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Abstract— In this paper the theoretical operation of incremen-
tal (charge-balancing) delta-sigma (∆Σ) converters is reviewed,
and the implementation of a 22-bit incremental A/D converter is
described. Two different analyses of the first-order incremental
converter are presented, and based on these results two extensions
to higher-order modulators are proposed. Since line-frequency
noise suppression is often important in measurement applications,
modulators followed by sinck filters are also analyzed. Equations
are derived for the estimation of the required number of cycles
for a given resolution and architecture. Finally, the design and
implementation of a third-order incremental converter with a
fourth-order sinc filter is briefly discussed.

I. INTRODUCTION

Delta-Sigma (∆Σ) analog-to-digital converters are widely
used in telecommunication and multimedia applications. The
key property of these converters is that they do not rely on
precisely matched analog elements to achieve high resolution,
but on oversampling, noise-shaping and digital post-filtering.
Thus, these converters can be integrated well into today’s fine
line-width CMOS technologies. The theory and operation of
these converters is discussed in detail in, e.g., [1].

Unfortunately, these classical ∆Σ structures are not well
suited for instrumentation and measurement (I&M) applica-
tions, in which very high absolute accuracy and linearity, and
very low offset and gain errors are required, in addition to high
dynamic range and signal-to-noise ratio. In battery-operated
applications (such as smart sensors, portable weight scales,
or digital multimeters) low power consumption may also be
critical. On the other hand, the frequency band of the input
signal is usually very narrow, often only a few Hertz wide.

In summary, in telecommunication applications usually a
running waveform needs to be digitized, and mainly the
output’s spectral properties are important, while in I&M ap-
plications an accurate sample-by-sample mapping, as well as
very good INL performance are required.

Incremental data converters (IDCs) [2], [3], which can be
considered delta-sigma data converters in transient mode, are
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Fig. 1. Discrete-time model of a first-order bipolar incremental converter. In
this model u is the normalized input signal, vnorm is the normalized output of
the discrete-time integrator, y ∈ {−1, 1} is the normalized feedback signal (a
single-bit output sequence), while dout is the output of the digital integrator.

well matched to the requirements of I&M. They can provide
precise high-resolution conversion with low offset and gain
errors. For higher-order structures, the conversion time can
be relatively short [3], [4]. For the measurement of dc input
signals, IDCs need only simple digital postfilters. Since the
operation of such converters is intermittent, they can be also
readily multiplexed between multiple channels.

This paper gives an overview of the theory and design
of incremental data converters. The first part of the paper
(Secs. II–IV) discusses the theoretical operation of such archi-
tectures, while the second part (Sec. V) describes the design,
implementation and measured results of a low-power 22-bit
IDC containing a third-order ∆Σ modulator. The converter
exhibited a 22-bit performance with an INL below 4 ppm, an
input-referred noise below 3 µVRMS, a gain error typically
around 2 µV, and dc offset around 2 µV.

II. FIRST-ORDER ∆Σ A/D CONVERTER FOR DC SIGNALS

A discrete-time model of a first-order converter processing
both positive and negative signals (“bipolar ADC”) is shown
in Fig. 1.

The operation of the converter [2] is as follows: before a new
conversion, all memory elements, i.e., the switched-capacitor
(SC) integrator in the loop and the digital counter at the output,
are reset. Next, a fixed number (N = 2nbit ) of integration steps
are performed. Here nbit is the final resolution in bits. In each
cycle, depending on the sign of the output of the SC integrator,
the loop feeds back either a +Vref or a −Vref signal to the
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input of the integrator.
The exact behavior of this architecture can be analyzed in

two different ways. One is to use time-domain analysis to
derive the output signal (vnorm) of the internal integrator at
cycle n. Another way is to use z-domain analysis, then return
to the time domain and find the quantization error. Since these
two analyses result in two different higher-order extensions of
the original first-order converter, they are performed briefly in
the next two subsections. Throughout the derivations, normal-
ized signals are used, i.e., all analog signals are scaled by the
reference level Vref .

