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Knowledge of a programming language's grammar allows language-based editors to enforce syntactic 
correctness at all times during development by restricting editing operations to legitimate modifica- 
tions ot ~ the program's context-free derivation tree; however, not all language constraints can be 
enforced in this way because not all features can be described by the context-free formalism. Attribute 
grammars permit context-dependent language features to be expressed in a modular, declarative 
fashion and thus are a good basis for specifying language-based editors. Such editors represent 
programs as attributed trees, Which are modified by operations such as subtree pruning and grafting. 
Incremental analysis is performed by updating attribute values after every modification. This paper 
discusses how updating can be carried out and presents several algorithms for the task, including one 
that is asymptotically optimal in time. 
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1. INTRODUCTION 

Our  conce rn  is the  design a n d  i m p l e m e n t a t i o n  of in t e rac t ive  e n v i r o n m e n t s  for 

c o m p u t e r  p r o g r a m m i n g ;  our  goal is t he  d e v e l o p m e n t  of powerfu l  language-speci f ic  

tools t h a t  suppo r t  i n c r e m e n t a l  p r o g r a m  d e v e l o p m e n t  a n d  t e s t ing  a n d  t h a t  exploi t  

s t a t e -o f - the -a r t  pe r sona l  c o m p u t i n g  hardware .  We  b e g a n  in  M a y  1978 wi th  the  

design of the  Corne l l  P r o g r a m  Syn thes i ze r  [38], a n  in t e rac t ive  l a n g u a g e - b a s e d  

p r o g r a m m i n g  e n v i r o n m e n t  wi th  syn tax -d i r ec t ed  facil i t ies to edit ,  execute,  a n d  

debug  programs.  T h e  example  set  by  t h e  Syn thes i ze r  a n d  o the r  l a n g u a g e - b a s e d  

sys tems  such  as E m i l y  [12], M E N T O R  [6, 7], P D E 1 L  [27], a n d  G a n d a l f  [25] has  

encouraged  us  to develop a tool  for gene ra t i ng  such  sys t ems  f rom l anguage  
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descriptions. Our current goal is the development of the Synthesizer Generator 

[36], a processor that enables language-based environments for different lan- 

guages to be created easily from formal specifications of the syntax, the display 

format, and the semantics. 

Simple language-based editors can easily be generated from a context-free 

grammar that covers the given language; the editor generator builds tables 

encoding the grammar in the form used by the language-independent kernel of 

the system. However, the capabilities of such a system are limited by the 

descriptive power of context-free grammars; the system would not be able to 

build an editor with facilities that  require widely separated parts of a program to 

be interrelated or constrained in ways that  vary depending on the context given 

by the rest of the program. 

Attribute grammars extend the descriptive power of context-free grammars. 

First introduced by Knuth to assign semantics to context-free languages [19], 

they have subsequently been used to describe translations [22], code optimizations 

[30], correctness-preserving transformations [11], data-flow analysis [3, 9], and 

program anomalies [2]. Furthermore, attribute grammars have been used as the 

specification language for several compiler-writing systems, including FOLDS [8], 

DELTA [23], MUG2 [10], HLP [33], APARSE [28], and GAG [16]. 1 

Because of their utility in these applications, attribute grammars appeared to 

us to be a good basis for specifying and generating language-based editors. 

Accordingly, we have implemented a prototype Synthesizer Generator and have 

used the system to build experimental editors in which attributes control pretty- 

printing and code generation and detect program anomalies, type violations, and 
errors in program proofs. 

The subject of this paper is the algorithmic foundations of the attribute- 

grammar approach to constructing language-based editors. Each editor represents 

a program as an attributed tree, and programs are modified by derivation-tree 

operations such as pruning, grafting, and deriving. A derivation-tree modification 

directly affects the values of the attributes of the modification point; incremental 

analysis is performed by updating attribute values throughout the tree in response 
to modifications. 

After each modification to a program tree, only a subset of attributes, denoted 

by AFFECTED, require new values. It should be understood that, when updating 

begins, it is not known which attributes are members of AFFECTED; AF- 

FECTED is determined as a result of the updating process itself. This paper 

presents algorithms that identify attributes in AFFECTED and recompute their 

values. One of these algorithms has cost proportional to the size of AFFECTED, 
which is asymptotically optimal in time because the work needed to update the 

tree can be no less than I AFFECTED I- Another of our algorithms, although 

suboptimal, may be preferable depending on the particular attribute grammar. 

The paper compares our algorithms to one another and contrasts them with 

alternative approaches to providing non-context-free facilities in language-based 

editors. We consider here only arbitrary noncircular attribute grammars; optimal 

algorithms for the restricted classes of L-attributed, ordered, and absolutely 

noncircular grammars are presented in [34]. 

Reference [31] is an extensive b ib l iography of the  a t t r ibu te  g r a m m a r  l i tera ture .  
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2. ATTRIBUTE GRAMMARS 

An a t t r ibute  g r a m m a r  is a context-free g r a m m a r  extended by  a t taching  a t t r ibu tes  

to the symbols  of the  g rammar .  Associated with each product ion  of the  g r a m m a r  

is a set  of  semantic equations; each equat ion defines one a t t r ibute  as the  value 

of a semantic function applied to o ther  a t t r ibu tes  in the  production.  At t r ibu tes  

are divided into two disjoint classes: synthesized at t r ibutes  and inherited attr i-  

butes. Each  semant ic  equat ion defines a value for a synthesized a t t r ibu te  of  the  

left-side nonterminal  or an inher i ted a t t r ibute  of  a right-side symbol.  For  brevi ty,  

the a rguments  of the semant ic  function defining the value of a t t r ibu te  b are 

referred to as the  a rguments  of b. 

Every  a t t r ibute  g r a m m a r  can be put  into a normal form, in which every  

semant ic  equat ion defines a value for a synthesized a t t r ibu te  of the  left-side 

nonterminal ,  or an inheri ted a t t r ibute  of  a right-side symbol,  in t e rms  of zero or 

more  inheri ted a t t r ibutes  of the  left-side nontermina l  and synthesized a t t r ibu tes  

of the right-side symbols.  

Example. T h e  ambiguous  context-free g r a m m a r  

R O O T  ---> S 

S ~ S..S 

S -*  word1 

S ---> w o r d n  

generates  sentences of one or more  words separa ted  by  single blanks  (-),  selected 

f rom a vocabulary  word1 . . . . .  word, .  Suppose sentences are to be displayed on 

a screen of bounded  width W such tha t  each line contains as m a n y  words as 

possible and no word is split across a line. Assume tha t  columns are n u m b e r e d  

one to W and tha t  no word is longer t han  W. T h e n  we m a y  wish to associate wi th  

each phrase  S a synthesized a t t r ibu te  S.last designating the column on the display 

screen of the last  charac te r  of tha t  phrase.  To  define this a t t r ibute ,  we mus t  also 

know the column of the  last  charac te r  of  the word immedia te ly  preceding phrase  

S, which we can represent  in inher i ted a t t r ibu ted  S.previous. T h e  rules of  the  

normal - form g r a m m a r  defining these a t t r ibutes  are 

ROOT--*  S 

S .p rev ious  -- - 1  

S,  ~ 82uS3 
S2.previous = S, .previous 

S3.previous = S2.1ast 

S1.1ast = S3.1ast 

S--~ wordl 

S.last = if  S.previous + 1 + length(word,) ___ W 

then S.previous + I + length(wordl) 

e l se  length(word1) 

etc., where  subscripts  distinguish among  mult iple  occurrences  of the same non- 

terminal  in the second production.  
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A derivation-tree node labeled X defines a set of attribute instances correspond- 

ing to the attributes of X. A semantic tree is a derivation tree together with an 

assignment of either a value or the special token nul l  to each attribute instance 

of the tree. We assume that nul l  is a value outside the domain of every attribute. 

Functional dependencies among attributes in a production p or a semantic tree 

T can be represented by a dependency graph, denoted D(p) or D(T) ,  respec- 

tively, which is a directed graph defined as follows: 

(1) For each attribute b, the graph contains a vertex b'. 

