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Abstract. The construction of formal models of real-time distributed systems is
a considerable practical challenge. We propose and illustrate a pragmatic incre-
mental approach in which detail is progressively added to abstract system-level
specifications of functional and timing properties via intermediate models that
express system architecture, concurrency and timing behaviour. The approach is
illustrated by developing a new formal model of the cardiac pacemaker system
proposed as a “grand challenge” problem in 2007. The models are expressed
using the Vienna Development Method (VDM) and are validated primarily by
scenario-based tests, including the analysis of timed traces. We argue that the
insight gained using this staged modelling approach will be valuable in the sub-
sequent development of implementations, and in detecting potential bottlenecks
within suggested implementation architectures.

1 Introduction

Formal models have a valuable role to play in validating requirements and designs for
real-time distributed systems in early development stages. Rapid feedback from the
analysis of such models has the potential to reduce the risk of expensive re-working as a
consequence of the late-stage detection of defects. However, models that incorporate the
description of functionality alongside timing behaviour and distribution across shared
computing resources are themselves potentially complex. Moving too rapidly to such a
complex model can increase modelling and design costs in the long run. In order to gain
full value from formal modelling and analysis, a systematic approach to constructing
and validating models is required.

Our current work is focussed on the development and industrial application of for-
mal modelling techniques that satisfy the requirements discussed above. We have devel-
oped and applied technology based on the Vienna Development Method (VDM) [1,2,3]
and its tool support (VDMTools [4]). Recent work has developed modelling abstractions
and test-based analysis tools that support the object-oriented description of distributed
real-time systems [5,6]. Our experience applying formal modelling techniques in a vari-
ety of industry sectors suggests that an approach to modelling such distributed real-time
systems should permit the staged and controlled construction of a formal model, with
opportunities for validation at each stage. We have proposed such a staged approach as
part of the methodological guidelines accompanying the VDMTools [7].



This paper reports a study in which we have assessed the feasibility of applying
an incremental approach to model construction by developing a model for an artifi-
cial cardiac pacemaker [8]. The pacemaker specification is that it includes system-level
requirements affecting hardware as well as software. We demonstrate how such cross-
disciplinary requirements can be introduced gradually into a model in a phased fashion,
along with validation of functional and timing requirements.

The Pacemaker specification has been offered by the Software Quality Research
Laboratory at McMaster University as a pilot problem in the Grand Challenge in Ver-
ified Software [9] and this paper is believed to represent the first attempt at its treat-
ment. However, the present study does not aim to provide comprehensive coverage of
the Pacemaker challenge. The intention is to use the problem to pilot the incremental
method in an industrially relevant context, using the available tools, as a precursor to
tackling more substantial challenges, including the full Pacemaker and other real-time
systems.

We introduce the Pacemaker system in Section 2. Section 3 briefly introduces the
VDM technology used, our phased approach to model construction and the tool sup-
port. The progressive development of the Pacemaker model is described, illustrated by
extracts from the series of VDM models developed (Section 4). The test-based approach
to validation is discussed in Section 5, including how timing conditions can be checked
using this technology. Finally Sections 6 and 7 discuss related work and draw conclu-
sions from the study.

2 The Pacemaker System and Environment

In this study, the pacemaker is treated as an  sipus Node Atrium
embedded system operating in an environment el
containing the heart. We first review the ele-
ments of the environment that interact with the
pacemaker (Section 2.1) and then consider the
elements of the pacemaker system itself (Sec-
tion 2.2).

2.1 Environment: The Heart

Ventricles

The human heart serves as a pump for the circu-

latory system. It is a muscular shell around four Fig. 1. The natural pacemaker
chambers (called atria and ventricles) which con-

tract and relax periodically under the control of natural electrical stimuli. A natural
pacemaker orchestrates the functioning of the pump, discharging electrical pulses at
specific points (see Fig. 1). In normal functioning, a discharge made at the sinus node
subsequently reaches the atrioventricular (AV) node which amplifies it, stimulating the
ventricles. If the natural pacemaker is malfunctioning, a physical condition termed
Bradycardia may arise in which the heart rate falls below the level expected for the
patient. To normalise the heart rate, an artificial pacemaker may be implanted to aid
or replace the natural pacemaker. Physicians measure the heart’s performance using,
among other parameters, the bpm (beats per minute) rate of the heart. We use the term



pulse and pulses per minute in reference to pacemaker activity, whereas beat and beats
per minute refer to heart activity.