A. Analysis of the Output of the Integrator in the Time-Domain

The output of the delaying SC integrator (vnorm) in time
step n equals the accumulated sum of its input which is the
difference of the input signal u[i] and the feedback signal y[i]:

vnorm[n] =
n−1∑
i=0

(u[i] − y[i]), (1)

assuming vnorm[0] = 0 (note that u ∈ [−1,+1] and y ∈
{−1,+1}). With proper signal management (see [2] and [4,
Sec. 2.1.3]), it can always be ensured that vnorm ∈ [−1, 1],
i.e., in time step N ,∣∣∣∣∣u − 1

N

N−1∑
i=0

y[i]

∣∣∣∣∣ ≤ 1
N

, (2)

where u is the estimate of the mean value of the input signal.
Eq. 2 gives the key to performing analog-to-digital con-

version with such an architecture: it shows that the error
between the unknown input signal u = Vin/Vref and the sum
of the known terms y[i] and N is bounded by a known limit.
In a bipolar analog-to-digital converter, the maximum error
between the normalized input and its digital representation is
LSB/2, where LSB = 2umax/2nbit , umax is the maximum
normalized input signal (umax = 1 in this case), and nbit is
the resolution in bits. Thus, 1/N = LSB/2 = 1/2nbit . This
means that to achieve nbit resolution, the converter has to be
operated through N = 2nbit cycles. Note that the digital filter,
which provides an estimate of the input signal, according to
(2), is a discrete-time integrator, operated in transient mode.
Since the input signal to this filter is a single-bit sequence,
this integrator may be realized by a simple up/down counter
[2].

B. Analysis in the z-Domain

The first-order incremental converter may also be analyzed
using classical ∆Σ modulator methods. With this technique,
the operation of the converter is analyzed in the z-domain, and
then the result is converted back to the time-domain and finite-
duration operation. To use linear system analysis, the nonlinear
quantizer is modelled by an adder, which adds the appropriate
quantization error (ε[i], E(z)) to the quantizer input.

Using z-domain analysis, the output of the modulator Y (z)
is

Y (z) = z−1U(z) + (1 − z−1)E(z), (3)

and the final output becomes

Dout(z) =
z−1

1 − z−1
U(z) + E(z). (4)

Switching back to time-domain and evaluating the output at
i = n leads to

Dout[n] =
n−1∑
i=0

u[i] + ε[i]. (5)

Rearranging this equation, and assuming that ε[i] = y[i] −
vnorm[i] ∈ [−1,+1] (i.e., the quantizer is not overloaded),
results in an expression similar to (2):∣∣∣∣u − 1

N
Dout[N ]

∣∣∣∣ ≤ 1
N

. (6)

The main difference between the two analysis methods is
that in the current case the bounded internal quantization error
was used to obtain an upper bound on the final output quanti-
zation error, while in the previous case the bounded output of
the integrator resulted in keeping the output quantization error
under a given limit. These two conditions lead to two different
extensions of the incremental converter to higher-order ∆Σ
loops, discussed later in Sec. III.

C. Improvements of the First-Order Converter

As it was shown in the previous analysis, the first-order
converter’s biggest drawback is that for nbit-bit precision it
requires N = 2nbit clock cycles (e.g., for nbit = 16, N =
65, 536), which leads to a very slow conversion.

Before the discussion of IDCs based on higher-order ∆Σ
loops (Sec. III), structures which retain the first-order loop but
improve its operation are reviewed. Most of these modifica-
tions are based on the fact, that with proper signal manage-
ment, the quantization error of the conversion is available in
analog form at the output of the switched-capacitor integrator,
i.e.,

vnorm[N ] = −2q, (7)

where q is the quantization error of the output of one con-
version cycle, and vnorm[N ] is the normalized output of the
integrator at the end of the conversion [4, Sec. 2.1.3]. This
is a large signal (the analog signal swing is between ±Vref ),
which can be further digitized, and the result may be used to
refine the output.