(2) If attribute b is an argument of attribute c, the graph contains a directed edge 

(b', c'). 

An edge from b' to c' has this meaning: b' is used to determine the value of c'. 

Although closely related, an attribute instance b in T and the vertex b' in D(T) 

are different objects. When this distinction is not made explicitly clear, the 

intended meaning should be clear from the context. The notation TreeNode (b') 

denotes the node of T with the attribute instance b corresponding to b'. Vertices 

of D(T) with no incoming edges correspond to attribute instances defined by 

zeroary semantic functions, that  is, constants. 

A semantic tree is fully attributed if each of its attribute instances is available, 
that is, non-null. When all the arguments of an unavailable attribute instance 

are available, we say it is ready for evaluation. 

Example. Continuing our formatting example, fix the width of the display 

screen at W = 13 and consider the displayed sentence 

1234567890123 

Candy is 

dandy buC 

liquor is 

quicker 

One of the possible derivation trees for this sentence is shown fully attributed 

and together with its dependency graph in Figure 1. The semantic tree consists 

of the instances of nonterminals ROOT and S, together with their respective 

attributes shown in adjacent boxes. Nonterminals of the same production are 

connected by dashed lines. The dependency graph consists of the attribute 

instances, shown in boxes, linked by their functional dependencies, shown as solid 

arrows. The constant -1 ,  strictly speaking, is neither a part of the semantic tree 

nor a part of the dependency graph. 

To further characterize semantic trees we introduce the notion of consistency. 

An attribute instance b is consistent if 

(1} the arguments of b are available and 

(2) the value of b is equal to its semantic function applied to the arguments. 

In all other cases, we say b is inconsistent. We extend the definition of consistency 

to cover related concepts in semantic trees and dependency graphs; a semantic 

tree or a dependency graph is consistent if all of its attribute instances are 
consistent. 
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liquor is quicker 

Fig. 1. An attr ibuted tree. 

An attribute grammar is noncircular when the dependency graph of every 

possible derivation tree is acyclic. Noncircularity is decidable [18] and, though of 

inherently exponential complexity [14], is feasible to test in practice. An attribute 

grammar is well formed when the terminal symbols of the grammar have no 

synthesized attributes, the root symbol of the grammar has no inherited attri- 

butes, and each production includes a semantic equation for all the synthesized 

attributes of the left-side nonterminal and all the inherited attributes of the right- 

side symbols. This paper deals only with attribute grammars that  are well formed 

and noncircular; unless stated otherwise, we also assume that the grammar is in 

normal form. 

3. A SIMPLE MODEL OF EDITING 

This section opens the discussion of how attribute grammars can be used in a 

system for generating language-based editors. We are initially concerned with the 

simple model of editing described below [5]; later, we extend this basic model. 

The basic idea is for each editor to represent a file as an attributed tree of the 

attribute grammar. When editing operations modify the tree, analysis is carried 

out by reestablishing consistent attribute values throughout the tree. Any display 

formats and translation semantics that  are defined in terms of attributes are 

thereby updated. Attribute values indicating violation of context-sensitive lan- 

guage constraints may be used to annotate the program display (if only error 

detection is desired) or to initiate undoing the structural modification (if error 

prevention is desired). 

Creating a file using a language-based editor entails growing a semantic tree. 

During development, a file tree is a partial derivation tree; that  is, it contains 

unexpanded nonterminals. This is potentially a problem because, at an unex- 

panded nonterminal X, we have no means for giving values to the synthesized 
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attributes of X or to any of their successors. This conflicts with our desire to 

maintain values for every at tr ibute of the tree. 

To avoid this problem, we require tha t  the grammar  include a completing 

production X ---) ± for each nonterminal  symbol X. The  symbol ± denotes 

"unexpanded," and the semantic equations of the completing product ion define 

values for the synthesized at tr ibutes of X. By convention, an occurrence of an 

unexpanded nonterminal  is considered to have derived ±. By this device, all 

partial derivation trees (from the user 's viewpoint) are considered complete 

derivation trees (from the editor 's  viewpoint}. Thus,  as a program is derived, its 

tree may be fully attributed. 

Modifying a program entails restructuring a derivation tree by pruning and 

grafting subtrees. Let  T be a semantic tree and U be a subtree of T with root  

node r labeled X. U is pruned from T by removing the subtree rooted at r. Let  U '  

be a semantic tree with root  r' also labeled X. U '  is grafted onto T at leaf r 

labeled X by assigning the synthesized at tr ibute values of r to the synthesized 

attr ibute instances of r' and then replacing r by  U' in T. 2 We define subtree 

replacement of U by U' as the pruning of U followed by the grafting of U' in its 

place. 

At each stage during editing, the editing cursor is positioned at an interior 

node of the semantic tree. An editing session is viewed as a succession of 

replacement operations and cursor motions starting from the complete, fully 

at tr ibuted semantic tree 

R Q O T  
I 
I 
I 
I 
I 
I 

± 

with the cursor positioned at ROOT. Each  insertion at an unexpanded nonter-  

minal labeled X is viewed as the replacement  of an instance of the completing 

production of X by a freestanding tree U' with root  X. For  example, when a 

derivation is made according to the product ion X --* A B C where A and C are 

nonterminals, U' is 

X 

A B C  
t I 
f I 
I t 

± ± 

Each deletion is viewed as the replacement  of a subtree U (with root  X) by an 

instance of the completing product ion of X. 

e The decision to save the synthesized attributes of r and the inherited attributes of r '  may at first 
seem counterintuitive. The choice is somewhat arbitrary since, no matter which attributes are saved, 
inconsistencies may be introduced that must subsequently be eliminated. Our definition has the 
advantage of simplifying the presentation of our algorithms, as is explained in Section 4.1. More 
refined selection criteria, for example, minimizing the number of initially inconsistent attributes, are 
possible optimizations that do not influence the asymptotic worst case running times of our algorithms. 

A C M  T r a n s a c t i o n s  o n  P r o g r a m m i n g  L a n g u a g e s  a n d  S y s t e m s ,  Vol .  5, N o .  3, J u l y  1983. 
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Because modifications may be made at any location in the program, the system 

must deal with freestanding trees derived from any of the nonterminals of the 

grammar, not just ones derived from the root symbol. For example, a subtree 

removed at X becomes a freestanding tree with root X. Such trees are retained so 

that they can be inserted into the program elsewhere. 

The task of an incremental attribute evaluator is to produce a consistent, fully 

attributed tree after each subtree replacement. Of course, any nonincremental 

attribute evaluator could be applied to completely reevaluate the tree, but our 

goal is to minimize work by confining the scope of reevaluation required after 

each subtree replacement. The incremental viewpoint, and consequent concern 

with how to update attributes, sets our work apart from earlier work on attribute 

evaluation. 

4. NAIVE INCREMENTAL ATTRIBUTE EVALUATORS 

In this section, two simple approaches to incremental attribute evaluation are 

presented: change propagation and nullification/reevaluation. The deficiencies of 

the two naive algorithms are discussed and motivate the development, in Section 

5, of an optimal-time change propagation algorithm. Aspects of the nullification/ 

reevaluation approach reappear later when the basic model of editing is extended 

to include demand attributes. 

4.1 Change Propagation 

One approach to incremental attribute evaluation, called change propagation, 
involves propagating changes of attribute values through a fully attributed tree. 

Throughout the process, each attribute is available, although possibly inconsis- 

tent. When the value of an attribute instance is changed to make it consistent, its 

successors may become inconsistent; however, if reevaluating an attribute in- 

stance yields a value equal to its old value, changes need not be propagated 

further. Thus, change propagation can be accomplished by following attribute 

dependencies and maintaining a work-list of possibly inconsistent attributes that 

must be reevaluated because one of their arguments has changed value. 

