is just naive change propagation; consequently, unless the depen-

dencies are restricted in such a way that there is never more than one path

between any two attributes, the number of attributes considered may be arbi-

trarily greater than the number of attributes given new values, and the number

of steps required to update the attributes may be nonlinear in the number of

attributes considered. Futhermore, due to the presence of nonlocal dependencies,

this problem can not be fixed by applying the methods we have presented in

Section 5 of this paper.

APPENDIX

The following grammar causes Algorithm 1, naive change propagation, to require

time nonlinear in the size of AFFECTED.

S1---) X S2

X.b = S2.a

S l .a = X .b + S2.a

S--->s

S . a = l

S - ->t

S . a = 2

X- - -) x

X . b = X.c

Dependency graphs of the derivation trees of this grammar have the form

a

c t . - - - a

a

c e - - - a

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 3, Ju ly 1983.

Incremental Context-Dependent Analysis 475

If manipulations of the work-list S in Algorithm 1 obey LIFO order, updating

proceeds depth-first through the dependency graph and may take exponential

time. For example, suppose we replace the rightmost production instance, S --~ t,

with S -* s in

S /

/ x

g "s I ¢ / x \

x g "s
t
I
I

x Q

O

O

.s,

"s
i
, I
I I

If, after updating an attribute labeled a, PROPAGATE always inserts the

successor labeled c into the work-list before inserting the successor labeled a, the
time required to update the tree satisfies the recurrence relation

T (h) = 2 T (h - 1) + const

where h is the height of the derivation tree. Thus, T (h) is exponential in the

worst case.

Alternatively, if manipulations of the work-list S obey FIFO order, updating

proceeds breadth-first through the dependency graph and may exhibit quadratic

behavior. The proof of this observation, omitted because of its length, appears

in [34].

ACKNOWLEDGMENTS

We are grateful for the comments and suggestions of Bowen Alpern, Joe Bates,

David Gries, Mark Horton, Susan Horwitz, Mike O'Donnell, Barry Rosen, and

the three referees. We would also like to thank Bernard Martin for letting us use

the facilities of the Conservatoire National des Arts et Metiers to prepare the

manuscript of this paper.

REFERENCES

1. AHO, A.V., HOPCROFT, J.E., A N D U L L M A N , J.D. The Design and Analysis of Computer Algo-

rithms. Addison-Wesley, Reading, Mass., 1974.

2. ARTHUR, J., AND RAMANATHAN, J. Design of analyzers for selective program analysis. IEEE

Trans. Softw. Eng. SE-7, 1 (Jan. 1981), 39-51.

3 . B A B I C H , W.A., A N D J A Z A Y E R I , M. The method of attributes for data flow analysis. Part I:

Exhaustive analysis; Part II: Demand analysis. Acta Inf. 10, 3 (Oct. 1978), 245-272.

4. BOCHMANN, G.V. Semantic evaluation from left to right. Commun. ACM 19, 2 (Feb. 1976),

55-62.

5. DEMERS, A., REPS, T., AND TEITELBAUM, T. Incremental evaluation for attribute grammars

with application to syntax-directed editors. In Conference Record of the 8th Annual ACM

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

476 T. Reps, T. Teitelbaum, and A. Demers

Symposium on Principles of Programming Languages, Williamsburg, Va., Jan. 26-28, 1981, pp.

105-116.
6. DONZEAu-GouGE, V., HUET, G., KAHN, G., AND LANG, S. Programming environments based on

structured editors: The MENTOR experience. Tech. Rep., INRIA, Le Chesnay, France, May

1980.
7. DONZEAU-GOUGE, V., HUET, G., KAHN, G., LANG, B., AND LEVY, J.J. A structure-oriented

program editor. Tech. Rep., IRIA-LABORIA, Le Chesnay, France, 1975.
8. FANG, I. FOLDS, a declarative formal language definition system. Tech. Rep. STAN-CS-72-329,

Computer Science Dept., Stanford Univ., Stanford, Calif., Dec. 1972.
9. FARROW, R.W. Attributed Grammar Models for Data Flow Analysis. Ph.D. dissertation, Dept.

of Mathematical Sciences, Rice Univ., Houston, Tex., May 1977.
1O. GANZINGER, H., RIPKEN, K., AND WILHELM, R. Automatic generation of optimizing multipass

compilers. In Information Processing 77; Proceedings of the IFIP Congress 77, B. Gilchrist (Ed.).

Elsevier North-Holland, New York, 1977, pp. 535-540.

11. GERHART, S.L. Correctness-preserving program transformations. In Conference Record of the
2d ACM Symposium on Principles of Programming Languages, Palo Alto, Calif., Jan. 20-22, 1975,

pp. 54-66.
12. HANSEN, W. Creation of Hierarchic Text with a Computer Display. Ph.D. dissertation, Com-

puter Science Dept., Stanford Univ., Stanford, Calif., June 1971.
13. JALILI, F., AND GALLIER, J.H. Building friendly parsers. In Conference Record of the 9th Annual

ACM Symposium on Principles of Programming Languages, Albuquerque, N.M., Jan. 25-27, 1982,

pp. 196-206.
14. JAZAYERI, M., OGDEN, W.F., AND ROUNDS, W.C. The intrinsically exponential complexity of the

circularity problem for attribute grammars. Commun. ACM 18, 12 (Dec. 1975), 697-706.
15. JOHNSON, G.F., AND FISCHER, C.N. Non-syntactic attribute flow in language based editors. In

Conference Record of the 9th Annual ACM Symposium on Principles of Programming Languages,

Albuquerque, N.M., Jan. 25-27, 1982, pp. 185-195.
16. KASTENS, U., HUTT, B., AND ZIMMERMANN, E. Lecture Notes in Computer Science, vol. 141:

GAG, a Practical Compiler Generator. Springer-Verlag, New York, 1982.
17. KENNEDY, K., AND RAMANATHAN, J. A deterministic attribute grammar evaluator based on

dynamic sequencing. ACM Trans. Program. Lang. Syst. 1, 1 (July 1979), 142-160.
18. KNUTH, D.E. Semantics of context-free languages: Correction. Math. Syst. Theory 5, 1 (Mar.