The easiest way to reduce the required number of cycles
for the conversion is to apply a Nyquist-rate A/D converter
which takes vnorm[N ] as an input signal and converts it to a
digital word. This can be concatenated with the output of the
IDC to obtain a more accurate result. Using the comparator
already in the circuit as a single-bit A/D, the resolution
may be increased by one bit, or the required number of
cycles can be halved. This idea was actually utilized in the
original circuit of [2]. In [5], a multibit Nyquist-rate A/D
converter was placed into the circuit to convert vnorm[N ] into
a digital correction word. More sophisticated solutions used
the same hardware to process the output of the integrator:
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In [6], successive approximation was used at the end of the
conversion, while [7] and [8] introduced the extended-counting
principle based an algorithmic conversion, and [9] proposed
a two-step algorithmic converter, resulting in very low power
and reduced chip area.

Another solution to reduce the number of cycles is to
use a multi-stage (MASH) incremental converter. A two-
stage architecture was described in [10], reducing the required
number of cycles to about N = 2nbit/2. A similar solution was
proposed in [11].

Another way of extending the resolution of incremental
converters is to use a higher-order single-stage loop. The
theory for such incremental converters utilizing a cascaded-
integrators/feed-forward (CIFF) ∆Σ architecture has been
published earlier by some of the present writers in [3]. In
addition, the detailed description of a 22-bit, third-order IDC
has been presented by us in [12]. Here, the theory is extended
to two types of modulators based on [4, Sec. 3.2] (Sec. III), the
design equations for modulators followed by sinck filters are
given (Sec. IV), and the design of the high-resolution converter
is briefly discussed (Sec. V).

III. EXTENSIONS TO HIGHER-ORDER ∆Σ MODULATORS

In the previous section, two different analyses of the first-
order incremental converter were given: it was shown that
the bounds on either the internal quantization error or on the
output of the analog integrator can be used to determine the
required number of cycles (N ) for a given resolution (nbit).
Based on these criteria, two generalizations of the first-order
converter are derived in the following.

A. Modulators with Maximally Flat Noise Transfer Function

Consider a higher-order modulator whose output is given
by

Y (z) = z−kU(z) + (1 − z−1)LaE(z), (8)

where E(z) is the normalized quantization error of the internal
quantizer, U(z) is the normalized input signal, La is the order
of the analog modulator, and k ≤ La holds. To ensure the
stability of such ∆Σ modulator for La > 2, multibit (l-
level) internal quantizer may be used [1, Chap. 4]. As the
nonlinearity of the multibit feedback DAC will cause severe
degradation in the performance, the DAC linearity must be
improved, usually by a dynamic mismatch shaping algorithm
[1, Chap. 6].

As for the first-order modulator, if Ld = La digital inte-
grators are applied at the output of the modulator, the final
digital output will contain the sum of the Lath integral of
the unknown input signal and the last sample of the internal
quantization error:

Dout,La
(z) =

z−k

(1 − z−1)La
U(z) + E(z). (9)

In the time-domain (assuming k = 0 for simplicity, which can
always be ensured [13]) this becomes

Dout,La
[n] =

n∑
kLa=0

kLa∑
kLa−1=0

· · ·
k2∑

k1=0︸ ︷︷ ︸
La

u[k1] + ε[n]. (10)

If the input signal is constant (u = u), e.g., sampled and
held using an S/H circuit, then

Dout,La
=

(
n + La − 1

La

)
u + ε[n]. (11)

Note that if no S/H circuit is used in front of the converter,
then the output signal Dout,La

is only an estimate of u, but the
variance of any noise on u is greatly reduced by the internal
oversampling and the low-pass filtering effect of converter [3],
[4, Sec. 4.1].

From this equation, proceeding as in Sec. II-B, the quanti-
zation error q of the conversion can be found:

q =
ε[N ](

N+La−1
La

) ≤ 1
(l − 1)

(
N+La−1

La

) , (12)

where ε[N ] ∈ [−1/(l−1), 1/(l−1)] is the quantization error of
the internal l-level quantizer in time step N . The maximum
quantization error must be equal to half LSB of the target
resolution. Since in higher-order architectures the input signal
(Vin) must be limited to a fraction of the reference signal
(Vref ) to prevent the integrators and the internal quantizer from
saturation, i.e., Vin/Vref = u ≤ umax < 1, the LSB of the
bipolar converter can be defined as 2umax/2nbit . Then, the
following equality has to be fulfilled by N :

umax

2nbit
=

1
(l − 1)

(
N+La−1

La

) , (13)

from which the required number of cycles N for a given
resolution nbit can be found:(

N + La − 1
La

)
=

2nbit

(l − 1)umax
. (14)

As an example, for 16-bit resolution, with a second-order
architecture, assuming l = 5 and umax = 0.8, N = 203
results.