The algorithm for subtree replacement given as procedure REPLACE of 

Algorithm 1 uses the change propagation procedure PROPAGATE to reestablish 

consistent attribute values. REPLACE assumes that  the freestanding tree U' to 

be grafted into T at r is consistent and fully attributed. Note, however, that in 

the freestanding tree U' the arguments of the inherited attributes of its root are 

not in U'. Therefore, we extend the definition of consistent to allow inherited 

attributes of the root of a freestanding tree to have arbitrary values. In general, 

the tree resulting from the grafting of U' will not be consistent. However, by 

virtue of our definition of grafting and the assumption that  the grammar is in 

normal form, the initial inconsistencies are confined to the attributes of the 

modification point r. 3 

Using change propagation as part of subtree replacement makes certain editing 

operations inexpensive, such as inserting a subtree at a location where the 

attributes are identical to the attributes of the root of the subtree. Unfortunately, 

3 In Section 5.5, we show how the normal-form assumption can easily be dropped and the definition 

of subtree replacement generalized. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983. 



456 T. Reps, T. Teitelbaum, and A. Demers 

R E P L A C E ( T ,  r, U ' ) :  

let  

T = a consistent, fully attributed semantic tree 

r = a node of T 

U '  = a consistent, ~ l l y  attributed semantic tree in which the syntactic label 

of the root matches the syntactic label of r 

in 

prune the subtree at r from T 

graft U' onto T at r 

P R O P A G A T E ( T ,  r )  

P R O P A G A T E ( T ,  r): 

le t  

T = a fully attributed semantic tree 

r = a nonterminal node of T containing all inconsistent attributes of T 

S -- a set of attribute instances 

b = an attribute instance 

Oldvalue, Newvalue = attribute values 

in 

S : = the set of inconsistent attribute instances of r 

whi l e  S ~ 0 do 

Select and remove a vertex b from S 

Oldvalue :-- value of b 

evaluate b 

Newvalue := value of b 

i f  Oldvalue ~ Newvalue then  Insert all successors of b into S 

od 

Algorithm 1. Subtree replacement using naive change propagation. 

the behavior of change propagation is sensitive to the order in which attributes 

are chosen for evaluation, and, if attribute dependencies are followed blindly, as 

in Algorithm 1, its behavior can be nonlinear in the number of attributes 

reevaluated. This sort of nonlinear behavior occurs when updating a tree that 

has a dependency graph in which attributes are connected by more than one 

path. In the appendix, we give a simple attribute grammar for which Algorithm 

1 requires quadratic time if PROPAGATE manipulates its work-list S in FIFO 

(first in, first out) order, and exponential time if it manipulates S in LIFO (last in, 

first out) order. 

4.2 Nullification/Reevaluation 

The nonlinear behavior of subtree replacement that can result from using the 

change propagation algorithm described above can be avoided by using an 

alternative method for subtree replacement called nullification~reevaluation, 
given below as Algorithm 2. After U has been replaced by U' in T, the procedure 

NULLIFY is used to set all attributes of the modification point to the special 

value nul l  and then to propagate nul l  to all attributes that depend on them. 

Then the procedure EVALUATE is used to propagate consistent new values 

throughout the tree. Both NULLIFY and EVALUATE are essentially traversals 

of the portion of the DAG D(T)  reachable from r. As a "mark" indicating that an 

attribute has already been visited in the traversal, NULLIFY uses the presence 

of a nul l  value whereas EVALUATE uses the presence of a non-nul l  value. Both 

NULLIFY and EVALUATE have the property that they only consider an 
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REPLACE(T, r, U'):  

le t  

T, U'  = consistent, fully at tr ibuted semantic trees 

r = a node of T 

U = the subtree of T rooted at r 

in  

prune U from T 

graft U'  onto T at r 

NULLIFY(T,  {attributes of r} ) 

EVALUATE(T,  {attributes of r that  are ready for evaluation} ) 

NULLIFY(T,  S): 

le t  

T = a consistent, hilly at tr ibuted semantic tree 

S = a set of attr ibute instances 

b, c = attr ibute instances 

in  

wh i l e  S ~ ~ do  

Select and remove an attribute instance b from S 

nullify b 

fo r  each c that  is a successor of b do 

i f  c is available t h e n  Insert  c into S 

od 

od 

EVALUATE(T,  S): 

le t  

T = a partially evaluated semantic tree in which all successors of unavailable 

attributes are unavailable 

S = the set of attribute instances of T that  are ready for evaluation 

b, c = attribute instances 

in  

wh i l e  S ~ ~ do  

Select and remove a vertex b from S 

evaluate b 

f o r  each c that  is a successor of b do 

i f  c is ready for evaluation t h e n  Insert  c into S 

od  

od  

Algorithm 2. Subtree replacement using nullification/reevaluation. 

attribute once, so the total work done by Algorithm 2 is linear in the number of 
attributes considered. 

4.3 Suboptimal Behavior 

A derivation-tree modification directly affects the values of the attributes at the 

point of modification. In our simple model of editing, attribute values must be 

updated in response to each modification to leave the semantic tree consistent 

and fully attributed. Out of the entire collection of attributes in the tree, only 

certain ones require new values. To be more precise, let T'  denote the inconsistent 

tree resulting from a subtree replacement, and let T" denote T' after it has been 

updated. We define A F F E C T E D  to be the set of attribute instances that  have 
different values in the two trees. Because O([AFFECTED[) is the minimal 

amount of work required to update T '  after subtree replacement, we say that  an 
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incremental evaluator is optimal-time if it runs in O( I AFFECTED I ) steps, where 

semantic function evaluations are counted as unit steps. It is important to bear 

in mind that AFFECTED is not known a priori and can only be inferred from the 

updating process itself. 

The nullification/reevaluation evaluator given as Algorithm 2 is not optimal 

because the size of the set of all attributes that  depend on attributes of the 

modification point is not related to the size of AFFECTED in any fixed way. 

Consequently, the evaluator may do extensive propagations even when AF- 

FECTED is a very small set. 

The naive change propagation evaluator given as Algorithm 1 is very sensitive 

to the order in which attributes are selected as candidates for new values. With 

the right selections, a tree is updated optimally; however, there is no guarantee 

that the right selections will be made; and, when attributes are selected in the 

wrong order, not only is the algorithm suboptimal, but the time it uses can be 

nonlinear in the number of attributes considered. 

As a heuristic in developing an optimal-time change propagation algorithm, we 

note the following. If, in the course of propagating new values, an attribute is 

ever (temporarily) reassigned a value other than its correct final value, spurious 

changes are apt to propagate arbitrarily far beyond the boundaries of AF- 

FECTED, leading to suboptimal running time. To avoid this possibility, a change 

propagator should schedule attribute reevaluations such that  any new value 

computed is necessarily the correct final value. That  is, an attribute should not 

be reevaluated until all of its arguments are known to have their correct final 

values. This suggests that what is needed is an enumeration of AFFECTED in 
topological order with respect to the dependency graph. In the case of nonincre- 

mental evaluation, where all attributes of the tree T must be computed, Knuth's 

topological sorting algorithm [20] has been applied to the dependency graph 

D(T) to produce evaluators that  run in time O(ID(T)I) [17, 22]. In our case of 

incremental evaluation, what is needed is an algorithm that  will generate AF- 

FECTED in topological order in time O( I AFFECTED I ). 

5. OPTIMAL-TIME CHANGE PROPAGATION 

This section describes a second version of the change propagation algorithm 

PROPAGATE that identifies attributes in AFFECTED and computes their 

new, final values in topological order with respect to the dependency graph D(T) 
[35]. Both the total number of semantic function applications and the total cost 

of bookkeeping operations are proportional to the size of AFFECTED; conse- 

quently, this PROPAGATE is asymptotically optimal in time. 