2.2 System: Artificial Pacemaker

An artificial pacemaker (referred to subsequently as a pacemaker [10]) is a system
composed of:

Leads: One or more wires, normally two, that both sense and discharge electric pulses.

Device: The implanted batteries and controller.

Device Controller-Monitor (DCM): An external unit that interacts with the device
using a wireless connection (not modelled in this paper.)

Accelerometer: A unit inside the device measuring body motion in order to allow
modulated pacing.

A typical configuration consists of one lead attached to the right atrium and another
to the right ventricle. The pacemaker has several operating modes that address different
malfunctions of the natural pacemaker. The specification document [8] identifies 18
operating modes controlling 26 variables and each of the variables can be configured
within a value range. Most of the variables are time-related parameters, defining such
properties as the interval between a pace in the atrium and the ventricle or the number
of pulses per minute the device should deliver to a given chamber.

The operating modes of the device are classified using a code consisting of three
or four characters. For the examples in this paper, the code elements are: chamber(s)
paced (“O” for none, “A” for atrium, “V” for ventricle, “D” for both), chamber(s)
sensed (same codes), response to sensing (“O” for none in this paper) and a final op-
tional “R” to indicate the presence of rate modulation in response to the physical activity
of the patient as measured by the accelerometer. “X” is a wildcard used to denote any
letter (i.e. “O”, “A”, “V” or “D”). Thus “DOO” is an operating mode in which both
chambers are paced but no chambers are sensed, and “XXXR” denotes all modes with
rate modulation.

3 VDM Modelling Technology for Distributed Real-Time Systems

In our modelling work, we have used VDM [1]. Three dialects of the VDM mod-
elling language are in use, each supporting different forms of system specification.
VDM-SL [2] provides facilities for the functional specification of sequential systems
with basic support for modular structuring. VDM++ [3] extends VDM-SL with fea-
tures for object-oriented modelling and concurrency. VICE (VDM++ In Constrained
Environments) further extends VDM++ with features for describing real-time com-
putations [11] and distributed systems [5]. Each dialect has formally defined syntax,
static and dynamic semantics which extend those of the ISO Standard VDM-SL lan-
guage [12]. For a detailed introduction to VDM++, the reader is referred to the texts
and the VDM Portal [13]. In the remainder of this section, we focus on the features
of VDM++ and VICE that have a major role in the modelling of distributed real-time
systems.



3.1 Basic VDM Notations

A model in VDM-SL, is composed of type definitions built from simple abstract types
such as bool or nat, and type constructors such as sequences and records. Types may
be restricted by predicate invariants. Persistent state variables may be defined. Opera-
tions that may modify the state can be defined implicitly, using pre- and postcondition
expressions, or explicitly, using imperative statements. Functions are similar to opera-
tions except they may not refer to state variables, and are side-effect free.

An object-oriented model in VDM++ is composed of class specifications which
may use single or multiple inheritance. The internals of each class definition are similar
to those of a regular VDM-SL model. each object’s persistent state consists of typed
instance variables. Operations in VDM++ are re-entrant and their invocation is defined
with synchronous (rendezvous) semantics. Operation execution may be constrained by
specifying a permission predicate [14], a Boolean expression over history counters that
acts as a guard for the operation, for example to express mutual exclusion. History
counters are maintained per object to count the number of requests (#req), activations
(#act) and completions (# £ in) per operation.

VDM-++ classes may be active or passive. Active classes represent entities that have
their own thread of control; passive classes are always manipulated from the thread of
control of another active class. A thread is a sequence of statements that is executed to
completion, at which point the thread dies. The thread is created whenever the object is
created but the thread needs to be started explicitly using a start operator. For reactive
systems it is possible to specify threads that do not terminate.

Extensions to VDM++ (VICE) support the description and analysis of real-time em-
bedded and distributed systems [5,15]. These include primitives for modelling deploy-
ment to a distributed hardware architecture and support for asynchronous communica-
tion. Two predefined classes, BUS and CPU, are available to the specifier to construct
the distributed architecture in the model. User-defined classes can be instantiated and
deployed on specific CPUs. The communication topology between the computation
resources in the model can be described using the BUS class.