B. The Cascaded-Integrators, Feed-Forward Structure

As shown in Sec. II-A, the bound on the output of the
(last) analog integrator may also be used to obtain the final
quantization error. This method is effective for higher-order
converters, however, only if the output of the last integrator
does not contain the input signal itself. This property can
be ensured by using the Cascaded-Integrators, Feed-Forward
(CIFF) structure [14], where the input signal is also fed to
the input of the quantizer [13]. A third-order CIFF example is
shown in Fig. 2. In the following, a single-bit internal quantizer
is assumed to avoid dealing with the problems of the multibit
feedback DAC.
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Fig. 2. A third-order Cascaded Integrator, Feed-Forward (CIFF) architecture with the input signal fed forward to the input of the quantizer. a =
[1.4, 0.99, 0.47], b = 0.5674, c = [0.5126, 0.3171], umax = 0.67.

The key property of this architecture is that the signal
transfer function of the modulator STF (z) = 1, i.e., the output
of the modulator is Y (z) = U(z) + NTF (z)E(z), and thus
the signal entering to the integrator stages is U(z) − Y (z) =
NTF (z)E(z). This way, the integrators in the loop do not
process the input signal, only the shaped internal quantization
error. This architecture has several additional benefits [15].

The output of the last (third) integrator in the loop in time-
step n is the triple sum of the difference of the input and the
feedback signal multiplied by the gain factors in the loop (cf.
Fig. 2) [3]:

v3,norm[n] = c2c1b

n−1∑
m=0

m−1∑
l=0

l−1∑
k=0

(u[k] − y[k]) . (15)

If the loop is stabilized by appropriate feedforward gains
[14], the normalized output swing of the last integrator can
be kept between ±1 by appropriately setting the ci scaling
coefficients. Then, similarly to the previous cases, there is
a relation giving an upper bound on the difference of the
unknown constant input signal and some known terms:∣∣∣∣∣

(
N

3

)
u −

N−1∑
m=0

m−1∑
l=0

l−1∑
k=0

y[k]

∣∣∣∣∣ ≤ 1
c2c1b

. (16)

From this, the half LSB of the target resolution may be
obtained:

1
c2c1b

(
N
3

) =
LSB

2
=

umax

2nbit
. (17)

Rearranging this equation, the required number of cycles to
achieve a given resolution can be calculated from(

N

La

)
=

2nbit

umax

(
La−1∏
i=1

ci

)
b

, (18)

which gives an expression similar to (14). The main difference
is that the number of levels in the quantizer are replaced by the
gain factors of the loop. As an example, a 20-bit converter with
third-order modulator and umax = 0.67 and with gain factors
given in Fig. 2, the required number of cycles N = 468.

IV. LINE NOISE SUPPRESSION

In the previous subsections two extensions of the original
first-order incremental converter were presented. In (10) and
(16) the required digital filters to process the output of
the modulator were also implied: in both cases, cascade-of-
integrators (CoI) filters, operated in a transient mode, were
required to calculate the output of the converter. The number of
digital integrators (Ld) was equal to the order of the modulator
(La).

The higher-order ADCs discussed above have a practical
disadvantage compared to the first-order converter: these con-
verters cannot provide a suppression of a periodic noise, such
as 50 or 60 Hz line noise [4, Secs. 4.1.2, 4.1.3]. In some
cases, suppression of the line frequency noise is essential for
precise measurements in I&M applications. Then, the digital
filter following the modulator has to be modified to meet this
requirement. One possibility is to use a higher-order sinck

filter [16], in which case the required number of cycles cannot
be calculated anymore using (14) or (18), but can be derived
as follows.