The optimal-time version of PROPAGATE can be understood as a generaliza- 

tion of Knuth's topological sorting algorithm. PROPAGATE (like topological 

sorting) keeps a work-fist of attributes that  are ready for reevaluation {enumer- 

ation); an attribute is placed on the work-list when its in-degree is reduced to 

zero in a scheduling graph whose edges reflect dependencies among attributes 

that have not yet been reevaluated (enumerated). Whereas in topological sorting 

the vertices of the scheduling graph are known a priori, in PROPAGATE the set 

of vertices of the scheduling graph is generated dynamically at the same time as 

it is being enumerated. What makes PROPAGATE asymptotically optimal is 
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tha t  the scheduling graph never  grows larger than  O( ]AFFECTEDI) ;  on each 

step, the size of the scheduling graph is proport ional  to the number  of a t t r ibutes  

tha t  have received new values since updating began. Vertices of the initial 

scheduling graph represent  just  the at t r ibutes  of the point  of subtree replacement .  

Thereaf ter ,  the scheduling graph expands only when changes propagate  to 

at t r ibutes tha t  are arguments  of a t t r ibutes  outside the current  graph. 

5.1 Getting Started 

Let  us suppose a subtree replacement  takes place at  node r. By virtue of the way 

at t r ibute values are exchanged during subtree replacement,  all inconsistent  

at t r ibutes are confined to r when change propagat ion is initiated. P R O P A G A T E  

would not  make any progress reevaluating at t r ibutes  of o ther  nodes, so it should 

start  off by reevaluating an a t t r ibute  of r. Fur thermore ,  we wish to choose an 

at t r ibute of r whose arguments  are guaranteed not  to change, thereby  assuring 

tha t  the new value computed is the correct  final value. 

To  make the right selection, it is necessary to know about  transit ive dependen- 

cies among the at t r ibutes  of r. If b and c are at t r ibutes  of r, and c transit ively 

depends on b, then  b must  be reevaluated before c. These  relationships can be 

represented by a directed graph whose vertices are the at t r ibutes  of r and whose 

edges represent  transit ive dependencies among the attributes.  

To  discuss this idea more precisely, we make the following definitions: 

(1) Given directed graphs A = {VA, EA) and B = (VB, EB) tha t  may  or may  not  

be disjoint, the union of A and B is 

A U B = (VA U VB, EA U EB). 

{2} The  deletion of B from A is 

A - B = {VA, EA -- Es) .  

Note that  deletion deletes only edges. 

(3} Given a directed graph A = ( V, E) and a set of vertices V'  C_ V, the projection 

of A onto V'  is 

A / V '  = (V', E ' )  

where E '  = ((v, w) I v, w E V'  and there  exists a pa th  from v to w in A tha t  

does not  contain any elements of V'}. 

Transi t ive dependencies among at t r ibutes  of a given nonterminal  instance s 

are represented locally by subordinate and superior characteristic graphs.  We 

let each node s in a semantic t ree be labeled with its subordinate  characterist ic 

graph, denoted s.C, its superior characterist ic graph, denoted  s.C, or both. Th e  

subordinate characteristic graph at  node s is the project ion of the dependencies  

of the subtree rooted at  s onto the at t r ibutes  of s. To  form the superior 

characteristic graph at  node s, we imagine tha t  the subtree rooted at  s has been 

pruned from the semantic tree and project  the dependency graph of the remaining 

tree onto the at t r ibutes  of s. Note  tha t  the vertices of the characterist ic graphs at  

s correspond to the at t r ibutes  of s. 
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chocolates are dandy 

Fig .  2. A f r e e s t a n d i n g  tree .  

Formally, let s be a node in semantic tree T, let the subtree rooted at s be 

denoted Ts, and let Vs denote the vertices of D ( T )  that  correspond to the 

attributes of s. The subordinate and superior characteristic graphs at s are de- 
fined by 

s.C =- D(Ts)/V~; 

s.C =- (D(T)  - D(T , ) ) /Vs .  

Knowing the subordinate and superior characteristic graphs at the point of 

subtree replacement r allows us to construct the graph r.C U r.C. An edge of this 

graph represents a transitive dependence between two attributes of r. An attribute 

in this graph that has in-edges depends on one of the other attributes of r; 

consequently, it is not a suitable first choice for reevaluation. An attribute with 
in-degree zero does not depend on any of the other attributes of r and therefore 

is a suitable first choice. There is at least one such attribute because we are 

working with noncircular attribute grammars. 

Example .  Continuing our example, suppose the subtree "candy is dandy" of 
Figure I is replaced by the freestanding tree shown in Figure 2, which apparently 

originated in a context in which the previous word ended in column 2. Then, after 

grafting but before change propagation, the attribute values at the point of 

subtree replacement r are r.previous = 2 (from the inherited attribute of the root 

of the replaced subtree) and r.last = 5 (from the synthesized attribute of the root 

of the replacing subtree). At r, the subordinate characteristic graph r.C is 

[ ] ~ ] ,  

reflecting the transitive dependence of r.last on r.previous. The superior charac- 

teristic graph r.C is 

[ ] [ ] ,  

the absence of edges reflecting the fact that  r.previous does not at all depend on 

r.last. The initial scheduling graph r.C U r.C is thus 

[i!] fi]; 

consequently, change propagation starts by reevaluation of the inconsistent 
attribute value r.previous -- 2. 
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5.2 The Updating Process 

The previous section argues that  the graph r.C U r.C must be constructed in 

order to choose the first attribute for reevaluation. In general, this graph repre- 

sents a partial order that PROPAGATE must respect t h r o u g h o u t  the updating 

process. As updating progresses it is necessary to know more than just the 

dependency relationships among the attributes of r. When the value of an 

attribute instance is changed, all attributes that  use it as an argument may 

become inconsistent; it is necessary to take into account the dependencies that  
involve these attributes. 

To schedule reevaluations, PROPAGATE employs a graph M, called the 

model ,  and a set S, used as a work-fist. M is a generalization of the graph 

discussed in the previous section, which represents dependencies among the 

attributes of a connected region of the tree, rather than just dependencies among 

the attributes of a single node. A vertex of M corresponds to an attribute; an edge 

of M represents a functional dependence, which may be either a direct dependence 
or a transitive dependence. In particular, M contains 

(1) edges representing direct dependencies in the modeled region of the tree, 

(2) edges of the superior characteristic graph of the apex of the region, and 

(3) edges of the subordinate characteristic graphs of the frontier of the region. 

Characteristic-graph edges represent transitive dependencies transmitted entirely 
outside the modeled region of the tree. 

M is initially r.C U r.C, and S is initially the set of vertices of M with in-degree 

zero. As long as M covers the affected region of the tree, PROPAGATE does a 

topological enumeration of M. As each attribute b is enumerated, it is reevaluated, 

and the old value and the new value are compared; if they differ, and if b is an 

argument of an attribute instance that is outside the current model M, then M is 

expanded by one production instance so that it includes the successors of b. 
To describe an expansion precisely, we define the functions Expanded- 

Subordinate and ExpandedSuperior, which produce graphs that are refinements 

of a node's characteristic graphs. If node So is the parent node in production 

instance p: (So, S l  . . . . .  Sk), we define 

ExpandedSubordinate(so) - D ( p )  U s l .C  U . . .  U sk.C. 

For any other node si in the production instance, we define 

ExpandedSuperior(sj) 

- D ( p )  O so.C U s l .C U . .  • U s j - i .C W sj+~.C U . .  • U sk.C. 

A model is expanded by the procedure EXPAND, given in Figure 3. In addition 

to deleting a characteristic graph from the model and augmenting the model with 

the corresponding expanded characteristic graph, an expansion also involves 
making insertions into the work-list S. At the time an attribute is brought into 

the model, if its in-degree in the model is zero, it is inserted into the work-list 
because it is ready to be reevaluated. Because an expansion is limited to a single 

production, it has a bounded cost for a given grammar. 