The semantics of VDM++ is extended with a notion of time such that any thread
that is running on a computation resource or any message that is in transit on a commu-
nication resource can cause time to elapse. Models that contain only one computation
resource are compatible to models in plain VDM++.

Operations may be specified as asynchronous in VICE, allowing the caller to resume
its own thread of control after the call is initiated. A new thread is created, scheduled
and started to execute the body of the asynchronous operation. Statements (duration
and cycles) may be used in operation bodies to specify time delays that are, respectively
independent of or dependent upon processor capacity. The time delay incurred by the
message transfer over the BUS can be made dependent on the size of the message being
transferred.

3.2 An Incremental Approach to Model Construction

Faced with the challenge of developing VDM++ models of distributed real-time sys-
tems, we have proposed a staged approach [7] which reflects the capabilities of each of
the VDM modelling languages.



The analysis of informally expressed requirements leads to a first abstract model
giving system-level specification of behaviour. The basic VDM-SL language is well
suited to this level of description. Based on the abstract model, we introduce a static
architecture, creating a sequential (i.e. non-concurrent) model with structure expressed
using the features of VDM++. This model would then be extended to become a concur-
rent VDM++ design model. The concurrent design model itself is then extended with
real-time information using the VICE extensions, and additionally distribution over pro-
cessors can be described also using the VICE extensions. At this stage it may prove
necessary to revisit the concurrent design model, since design decisions made at that
stage may prove to be infeasible when real-time information is added to the model (for
instance, the model may not be able to meet its deadlines).

The ability to validate the intermediate models developed in this process makes
it possible to identify requirements and design defects at an early stage. The initial
abstract model need not be directly executable, but subsequent models are likely to be
so, making it possible to conduct extensive tests in order to validate design decisions.
The VDMTools are intended to provide extensive support for scenario-based testing as
a form of validation.

We do not claim that the models introduced at each stage in our approach are for-
mal refinements of their predecessors, although this may sometimes be the case. Our
intended output is a comprehensive model of the target system that can serve as a basis
for subsequent development, possibly using refinement. We are therefore introducing
detail in a staged manner, where the executions at each level might, informally, be seen
as providing a finer level of granularity than its predecessor.

3.3 VDM Tool Support

VDM is supported by an industry-strength tool set, VDMTools, owned and developed
by CSK Systems [16]. VDM and VDMTools have been used successfully in several
large-scale industrial projects, e.g. [17,4]. The tools offer syntax, type and integrity
checking capabilities, code generators, a pretty printer and an application programmer
interface. The main support for model validation is by means of an interpreter allowing
the execution of models written in the large executable subset of the language.

Scenarios defined by the user are essentially test cases consisting of scripts invok-
ing the model’s functionality. The interpreter executes the script over the model and
returns observable results as well as an execution trace containing, for each event, a
time stamp and an indication of the part of the model in which it appeared. A separate
tool (an Eclipse plug-in) called showtrace has been developed for reading execution
traces, displaying them graphically so that the user can readily inspect behaviour after
the execution of a scenario, and thereby gain insight into the ordering and timing of
exchange of messages, activation of threads and invocation of operations.

The existing tools have been further extended to allow explicit logical statements
of expected system-level timing properties (termed timing conjectures) which can be
checked against execution traces [6]. Fig. 2 shows the showtrace output resulting from
the analysis of three validation conjectures (C1-C3) from the pacemaker study (see Sec-
tion 5). The main window shows a fragment of the execution trace, with time on the hor-
izontal axis. Processing on each architectural unit is shown by horizontal lines (colours



are used to denote thread start-up, kill and scheduling). Thin arrows indicate message
passing and fat arrows indicate thread swapping. The conjectures are shown at the bot-
tom of the window. Circular marks on the traces show conjecture violations, e.g. the
circle showing a counterexample to the timing conjecture C3, where an event occur-

rence breaches an expected temporal separation.
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Fig. 2. Showtrace tool demonstrating validation conjecture violation

4 The Pacemaker Models

We describe the incremental development of a model of the Pacemaker challenge prob-
lem conducted in order to evaluate the incremental development approach outlined
above using an industrially relevant application. At this stage, we have not attempted
a comprehensive attack on the Pacemaker problem. In this context, the overall purpose
of the modelling work on the Pacemaker has been to clarify and validate the system’s
informally stated requirements as defined at [8], from where additional tutorial material
on cardiac timing cycles and pacing modes is also available. A full-scale attempt on the
pacemaker challenge would also rely on extensive domain background from texts [10]
and domain experts.