An Ldth-order sinc filter with a decimation ratio of M has
the transfer function

H (z) =
1

MLd

(
1 − z−M

1 − z−1

)Ld

. (19)

To design the filter, one has to find the order Ld, and the
decimation (or oversampling) ratio of the filter M . M also
gives the ratio between the clock rate and the first null of the
transfer function. Since incremental converters are used in a
transient mode, as in the previous discussions, time-domain
methods can be used to find M , and thus the required number
of cycles N . In the following analysis, systems with filter order
Ld = La and Ld = La + 1 are examined. It can be proven
that filters with higher orders do not give optimal trade-off
between the required number of cycles and circuit complexity
[4, Sec. 4.2.1]. Note that when the value of M required for a
given resolution is derived, it is advantageous to increase it to
be a power of 2: this way, 1/MLd can be implemented very
easily, e.g., using a shift register.
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A. Modulators with Maximally Flat NTF s

1) Ld = La: Consider an Lath-order ∆Σ modulator with a
maximally flat NTF , followed by an Ldth-order sincLd filter,
where now Ld = La = L. In this case, the combined transfer
function of the modulator and the filter becomes

Dout(z) = H(z)U(z) + H(z)(1 − z−1)LE(z) =

=
1

ML

(
1 − z−M

1 − z−1

)L

U(z) +
1

ML

(
1 − z−M

)L
E(z),

(20)

where H(z) is defined in (19). Thus, the input signal is filtered
by a regular higher-order sinc filter, which does not affect
the input signal at dc, and which provides periodic noise
suppression at its zeros.

To find the required number of cycles for a given resolution,
the largest output error has to be found, and equated to the
half LSB of the target resolution. Considering a third-order
structure (L = 3), the error at the output is given by

Q(z) =
1

ML

(
1 − z−M

)L
E(z) =

= 1/M3(1 − 3z−M + 3z−2M − z−3M )E(z). (21)

The finite impulse response of this transfer function (without
the scaling coefficient) is shown in Fig. 3(a). From this equa-
tion and the figure, two conclusions can be drawn: (i) to fill
the digital filter with valid data, the minimum required number
of cycles is N = 3M , and (ii) the worst-case sequence of
the internal quantization error (assuming an l-level quantizer)
is when the error samples take on their positive (negative)
maximum value, whenever the filter coefficient is positive
(negative). That is, the worst-case sequence is ε[i] = (1, −1,
1, −1)/(l− 1) at time steps 0, M , 2M and 3M , respectively.
This gives for the upper bound for the final quantization error

|q| ≤ 1 + 3 + 3 + 1
M3(l − 1)

=
8

M3(l − 1)
, (22)

which must equal the half LSB of the target resolution:

8
M3(l − 1)

=
umax

2nbit
. (23)

From this equation, M can be calculated

M = 3

√
8 · 2nbit

umax(l − 1)
, (24)

and the required number of cycles is N = 3M .
2) Ld = La+1: Consider now the case when the modulator

order is La = 3 and that of the sinc filter is Ld = La +1 = 4.
In this case, the merged NTF of the system becomes

Dout(z)
E(z)

=
1

M4

(
1 − z−M

)4

1 − z−1
=

=
1

M4

1 − z−M

1 − z−1

(
1 − z−M

)3
, (25)

which is the product of an Lath-order differential filter and a
first-order sinc filter. The impulse response of such a filter is

shown in Fig. 3(b). In this case, many samples of the internal
quantization error ε[i] are weighted and summed together to
get the output quantization error q. Thus, statistical methods
have to be used to find the statistical properties of the final
quantization error. If the internal quantization error ε[i] has
approximately uniform distribution between ±1/(l − 1), (i.e.,
mε = 0 and σ2

ε = 4 · 12/12(l − 1)2), the output quantization
error has an approximately Gaussian distribution, according
to the central limit theorem. The output variance is the sum
of the variances of the individual samples, weighted by the
square of the filter coefficients:

σ2
q =

4 · 12

12M8(l − 1)2
(M · 12 + M · 32 + M · 32 + M · 12) =

20
3M7(l − 1)2

. (26)

Since the output error distribution is approximately
Gaussian, one may estimate its lower and upper bounds as
kσq, where k ≥ 3. In this case, the expected maximum output
error becomes

kσq =
k

M3.5(l − 1)

√
20
3

, (27)

which equals to half LSB of the target resolution:

k

M3.5(l − 1)

√
20
3

=
LSB

2
=

umax

2nbit
, (28)

from which

M = 3.5

√
k2nbit

√
20/3

(l − 1)umax
, (29)

and the required number of cycles N = 4M follows. Note
that simulations indicate that k = 5 (i.e., using a “5-sigma
rule”) gives correct M and N values [4, Sec. 4.2.1].