PROPAGATE, stated below as Algorithm 3, interleaves topological enumera- 
tion and attribute reevaluation with calls to EXPAND. When PROPAGATE 
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EXPAND(M, b, S): 

le t  

M = a directed graph 

b, c = attr ibute instances 

S = a set of attr ibute instances 

in  

i f  there exists c, a successor of b in D(T) that  is not  in M 

and TreeNode(c) is a child of TreeNode (b) t h e n  

M := ( M -  TreeNode(b).C) U ExpandedSubordinate(TreeNode(b))  

Insert  into S all vertices of ExpandedSubordinate(TreeNode(b)  ) whose in- 

degree in M is 0 

i f  there exists c, a successor of b in D (T) that  is not in M 

a n d  TreeNode(c) is the parent  of TreeNode(b) t h e n  

M := (M - TreeNode(b).C) U ExpandedSuperior(TreeNode(b))  

Insert  into S all vertices of ExpandedSuperior(TreeNode(b))  whose in- 

degree in M is 0 

Fig. 3. Expanding a model. 

PROPAGATE (T, r): 

le t  

T = a fully attr ibuted semantic tree 

r = a nonterminal node of T containing any inconsistent at tr ibutes of T 

S = a set of attr ibute instances 

M = a directed graph 

b, c = attribute instances 

Oldvalue, Newvalue = attr ibute values 

in  

M : = r . C U r . C  

S := the set of vertices of M with in-degree 0 in M 

w h i l e  S ~ O do 

Select and remove a vertex b from S 

Oldvalue := value of b 

evaluate b 

Newvalue := value of b 

i f  Oldvalue ~ Newvalue and M does not  contain all the successors of 

b in D(T) t h e n  EXPAND(M,  b, S) 

fo r  each c that  is a successor of b in M do 

Remove edge (b, c) from M 

if  in-degreeM(c) = 0 t h e n  Insert  c into S 

od 

od 

Algorithm 3. Optimal-time change propagation. 

terminates, M consists of all attributes of all production instances in which an 

attribute has changed value. All dependency-graph edges of this region have been 

inserted into M by the expansion process and have been removed from M by the 
topological enumeration process. 

The number of vertices and edges introduced into M by an expansion is 

bounded by the size of the largest production in the grammar. M is only enlarged 

when we find a new member of AFFECTED; consequently, its maximum size is 
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chocolates are dandy but liquor is quicker 

Fig. 4. P r o g r e s s i o n  of  mode l s .  

O(IAFFECTEDI). The cost of considering a vertex is one semantic-function 

application and a constant amount of bookkeeping work. The total number of 

semantic-function applications and the total cost of bookkeeping operations in 

PROPAGATE are O( I AFFECTED I); thus, PROPAGATE is asymptotically 

optimal in time. 

Characteristic-graph edges, representing transitive dependencies in D(T), are 

crucial to the optimal behavior of PROPAGATE. The presence of characteristic- 

graph edges ensures that an attribute is never updated until all its ancestors are 
consistent; consequently, an attribute can never be assigned a temporarily incor- 

rect value during updating. Removing a characteristic-graph edge allows PROP- 

AGATE to skip, in unit time, arbitrarily large sections of D(T) in which values 

do not change. 

Example. As a result of replacing "candy is dandy" in Figure 1 with "chocolates 
are dandy" from Figure 2, PROPAGATE updates attribute values in the deriva- 

tion tree to reflect the desired change in display layout: 

1234567890123 

candy is 

dandy but 

liquor is 

q u i c k e r  

1234567890123 

chocolates 

are dandy but 

Ziquor is 

q u i c k e r  

The progression of six models generated in the course of change propagation is 

indicated in Figure 4. Attributes in AFFECTED appear as double boxes, with 

original value above final value. Every attribute that  is eventually included in the 

model is reevaluated. Note that the model never expands to include the attributes 

of either "is" or "quicker" because, although the attribute S.previous of the 
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Fig. 5. The first four models. 

phrase "is quicker" is recomputed,  it does not  change value. In Figure 5, detailed 

snapshots of the first four models just  after expansion are shown. 4 

5.3 Correcting a Shortcoming 

As presented, P R O P A G A T E  has a shortcoming: an at t r ibute instance tha t  

becomes part  of M eventually gets evaluated, even if none of its arguments  

receives a new value. For example, Figure 4 contains nine at t r ibute instances 

(marked with *'s} tha t  need never have been reevaluated. Furthermore,  this can 

happen to an attr ibute instance not  just  once, but  up to three times. For  example, 

note in Figure 5 tha t  the appearance in model  M4 of an edge to the at tr ibute 

r.previous will result in its being reevaluated yet  again, even though it clearly 

cannot  get a new value from the second reevaluation. Since, in general, evalua- 

tions may  be expensive, this is undesirable behavior. Note  tha t  this is not  a 

counterexample to the optimal time bound; in general, at tr ibutes at  the cursor 

location can be introduced into M (and evaluated) at  most  three times, while all 

other at tr ibutes can be introduced into M at most  twice. 

Such needless evaluations can be avoided by using an additional set, named  

NeedToBeEvaluated ,  as follows: 

(1) NeedToBeEvalua ted  is initialized to contain all the vertices of the initial 

model; 

4 Our sample attribute grammar serves to illustrate the behavior of the algorithm for arbitrary 
noncircular attribute grammars, even though it is an instance of the restricted class of L-attributed 
grammars, for which it is sufficient to reevaluate attributes during a left-to-right traversal starting at 
node r, descending no further when attributes no longer change value, and halting upon finding an 
ancestor of r whose attributes do not change value. 
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PROPAGATE(T, r): 

let 

T = a fully attributed semantic tree prepared for propagation at r 

r = a nonterminal node of T containing any inconsistent attributes of T 

S, NeedToBeEvaluated = sets of attribute instances 

M = a directed graph 

b, c = attribute instances 

changed -- Boolean 

Oldvalue, Newvalue = attribute values 

in  

M := r.C U r.C' 

S := the set of vertices of M with in-degree 0 in M 

NeedToBeEvaluated := the set of vertices of M 

wh i l e  S ~ O do 

Select and remove a vertex b from S 

changed :-- fa l se  

i f  b E NeedToBeEvaluated t h e n  

Remove b from NeedToBeEvaluated 

Oldvalue := value of b 

evaluate b 

Newvalue := value of b 

i f  Oldvalue ~ Newvalue t h e n  

changed := t r u e  

i f M  does not  contain all the successors of b in D(T)  t h e n  

EXPAND(M,  b, S) 

fo r  each c that  is a successor of b in M do 

Remove edge (b, c) from M 

i f  in-degreeM(c) = 0 t h e n  Insert  c into S 

if  changed = t r u e  t h e n  Insert  c into NeedToBeEvaluated 

od 

od 

Algorithm 4. Improved optimal-time change propagation. 

(2) when the value of an attribute instance b is changed, every successor of b is 

inserted into NeedToBeEvaluated; 

(3) when b is removed from S, it is, reevaluated only if b E NeedToBeEvaluated. 

These ideas are incorporated into the version of PROPAGATE presented as 

Algorithm 4. 

5.4 Characteristic Graphs, Cursor Motion, and Subtree Replacement 

Until now, we have tacitly assumed that both subordinate and superior charac- 

teristic graphs were maintained at each node of the tree. However, a subtree 

replacement can radically alter transitive dependencies among attributes. In fact, 

because a subtree replacement at node r can alter characteristic graphs arbitrarily 

far away from r, maintaining every characteristic graph in the tree would make 

subtree replacements too expensive. 

Fortunately, PROPAGATE does not need every characteristic graph. After a 

subtree replacement at node r, PROPAGATE never needs subordinate charac- 

teristic graphs at any of the nodes on the path from r to the root of the tree, and 

it never needs superior characteristic graphs anywhere else. PROPAGATE needs 
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~ ~  S.C available 

/ to) ~ both r.C and r.C available 

Fig. 6. T prepared for propagation at r. 

both characteristic graphs only at r. We say that  T is prepared for propagation 

at r when, as in Figure 6, 

(1) r is labeled with both its subordinate characteristic graph, r.C, and its superior 

characteristic graph, r.C; 

(2) each node s on the path from r to root(T) is labeled with its superior 

characteristic graph, s.C; and 
(3) each node t not on the path from r to root(T) is labeled with its subordinate 

characteristic graph, t.C. 