Following our staged approach, in order to manage the complexity of the model
itself, the construction was done in four steps, each involving the construction of a new
model at a lower level of abstraction from its predecessor. We will term them Abstract,
Sequential, Concurrent and Distributed Real-Time (DR-T) respectively.



Of the 19 modes of the pacemaker, eight have been modelled so far, covering 18
of the 26 controlling variables. The initial Abstract model consists of several modules
totalling 652 lines of VDM-SL. The three subsequent object-oriented models are larger
but of almost equal size: the Sequential model is 872 lines of VDM++ and the Con-
current model is 879 lines whereas the DR-T model is 811 lines of VDM++. So the
Abstract model is a bit smaller and simpler than the Sequential model. Although the
sizes of the sequential, concurrent and DR-T models are similar, they get progressively
more complex as they include concurrency and the distribution.

Note that we do not claim that this is a formal refinement process. The initial Ab-
stract model is informally refined by a Sequential model by adding structuring infor-
mation. Neither of these models the concurrency of the environment and the system;
instead they simulate fixed time steps controlled from the environment. In the Con-
current model both the environment and the relevant parts of the system are organised
with concurrent threads that are synchronized by permission predicates. In each of these
three models, time is present explicitly as an abstraction whereas in the final Distributed
Real-Time model time is implicit, allowing us to express more realistic timing behaviour
while validating this model.

4.1 Abstract Model

The first model is expressed in VDM-SL, the simplest of the VDM modelling lan-
guages, lacking the object-orientation and concurrency features of VDM++. It is or-
ganised in modules, each of which corresponds to an operating mode of the pacemaker
and defines a single function PacemakerM (where M is the mode), derived from the
requirements. The key type and function definitions have the following form:

SenseTimeline = set of (Sense * Time);
ReactionTimeline = set of (Reaction x Time);
functions

PacemakerM (inp : SenseTimeline) r : ReactionTimeline
post

where Sense and Reaction are enumerated types representing the presence or ab-
sence of a pulse. Each PacemakerM function is expressed in VDM-SL in an implicit
style by means of a postcondition characterising the events trace that should result from
correct functioning of the pacemaker over an input sense trace. The implicit style is
used because it is not intended that the function should be directly executed; it serves
primarily as a means of clarifying requirements.

The abstract models support the formalisation of our understanding of the system
requirements. For example, during construction of the abstract models it became appar-
ent that the requirements in [8] for some modes place constraints on ventricular pace
events even when the ventricle is not being paced. Domain experts later reported this is
an error in the natural language specification. We also identified areas of incomplete-
ness, for example the requirements as modelled in PacemakerDOO [18] do not take
account of certain unstated requirements on intervals between atrium pulses.

The post-conditions of the PacemakerM functions have the potential to serve as
test oracles on the models developed in subsequent phases, provided suitable abstraction
functions are implemented. The post-condition formulations were also valuable and we



were also able to use them to help design the validation conjectures that were applied
to the analysis of the final (distributed real-time) model. For example, the following
post-condition from PacemakerDOO gives rise to the validation conjecture C2 used
on test traces and shown in Section 5.2:
forall mk_ (<ATRIA>,ta) in set r &

(exists mk_ (<VENTRICLE>,tv) in set r & tv = ta + FixedAV);

4.2 Sequential and Concurrent Models
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Fig. 3. A UML class diagram describing the common static structure

The sequential design model describes both the data that is to be computed, and how it is
to be structured into static classes, without commitment to a specific dynamic architecture. The
Pacemaker model is structured around a class Pacemaker coexisting with an Environment
class in a given Wor1d. Figure 3 shows the classes that are common to all the VDM++ models
and their associations. The diagram is derived automatically from the VDM++ models using the
VDMTools link to IBM Rational Rose. In the generated class diagram, we do not show associa-
tions arising from the use of public static methods. However, the public static instance variables in
the Pacemaker class are shown as directed associations (labelled ‘+$’) sign from Pacemaker
to the relevant target class.