B. Modulators with CIFF Structure

As already noted in Sec. III-B, the performance of one-bit
modulators is not degraded by imperfections of the feedback
DAC, and hence they are often used. Thus, in this section,
one-bit CIFF structures followed by sinc filters are examined.
However, the analysis of such systems is more difficult in
the time domain, since the stabilization of the one-bit loop is
achieved by shifting the poles from z = 0 in the NTF , which
now has an infinitely long impulse response. As before, two
cases are of interest, when the loop and filter orders are the
same (Ld = La), and when the filter order is higher by one
than the order of the loop (Ld = La + 1). In the following,
third-order modulator will be assumed.

1) Ld = La: The required number of cycles using same-
order sinc filter at the output can be calculated as follows. The
NTF of the system depicted on Fig. 2 is

NTF (z) =
(1 − z−1)3

D(z)
, (30)

where D(z) contains the stabilizing poles of the modulator.
Combining this with the transfer function of the same-order
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Fig. 3. Merged impulse responses of the NTF of the ∆Σ modulator and the sinc filter without scaling, with a decimation ratio M = 50. (a) third-order
maximally flat modulator and third-order sinc filter (b) third-order maximally flat modulator and fourth-order sinc filter (c) third-order CIFF modulator and
third-order sinc filter and (d) third-order CIFF modulator and fourth-order sinc filter.

sinc filter, the merged NTF from the internal quantizer to the
output of the filter becomes

Dout(z)/E(z) =
1

M3

(
1 − z−M

)3

D(z)
. (31)

A typical example of the impulse response of the merged
transfer function is shown in Fig. 3(c): the response of the filter
1/D(z) is convolved with that of the differential response of
Fig. 3(a). The required number of cycles thus N = 3M + m,
where m is the number of samples required for the settling of
the low-pass filter 1/D(z), while M is the decimation ratio
of the sinc filter. Note that if the sinc filter is realized using
the Hogenauer-structure [16], the output sample of the filter at
time 3M +m is not available, thus one has to wait for the first
valid decimated sample at time 4M . An alternative possibility
is to enlarge M , which causes smaller quantization error at
the output and then ignore the error introduced by neglecting
the last m samples of the transient.

To estimate the required number of samples, the bound on
the output of the last integrator can be used. Due to the feed-
forward structure, this signal contains only the quantization
error, so

V3,norm(z) =
bc1c2

D(z)
E(z) < 1, (32)

i.e.,
1

D(z)
E(z) <

1
bc1c2

(33)

holds. Substituting this inequality into (31) leads to

1
M3

(
1 − z−M

)3

D(z)
E(z) <

1
M3

(
1 − z−M

)3

bc1c2
. (34)

With this substitution, the problem becomes similar to the
previous case (maximally flat NTF with same-order sinc
filter). Using the results derived there, the bound on the
maximum output error becomes

1
M3

(
1 − z−M

)3

D(z)
E(z) <

1
M3

8
bc1c2

, (35)

which equals the half LSB of the target resolution
(umax/2nbit ). This leads to

M = 3

√
8 · 2nbit

bc1c2umax
, (36)

and N = 3M + m.
2) Ld = La + 1: The last case discussed here is when a

one-bit, third-order CIFF modulator is followed by a fourth-
order sinc filter. In this case, the merged NTF of the system
becomes

Dout(z)/E(z) =
1

M4

(
1 − z−M

)3

D(z)
1 − z−M

1 − z−1
. (37)

Its typical transient response can be seen on Fig. 3(d) (con-
volution of the response of Fig. 3(c) with a first-order sinc
filter). Thus, the required number of cycles is N = 4M + m.