The editor maintains the invariant that  the semantic tree is prepared for 

propagation at the position of the editing cursor. This invariant must be reestab- 
lished after each movement of the editing cursor to a new location. Every cursor 

motion can be defined as a sequence of the operations AscendToParent and 

DescendToChild(j). Given that  the editing cursor is positioned at node r of T 

and that T is prepared for propagation at r, AscendToParent has the side effect 

parent(r).C := ExpandedSubordinate(parent(r))/(attributes of parent(r)}. 

DescendToChild(j) has the side effect 

rj.C := ExpandedSuperior (rj) / (attributes of r i } 

where rj denotes the j t h  child of r. For a given grammar, each of these updates 

has unit cost. A movement of the editing cursor over a path of length m in the 

semantic tree costs O(m). 

The invariant that  the tree is prepared for propagation at the position of the 

editing cursor must also be reestablished after a subtree replacement before 

PROPAGATE is called. By retention of subordinate characteristic graphs when 

a subtree is pruned, a freestanding tree is prepared for propagation at its root. 

After a subtree U at node r is replaced by a freestanding tree U' with root s, 

setting the superior characteristic graph at the cursor to be r.C and the subordi- 

nate characteristic graph to be s.C reestablishes the invariant. 

5.5 Operations Other Than Subtree Replacement 

Existing language-based editors are either structure editors, such as Emily [12], 

MENTOR [7], and the Gandalf editor [26], text editors that  employ an incre- 
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mental parser, such as the CAPS editor [39] and the P D E I L  editor [27], or hybrid 
editors that combine both techniques, such as the editor of the Cornell Program 

Synthesizer [38]. 

Nearly all these editors represent programs as derivation trees of the language's 

abstract syntax, and the core of each system is a set of primitives for manipulating 

abstract-syntax trees. Exactly which operations are included among the primitives 

depends to a large extent on the system's user interface. In a structure editor, 

editing consists of a sequence of deriving, pruning, and grafting operations 

interleaved with cursor movements that shift the focus of attention in the tree. 

An editor employing an incremental parser uses additional primitives, such as a 

split operation that breaks up a tree into smaller trees and a join operation that  

assembles smaller trees into a larger tree [13, 29]. 

So far, the only operations we have discussed are subtree replacement and 

cursor movement. Insertion, deletion, and derivation have been treated as special 

cases of subtree replacement; thus, the algorithms presented earlier are suitable 

for language-based editors with a structural interface. 

However, not all editing operations in language-based editors involve a single 

subtree replacement. In an editor that  employs an incremental parser, a single 

program modification may involve a complex restructuring of the entire tree. In 

an editor that supports transformations, operations alter nodes in the interior of 

a tree, rather than a whole subtree. Although all editing operations in language- 

based editors can be defined as a sequence of subtree replacements and cursor 

motions, REPLACE is not suitable for such compositions of operations, because 

REPLACE updates the tree with each subtree replacement. Instead, updating of 

attribute values should be carried out only after the whole sequence of structural 

modifications has been completed. 

As presented above, PROPAGATE cannot be used to update a tree after an 

arbitrary modification to a program tree, because until now we have assumed 

that all inconsistencies are initially confined to the attributes of a single tree- 

node. This restriction can be relaxed by making a simple change to PROPAGATE. 

Let R denote the smallest connected region of T that includes all nodes affected 

by a restructuring; all initially inconsistent attributes of T are attributes of this 

region. Instead of passing PROPAGATE a single node r, we pass R; instead of 

initializing the model M to r.C U r.C, PROPAGATE initializes M to 

D(R) U root(R).C 

U subordinate characteristic graphs of all 

nodes on the frontier of R. 

The set NeedToBeEvaluated is initialized to contain all attributes of R; the work- 

list S is initialized to all vertices of M with in-degree zero. By starting off in this 

way, with M containing all the inconsistent attributes, PROPAGATE will be able 

to update the tree correctly. 

Similarly, if the normal-form restriction is relaxed, then inconsistencies are not 

~estricted to the attributes of r but may occur in attributes of the parent, siblings, 

and children of r as well. By passing PROPAGATE the appropriate R, we may 

drop the normal-form restriction that has been assumed throughout this paper. 
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6. EFFICIENCY CONSIDERATIONS 

The discussion above has ignored questions of efficiency other than the asymp- 

totic behavior. This section discusses three ways by which performance can be 

improved, two of which are aimed at reducing the overhead of the attribute- 

updating mechanism, and one that  is aimed at reducing the overhead of building 

and storing attribute values. 

6.10ptimizations for Attributes Defined by Identity Functions 

When change propagation is employed to update a semantic tree, the new 

attribute value computed by each semantic-function application is compared to 

the old attribute value to see if changes need to be propagated further. Because 

testing equality of attribute values may be an expensive operation, it will be 

advantageous if we can avoid performing some of the equality tests. 

Such an optimization is possible for attributes defined by copy rules, that  is, 

defined by identity functions. This is an important optimization, because in 

practice a large proportion of semantic functions are identity functions [40]. 

The basic idea is that, if the first attribute instance in a chain of copy rules 

changes value, then the rest of the elements in the chain must also change value; 

thus it is wasteful to test the rest of the elements of the chain to see if they 

change value. It is important to note, however, that  this is only true when the old 

values in the chain are consistent (i.e., identical); change propagation may 

terminate without reaching the end of the chain when some of the old values are 
inconsistent. However, the only possible inconsistent instances of attributes 

defined by copy rules are attributes of nonterminals in R, the region of the tree 
that was modified. 5 Thus, it is necessary to treat each attribute of all nonterminals 

in R that are defined by copy rules as if it were not part of any chain, and to test 

its old value and its new value for equality whenever it is recomputed. 

A further optimization is also possible for chains of copy rules. During change 

propagation, every time the model expands, it expands to cover dependencies in 

only a single additional production instance. For attributes defined by arbitrary 

semantic functions, this is crucial to the optimal behavior of PROPAGATE, 

because changes may not propagate beyond that  production instance. However, 

for attributes defined by identity functions, once we detect that  a chain has 

elements outside the model, the model may as well be expanded to include all 

such elements as well as all of their immediate successors. By expanding the 

model with this larger increment, we save the overhead involved in doing repeated 

expansions. Again, it is necessary to treat the attributes of nonterminals in R that  

are defined by copy rules as if they were not part of any chain. 

6.2 Demand Attributes 

Until now, we have abided by the requirement that  each attribute in a program 

tree be given a consistent value after every editing operation. The assumption of 

this requirement is open to challenge. In particular, if the value of an attribute is 

in no way observable immediately after an editing operation, then there is no 

reason to insist on that  value being correct. Instead, we could delay reevaluation 

5 Recall that, in the case of subtree replacement, R consists of a single node. 
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until the value is needed in the computation of some aspect of the environment 

that is observable to the user. One may argue that  the cost of such unobserved 

reevaluations is best prorated across many editing transactions in the interest of 

instantaneous response when the value finally is needed. On the other hand, 

repeated useless reevaluations of the attributes that  are only rarely used might 

well destroy the ability of an editor to respond quickly to frequent, commonplace 

transactions. 

We address this argument by extending our simple model of editing with a 

class of d e m a n d  attributes that  are given values only when necessary, that  is, 

when a demand is placed on them for their value. A demand would arise either 

directly from a user query, from a need to display an attribute on the screen, or 

from a neighboring attribute needing to use the value as an argument. In some 

situations, it will be advantageous to intermix demand attributes and regular 

attributes, so we allow demand attributes to be arguments of regular attributes 

and vice versa. 

Before discussing incremental evaluation of demand attributes, it is worthwhile 

to consider the demand concept as a paradigm for (nonincremental) evaluation. 

Earlier, in Section 4.3, we discussed how topological sorting can be turned into an 

algorithm for attribute evaluation by evaluating a vertex's semantic function 

when the vertex would normally be enumerated in the topological order [17]. 