1971), 95-96.
19. KNUTH, D.E. Semantics of context-free languages. Math. Syst. Theory 2, 2 (June 1968), 127-145.
20. KNUTH, D.E. The Art of Computer Programming, vol. 1: Fundamental Algorithms. Addison-

Wesley, Reading, Mass., 1968, pp. 258-268.
21. KRAFFT, D. AVID: A System for the Interactive Development of Verifiably Correct Programs.

Ph.D. dissertation, Dept. of Computer Science, Con]ell Univ., Ithaca, N.Y., Aug. 1981.
22. LEwis, P.M., ROSENKRANTZ, D.J., AND STEARNS, R.E. Attributed translations. J. Comput. Syst.

Sci. 9, 3 (Dec. 1974), 279-307.
23. LORHO, B. Semantic attributes processing in the system DELTA. In Lecture Notes in Computer

Science, vol. 47: Methods of Algorithmic Language Implementation, A. Ershov and C.H.A.

Koster (Eds.). Springer-Verlag, New York, pp. 21-40.
24. MEDINA-MORA, R. Syntax-Directed Editing: Towards Integrated Programming Environments.

Ph.D. dissertation, Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pa., Mar.

1982.
25. MEDINA-MORA, R., AND FEILER, P. An incremental programming environment. IEEE Trans.

Softw. Eng. SE-7, 5 (Sept. 1981), 472-482.
26. MEDINA-MORA, R., AND NOTEIN, D.S. ALOE users' and implementors' guide. Tech. Rep. CMU-

CS-81-145, Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pa., Nov. 1981.
27. MIKELSONS, M., AND WEGMAN, M.N. PDE1L: The PLIL program development environment;

principles of operation. Res. Rep. RC8513, IBM Thomas J. Watson Research Center, Yorktown

Heights, N.Y., Nov. 1980.
28. MILTON, D.R., KIRCHHOFF, L.W., AND ROWLAND, B.R. An ALL(l) compiler generator. In

Proceedings of the SIGPLAN Symposium on Compiler Construction, Denver, Colo., Aug. 6-10,

1979. SIGPLAN Notices (ACM) 14, 8 (Aug. 1979), 152-157.
29. MORRIS, J.M., AND SCHWARTZ, M.D. The design of a language-directed editor for block-struc-

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

Incremental Contex t -Dependent Analysis • 477

tured languages. In Proceedings of the ACM SIGPLAN SIGOA Symposium on Text Manipula-

tion, Portland, Ore., June 8-10, 1981. S I G P L A N Notices (ACM) 16, 6 (June 1981), 28-33.

30. NEEL, D., AND AMIRCHAHY, M. Semantic attributes and improvement of generated code. In
Proceedings of the ACM Annual Conference, San Diego, Calif., Nov. 1974, vol. 1, pp. 1-10.

31. R;4IHX, K.-J. Bibliography on attribute grammars. S I G P L A N Notices (ACM) 15, 3 (Mar. 1980),

35-44.

32. R~IH~,, K.-J. Dynamic allocation of space for attribute instances in multi-pass evaluators of

attribute grammars. In Proceedings of the SIGPLAN Symposium on Compiler Construction,

Denver, Colo., Aug. 6-10, 1979. S I G P L A N Notices (ACM) 14, 8 (Aug. 1979), 26-38.

33. R~,IH£, K.-J., SAARINEN, M., SOISALON-SOININEN, E., AND TIENARI, M. The compiler writing
system HLP (He]sinki Language Processor). Rep. A-1978-2, Dept. of Computer Science, Univ. of
Helsinki, Helsinki, Finland, Mar. 1978.

34. REPS, T. Generating language-based environments. Tech. Rep. 82-514 and Ph.D. dissertation,
Dept. of Computer Science, Come]] Univ., Ithaca, N.Y., Aug. 1982.

35. REPS, T. Optimal-time incremental semantic analysis for syntax-directed editors. In Conference
Record of the 9th Annual ACM Symposium on Principles of Programming Languages, Albuquer-
que, N.M., Jan. 25-27, 1982, pp. 169-176.

36. REPs, T. The Synthesizer Editor Generator: Reference manual. Dept. of Computer Science,
CorneL] Univ., Ithaca, N.Y., Sept. 1981.

37. SCHULZ, W.A. Semantic Analysis and Target Language Synthesis in a Translator. Ph.D. disser-
tation, Univ. of Colorado, Boulder, Colo., 1976.

38. TEITELBAUM, T., AND REPS, T. The Cornel] Program Synthesizer: A syntax-directed program-
ming environment. Commun. ACM 24, 9 (Sept. 1981), 563-573.

39. WILCOX, T.R., DAVIS, A.M., AND TINDALL, M.H. The design and implementation of a table
driven, interactive diagnostic programming system. Cornrnun. ACM 19, i i (Nov. 1976), 609-616.

40. WILNER, W.T. Declarative Semantic Definition As Mustrated by a Definition of Simula 67.
Ph.D. dissertation, Computer Science Dept., Stanford Univ., Stanford, Calif., June 1971.

41. YONKE, M.D. A knowledgeable, language-independent system for program construction and
modification. Res. Rep. ISI/RR-75-42, Information Sciences Institute, Univ. of Southern Califor-
nia, Los Angeles, Calif., Oct. 1975.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