To find M , the bound on the output of the last integrator
may again be used. Since both this signal and the final output
signal contain many samples of the internal quantizer error,
the statistical properties of the internal quantization error can
be used to find the properties of the final output error. The
output of the last integrator,

V3,norm(z) = −bc1c2

D(z)
E(z) < 1, (38)

is a stochastic variable with an approximately Gaussian dis-
tribution.

The output error distribution is also approximately
Gaussian. Its variance can be readily estimated, and from it
the decimation ratio required for a given resolution may be
found. The result is

M =
3.5

√√√√√√√√√ 2nbit
√

20
bc1c2umax

√√√√√√√√
(

m∑
i=1

wd[i]
)2

m∑
i=1

wd[i]2
. (39)
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Here, wd[i] is the ith sample of the impulse response
corresponding to 1/D(z). The required number of cycles can
be estimated from N = 4M + m.

The derivation of these results can be found in [4, Sec. 4.2].

C. Improved Line-Frequency Suppression

In critical applications, the suppression available by using
the simple sinc filters may not be adequate, especially if
the line frequency and/or the on-chip oscillator frequency is
inaccurate. In this case, the zeros of the sinck filter can be
staggered around the line frequency fl, thus widening the
frequency range where the rejection is high.

To modify the zeros of the filter, the rotated sinck filter (RS
filter) introduced by Lo Presti [17] may be used. A second-
order factor of its transfer function is of the form

H(z) =
1 − 2(cos Mα)z−M + z−2M

1 − 2(cos α)z−1 + z−2
, (40)

where z = ej2πf/fs and α represents the angle of the modified
complex conjugate zeros in the z plane. If α = 0, the
expression simplifies to the transfer function of a second-
order classical sinc filter. The details of the design method and
optimization of this filter to suppress noise in a given region
(say fl ± 5%) can be found in [17]. Note that in the case of
narrow-band filtering the angle of the zeros, α, is very small,
thus cos(α) is very close to 1. In this case, the number of bits
in the digital word required for the accurate representation of
the coefficients would be very large. To save chip area, in the
implementation of this filter a different approach is used (cf.
Sec. V-C).

If such an improved filter is used at the output of the
modulator, it is very hard to find the required number of cycles
analytically. But, since α is typically very small, the impulse
response of the modified sinc filter is very similar to that of
the original filter. Thus, a good estimation for M and N can
be found by assuming that a simple sinc filter was used, and
can be corrected if required.

V. CASE STUDY: A THIRD-ORDER, 22-BIT INCREMENTAL

ADC

In this section, a brief overview of the design of a 22-
bit incremental converter is given. Details of the design and
performance of the converter can be found in [12].

A. Modulator Structure and Gain Control

A third-order low-distortion CIFF structure with a single-
bit quantizer was chosen for the converter (Fig. 2), followed
by a modified fourth-order sinc filter. For the required 22-
bit resolution, (39) suggests a minimum decimation ratio
M = 353, m = 30 and N = 4M + m, when the circuit
and coefficients of Fig. 2 were used. In the actual circuit, to
make the implementation of 1/MLd easier, M = 512 was
used. Simulations indicated that using such M , the tail end
of the transient response can be neglected without decreasing
the performance, thus, in the final circuit N = 4M was used.
This way, the quantization error was reduced by using larger

M , but the tail end of the transient response (m) could be
neglected.

To prevent the overloading of the delta-sigma loop, but yet
to allow the input signal to reach ±Vref , the input signal
needed to be attenuated by a suitable factor. Since the IDC
(unlike most conventional delta-sigma ADCs) must provide
accurate gain along with high linearity, the gain reduction must
be realized by a circuit which is insensitive to the inaccuracy of
its components. This can be achieved by using nc capacitors
at the input stage, out of which only mc < nc is used to
sample the input signal and nc are used to sample the feedback
signal, thus realizing a scaling by mc/nc of the input signal.
To convert the gain error introduced by the mismatch of the
scaling circuit to an out-of-band periodic noise, in every clock
cycle different mc capacitors are selected to sample the input
signal. The details of this scheme can be found in [12].