However, there is another well-known algorithm for producing a linear ordering 

of a directed acyclic graph: start from the vertices with no successors, treat  the 

graph as if all edges had been reversed in direction, and do a depth-first search, 

listing the vertices in endorder. This algorithm can also be turned into an attribute 

evaluation algorithm by evaluating a vertex's semantic function when the vertex 

is ready to be enumerated in the linear order. This algorithm can be thought of 

as a d e m a n d  evaluator that  fulfills demands for the values of the attributes with 

no successors. 

In the version of PROPAGATE stated below as Algorithm 5, the demand 

attributes are treated just like the regular attributes when none of their arguments 

changes value; that is, a demand attribute keeps its old value if it is not a member 

of NeedToBeEvaluated when it is removed from the work-list. If one of its 

arguments has changed value, a demand attribute is given the value null, and 

receives a value later only if the value is needed for evaluating a regular attribute. 

Note that the subordinate and superior characteristic graphs used by PROP- 

AGATE may be thought of as demand attributes that  are linked to the cursor. 

The computations referred to earlier as side effects of AscendToParent( ) and 

DescendToChild() ,  namely, 

r.C := ExpandedSubordinate(r)/{attributes of r} 

and 

r.C := ExpandedSuperior(r)/{attributes of r}, 

are just the semantic equations that define two graph-valued attributes. When 

the cursor is moved to node r or when a subtree replacement takes place at node 

r, a demand is placed on r.C and r.C. 

It has not escaped our attention that allowing user-defined, cursor-linked, 

demand attributes could be a valuable mechanism for certain facilities of lan- 
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PROPAGATE (T, r): 

let  

T ffi a fully attributed semantic tree prepared for propagation at r 

r ffi a nonterminal node of T containing any inconsistent attributes of T 

S, NeedToBeEvaluated = sets of attribute instances 

M ffi a directed graph 

b, c ffi attribute instances 

changed --- Boolean 

Oldvalue, Newvalue - attribute values 

in 

M : = r . C U r . C  

S := the set of vertices of M with in-degree 0 in M 

NeedToBeEvaluated : = the set of vertices of M 

whi le  S ~ O do 

Select and remove a vertex b from S 

changed :-- false 

i f  b ~ NeedToBeEvaluated t h e n  

Remove b from NeedToBeEvaluated 

Oldvalue := value of b 

i f  b is a demand attribute t h e n  set b to nul l  

else for  each argument c of b that is a demand attribute do 

DEMANDVALUE(c) 

od 

evaluate b 

Newvalue :ffi value of b 

if  Oldvalue ~ Newvalue t h e n  

changed := t rue  

i f M  does not contain all the successors of b in D(T) t h e n  

EXPAND(M, b, S) 

for  each c that  is a successor of b in M do 

Remove edge (b, c) from M 

ifin-degreeM(c) = 0 t h e n  Insert c into S 

if  changed = t rue  t h e n  Insert c into NeedToBeEvaluated 

od 

od 

DEMANDVALUE(b) 

let  

b, c = attribute instances 

in 

whi le  there exists c, an unavailable argument of b, do 

DEMANDVALUE(c) 

od 

evaluate b 

Algorithm 5. Change propagation in the presence of demand attributes. 

g u a g e - b a s e d  e d i t o r s .  F o r  e x a m p l e ,  i f  o n e  w e r e  t o  b u i l d  a p r o g r a m - t r a n s f o r m a t i o n  

e d i t o r  u s i n g  t h e  s c h e m e  d e s c r i b e d  in  [11], t h e  a p p r o p r i a t e  w a y  t o  t r e a t  t h e  " l e f t -  

f o r w a r d "  a n d  " r i g h t - b a c k w a r d "  a t t r i b u t e s ,  w h i c h  a r e  u s e d  t o  d e t e r m i n e  i f  a 

t r a n s f o r m a t i o n  p r e s e r v e s  c o r r e c t n e s s  i n  a g i v e n  c o n t e x t ,  w o u l d  b e  t o  m a k e  t h e m  

d e m a n d  a t t r i b u t e s  o f  t h e  c u r s o r .  

6.3 Efficient Representations of Large Attributes 

A t t r i b u t e  g r a m m a r s  o f t e n  e m p l o y  a t t r i b u t e s  b e l o n g i n g  t o  d a t a  t y p e s  t h a t  r e q u i r e  

a l a r g e  d a t a  s t r u c t u r e  t o  r e p r e s e n t  a s i n g l e  v a l u e .  F o r  i n s t a n c e ,  a t t r i b u t e  g r a m m a r s  
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for programming languages commonly use at t r ibutes  whose values are symbol 

tables. Both  the space needed for storing large value-structures and the t ime 

needed for creating them may impose a great deal of overhead on an at tr ibute-  

grammar-based system. 

It  is common practice for large at t r ibutes  to be accessed through one level of 

indirection so tha t  a single s t ructure  represents  the value of several a t t r ibute  

instances tha t  have identical values [32, 37]. A second benefi t  of this s trategy is 

tha t  semantic functions tha t  are identi ty functions can copy pointers ra the r  than  

having to copy entire structures. 

This  s trategy can be taken a step fur ther  by arranging for the s t ructures  tha t  

represent  nearly identical values to share most of the same substructure  in 

common. When this is done, storing two nearly identical values requires only 

marginally more space than  storing just  one of the values; a semantic function 

tha t  re turns  a value nearly identical to one of its arguments  requires little t ime to 

construct  the re turn  value. 

For example, a symbol table can be represented by  a linked list tha t  is accessed 

through a pointer  to the head of the fist. A linked-fist representa t ion of a symbol 

table is a sharable data  s t ructure  because, when the names contained in one table 

are a subset of the names contained in the other  table, both  tables can be 

represented using a single list tha t  has the common names at  the tail of the list. 

A new name can be added to the symbol table by concatenat ing it to the head of 

the list. The  hill set of names is accessed through a pointer  to the head of the list; 

the smaller set of names is accessed through a pointer  to the common taft. Th e  

idea of implementing symbol-table at t r ibutes with linked lists so tha t  storage can 

be shared in common is not  a new one, but, to the authors '  knowledge, linked 

lists have been the only sharable s t ructures  previously used in a t t r ibute-grammar-  

based systems. 

However,  a 2-3 tree is also a sharable s t ructure  if the t ree  is manipulated in a 

slightly nonstandard way. Normally,  the elements  of an ordered set are associated 

with the leaves of a t ree in increasing order  from left to right, and each interior 

node of the tree is labeled with five items: the addresses of its two or three  

children, the value of the largest e lement  stored in the subtree rooted at the 

leftmost child, and the value of the largest e lement  stored in the subtree rooted 

at the middle child [1]. During the course of such operations as I N S E R T ,  

D E L E T E ,  MIN, SPLIT,  and C O N C A T E N A T E ,  the tree may  be restructured,  in 

which case these fields take on new values. 

We define a sharable 2-3 tree to be a s tandard 2-3 t ree  on which all operations 

are carried out  in the usual fashion, except  that ,  whenever  one of the fields of an 

interior node M would normally be changed, we create a new node N tha t  

duplicates M, and we change the field in N. Of course, to be able to t rea t  N as the 

child of parent(M),  it is necessary to change the appropriate  child-field in 

parent"~M}, so we create a new node tha t  duplicates parent (M),  and so on, all the  

way t~Jthe root  of the tree. Thus,  new nodes are in t roduced for each of the 

original nodes along the pa th  from M to the root  of the tree. Because an operat ion 

tha t  restructures  a s tandard 2-3 t ree  may  modify all of the nodes on the pa th  to 

the root  anyway, and because a single operat ion on a s tandard 2-3 tree tha t  has 

n nodes takes at most  O(log n) steps, the same operat ion on a sharable 2-3 t ree  

introduces at  most  O(log n) additional nodes and also takes a t  most  O(log n) 
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steps. The new tree resulting from the operation shares the entire structure of 

the original tree except for the nodes on a path from N to the root, plus at most 

O(log n) other nodes that  may be introduced in order to maintain the 2-3 

property. 

Sharable 2-3 trees are very versatile structures that  can be used to implement 

efficient INSERT, DELETE, MEMBER, MIN, SPLIT, and CONCATENATE 

operations on ordered sets. For symbol tables, a sharable 2-3 tree representation 

is better than a linked-list representation because MEMBERship tests and 

INSERT operations on an n-entry symbol table require at most O(log n) steps 

with a sharable 2-3 tree, but O(n) steps (expected time) with a linked-list 

representation. 

For further discussion of efficient representations of large attributes, the reader 

is referred to [34]. 

7. COMPARISON WITH ALTERNATIVE METHODS 

The techniques presented above can be used in the design of systems capable of 

generating editors with context-dependent facilities. What sets this work apart 

from other work on language-based editors is the use of a formal framework for 

implementing such facilities. One approach that  has been taken by previous 

systems for generating language-based editors has been to provide built-in mech- 

anisms for a few special problems, such as block-structured scoping of variable 

names. This approach, which is used in the generator for Emily [12] and the 

generator for PCM [41], has the drawback that  new applications will inevitably 

run up against the system's limitations. 
A second approach, which is called the semantic-action approach, is to support 

designer-specified, semantic-action routines for making updates to the internal 

program representation; during editing, each operation that  affects a node of type 

X invokes an action associated with the category X. An action is an imperative 

routine that can walk the program tree making updates to nodes of the tree as 

well as to global data structures. This approach is used in the generator for AVID 

[21] and the generator for Gandalf [24]. 

The major drawback of the semantic-action approach is the imperative nature 

of the editor specification. In addition to specifying semantic actions to occur 

when elements are inserted into a program, it is also necessary to specify semantic 

retractions to occur when elements are deleted from a program; the latter routines 

must provide a method for undoing the effects of the semantic actions. Though 

the procedures are associated with individual nonterminals of the grammar, such 

a specification is not as modular as it might first appear. Each routine controls a 

tree-walk and may depend on the structure of the entire tree; consequently, the 

structure of much of the grammar may have to be hard-coded into each routine. 

Because the order in which programs are developed is not fixed in advance, in 

writing the semantic routines the editor-designer is faced with the task of devising 

an updating strategy that maintains the data structure consistently, regardless of 

the order in which the program is developed. In practice, there may also be 

routines for other operations besides insertion and deletion, for example, opera- 

tions associated with moving the editing cursor [26]. In general, the task of getting 

all of these procedures and their side effects to cooperate as desired may place a 

considerable burden on the editor-designer. 
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In contrast, the approach described in this paper, in which the syntax and 

semantics of the target language are specified with an attribute grammar, avoids 

the complexity inherent in the semantic-action approach because of the declar- 

ative nature of attribute grammars. An attribute grammar describes relationships 

between attributes, and the propagation of semantic information throughout a 

program tree is implicit in the formalism. As we have shown in this paper, when 

a program is modified, consistent relationships among the attributes can be 

reestablished automatically; consequently, there is no need for an explicit notion 

of undoing a semantic action or reversing the effect of a semantic analysis. When 

an editor is specified with an attribute grammar, the method for achieving a 

consistent state after an editing modification is not part of the specification. 

The advantages of attribute grammars are offset by certain efficiency problems. 

Because attributes are defined by semantic equations with strictly local depen- 

dencies, when a program is modified (and attribute values recomputed), new 

values can flow from attribute to attribute only along edges of the derivation 

tree. With the semantic-action approach, however, the editor-designer is allowed 

to write action routines that  update the tree by other means. In particular, by 

using data structures that record nonlocal dependencies in the tree, the updating 

routines can skip over arbitrarily large sections of the tree that an incremental 

attribute evaluator must visit node by node. 

For example, suppose we want to enforce the constraint that  the declarations 

and uses of identifiers in a program be consistent. With the semantic-action 

approach, this constraint can be implemented using a symbol table for each block 

in which the entry for an identifier i points to a chain of all uses of i in that  block 

[15, 26]. When a declaration is deleted, the use chains are employed to immedi- 

ately access uses of variables that were formerly declared. Of course, the action 

routines must also handle the additional task of maintaining the consistency of 

the nonlocal-dependency structures. For example, when a group of statements is 

deleted, the entire group must be traversed to find all uses that  must be deleted 

from their use chains. 

With the attribute-grammar approach, the constraint can be expressed with a 

grammar that threads a symbol-table attribute through the tree, as described in 

[4]. When declarations are inserted or deleted, the recomputed symbol-table 

attribute value propagates through the entire scope of the declarations; when a 

group of statements are inserted, the incremental evaluator essentially traverses 

the entire group, reevaluating semantic functions that check for undeclared- 

variable errors. On the other hand, a group of statements can be deleted by a 

simple subtree-pruning operation without traversing the group. 

Johnson and Fischer have considered a combination of the attribute-grammar 

and the semantic-action approaches in which the standard definition of an 

attribute grammar is extended with the concept of nonsyntactic attribute flow 

[15]. Their  objective is to have attributes flow "directly to where they are needed, 

rather than being restricted in their flow to paths in the parse tree of a program." 

They extend standard attribute-grammar notation with assertions on grammar 

symbols, where the assertions may contain quantifiers and some special relational 

operators for describing intersymbol relationships. The virtue of such an extension 

is that it allows a more perspicuous specification of context dependencies than 

the normal rule-by-rule specification, yet it remains formal and declarative. 
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While their goal is laudable, in [15] Johnson and Fischer, unfortunately, do not 

show how editors can be generated from their extended specification language. 

The essential difference between their approach and the semantic-action ap- 

proach is that they make a distinction between the process of updating l inks 

between nonterminals related by an assertion and the process of updating 

attribute values; they use an incremental attribute evaluator for updating attri- 

bute values, but use action routines for updating links. For the example of type 

checking in an ALGOL-like language, reasonably efficient hand-coded "pseudo- 

evaluation" and "roll-back" actions for maintaining links are shown; what is not 

shown is how such an implementation can be derived automatically from the 

assertions of their extended specification language. 

A second problem is that  the incremental attribute-evaluation algorithm pre- 

sented in [15] is just naive change propagation; consequently, unless the depen- 

dencies are restricted in such a way that  there is never more than one path 

between any two attributes, the number of attributes considered may be arbi- 

trarily greater than the number of attributes given new values, and the number 

of steps required to update the attributes may be nonlinear in the number of 

attributes considered. Futhermore, due to the presence of nonlocal dependencies, 

this problem can not be fixed by applying the methods we have presented in 

Section 5 of this paper. 

APPENDIX 

The following grammar causes Algorithm 1, naive change propagation, to require 

time nonlinear in the size of AFFECTED. 

S1---) X S2 

X.b  = S2.a 

S l .a  = X .b  + S2.a 

S--->s 

S . a = l  

S - ->t  

S . a =  2 

X- - - ) x  

X . b =  X.c  

Dependency graphs of the derivation trees of this grammar have the form 

a 

c t . - - - a  

a 

c e - - - a  
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If manipulations of the work-list S in Algorithm 1 obey LIFO order, updating 

proceeds depth-first through the dependency graph and may take exponential 

time. For example, suppose we replace the rightmost production instance, S --~ t, 

with S -* s in 

S / 

/ x 

g "s I ¢ /  x \  

x g "s 
t 
I 
I 

x Q 

O 

O 

.s, 

"s 
i 
, I 
I I 

If, after updating an attribute labeled a, PROPAGATE always inserts the 

successor labeled c into the work-list before inserting the successor labeled a, the 
time required to update the tree satisfies the recurrence relation 

T ( h )  = 2 T ( h  - 1) + const 

where h is the height of the derivation tree. Thus, T ( h )  is exponential in the 

worst case. 

Alternatively, if manipulations of the work-list S obey FIFO order, updating 

proceeds breadth-first through the dependency graph and may exhibit quadratic 

behavior. The proof of this observation, omitted because of its length, appears 

in [34]. 
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