B. Offset Correction

The inherent offset of the delta-sigma loop must be cor-
rected with a very high accuracy, so that the residual offset
is less than 10 µV. This cannot be achieved using chopper
stabilization, which is only effective for a first-order loop.
Correlated double sampling can also be used for offset sup-
pression, but it would have required an extra clock phase in
this application. Hence, the offset correction used in this device
was a generalized version of chopper stabilization, which was
named “fractal sequencing.” Here, the propagation path of
the dc offset is inverted during conversion, controlled by a
sequence which provides offset correction for an arbitrary
number of cascaded integrator stages. The details of this
technique can also be found in [18] and [12].

C. Digital Filter Realization

The fourth-order digital sinc filter used in the chip uses
multiple staggered zeros around each notch frequency [17], to
allow for drift in the clock rate or the line frequency. It has
a modified transfer function including staggered zeros, and
uses a novel implementation which differs from the familiar
Hogenauer structure [16] and also from the one suggested
by [17]. It utilizes a programmable counter in place of the
four cascaded differentiators needed in the Hogenauer scheme.
The filter contains a control unit which stores the zeros of
H(z), and it operates the counter so as to implement these
zeros. It provides a high noise rejection, and needs only a low
complexity circuitry. Details about the filter implementation
can be found in [19] and [12].

D. Implementation and Measurement Results

Three different versions of the complete ADC were imple-
mented in a 0.6-µm CMOS technology. The first one has a
slow maximum data rate (13.75 Hz), and includes a digital
filter which rejects both 50 and 60 Hz with a wide multiple
notch at 55 Hz. It has low output noise (0.25 ppm). The
second chip also has a slow data rate (12.5 Hz or 15 Hz),
a main notch at either 50 or 60 Hz, with greater rejection
(at least 120 dB within a 3% variation from the selected
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Fig. 4. Chip photomicrograph (POR: Power-On-Reset)

TABLE I

MEASURED PERFORMANCE OF THE INCREMENTAL ADC

Parameter Performance

Conversion time
typ. 66.7 ms

DC offset
typ. 2 µV (1.7 LSB)
max. 10 µV (8.4 LSB)

Gain Error†
typ. 2 ppm (8 LSB)
max. 10 ppm (40 LSB)

INL†
Vref = 2.5 V max. 4 ppm (16 LSB)
Vref = 5 V max. 10 ppm (40 LSB)

Supply Current
Shutdown mode max. 1 µA
Op. mode VDD = 5 V typ. 120 µA
Op. mode VDD = 3 V typ. 100 µA

CMRR‡ @ 50/60 Hz at least 135 dB
DC PSRR‡
VDD = 2.5 ∼ 6 V at least 120 dB
Output Noise†

Vref = 5 V 0.25 ppm (2.5 µVRMS, or 1 LSB)
Vref = 2.5 V 0.48 ppm (2.4 µVRMS, or 2 LSB)

Oscillator frequency variation over
VDD and temperature range

±0.5%

† ppm of 2Vref . 1 ppm = 4 LSB
‡ V +

in = V −
in = Vref/2

line frequency), and also low output noise (0.25 ppm). The
third chip has a maximum data rate of 60 Hz, a notch at
240 Hz, and an elevated (0.8 ppm) output noise. These three
versions differed in their clock frequencies, decimation ratios,
and in the locations of the zeros implemented by the digital
filter. Details on the implementation of the switched capacitor
integrators can be found in [12]. The chip photo for the third
version is shown in Fig. 4. It occupies an area of 1.59× 1.31
mm2. The measured performance is summarized in Table I.
Detailed measurement results and graphs can be found in [12].

VI. CONCLUSION

In this paper the design theory of higher-order incremental
converters was discussed, and the implementation of a 22-bit
converter was briefly reviewed. Two different analyses of the
first-order incremental delta-sigma converter were presented,
and based on these, two extensions of the converter to higher-
order modulators were proposed. Since line frequency suppres-

sion is often important in measurement applications, a detailed
analysis was given for modulators followed by sinc filters
which allow the suppression of narrow-band noise. Design
formulas for estimating the required number of clock cycles
for a given resolution were given for various combinations
of the modulators and filters. Finally, the implementation and
measurement results of a third-order converter with a fourth-
order modified sinc filter were briefly described.
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