The main feature of the static architecture is its division into the environment and the pace-
maker system. The Environment class controls the production of stimuli delivered via Leads.
The Pacemaker class represents the technical system. The HeartController class moni-
tors incoming stimuli and generates pulses. The RateController class is used for rate adap-



tation control in “XXXR” operating modes, and will not be further discussed in this paper (for
full details see [18,19]) and the Accelerometer class is coping with the motion data.

The initial sequential model is then used to analyse the system behaviour without taking con-
currency issues into account. In the sequential step, the environment affects the flow-of-control
by passing signals to the pacemaker system. The environment also provides the simulated time in-
crements using an additional Timer class (not shown in Figure 3). This model is executable and
so may be validated with respect to informal requirements by running tests through the VDM++
interpreter.

In the sequential model the environment class contains an explicit Run operation which op-
erates a form of command loop, stepping through the input timeline of sensed events, delivering
signals to the system (through the operation createSignal). Having created the signals, it
calls a Step operation in rateController and later in heartController, the two parts
of the system model that will become concurrent in subsequent models. In addition the global
time variable is stepped forward.

In the third phase of model development concurrency is introduced. The static structure is
maintained with the exception of a more elaborate modelling of time enabling synchronisation
of time in concurrent threads [18]. The environment model is freed of the responsibility to con-
trol the system model but still controls the time. The concurrent model has the same structure
as the sequential one, but the lock-step stepping mechanism is substituted by threading and syn-
chronisation. With the introduction of concurrency the need for synchronisation arises and this
is achieved through the use of VDM++ permission predicates. We claim that the main benefit of
this model is to study and find possible concurrency issues, for instance, we have found some
race conditions caused by errors introduced in our specification that were corrected at this level.

4.3 Distributed Real-Time Model

The final step in model construction is the introduction of distribution over CPUs in a topology
determined by the configuration of a bus. Time “annotations” allow time to be built in and man-
aged by the VDM++ interpreter so again the static structure is preserved except that the explicit
modelling of time now disappears.

The deadlines and periods in the requirements [8] are stated in milliseconds and in certain
cases in fractions of milliseconds. We therefore use 0.1 ms as the unit of time below.

The Environment class now only delivers signals to the system as a periodic thread:

thread periodic (1000,10,900,0) (createSignal);

The operation createSignal will be invoked approximately every 1000 time
units and a jitter of up to 10 time units can be allowed for the periodic invocation of
this thread. The third parameter indicates that there is going to be at least 900 time units
between two wake-ups of this periodic thread. Finally, the last parameter indicates that
no offset is required for the invocation of it. This is a feature that is most valuable if a
number of threads are started at the same time, and there is a desire to carry them out in
a special order.

The createSignal operation looks at the remaining input events in the input
lines (inplines) which each have a time associated with them. If this time has been
reached for one or more of the events the relevant leads and accelerometer must be
notified. It is defined as:
createSignal : () ==> ()
createSignal () ==

(if len inplines > 0



then (dcl curtime : Time := time,
done : bool := false;
while not done do
let mk_ (sensed, chamber,accinfo,stime) = hd inplines
in if stime <= curtime
then
(leads (chamber) .stimulate (sensed) ;
accelerometer.stimulate (accinfo);
inplines := inplines(2,...,len(inplines));
done := len inplines = 0
)
else done := true
)i
if len inplines = 0 then busy := false;
)i

Expressing Time Requirements Time “annotations” are used to record the durations
allocated to particular actions. For example, consider the requirement that “The Atrial
pulse width must be 0.4 milliseconds.” [8], appendix. This is a requirement on the op-
eration that describes the discharge of a pulse. The duration statement of VDM++
is used to specify the width (40 in the 0.1 ms units).
private async
dischargePulse : Pulse x Chamber ==> ()
dischargePulse (p,c) ==
if (c = <ATRIUM>)
duration (40) World'‘'env.handleEvent (p,c,time);

Notice also the use of async so that the caller of this operation will not block waiting
for it to terminate.

Modelling the System Distribution The system class defines the distribution architec-
ture. Instance variables are defined as follows (all declared public static) to define the
physical objects present in the system architecture:

atriumLead : Lead := new Lead (<ATRIUM>) ;
ventricleLead : Lead := new Lead (<VENTRICLE>) ;
accelerometer : Accelerometer := new Accelerometer ();
rateController : RateController := new RateController();
heartController : HeartController := new HeartController();

The architectural components in the model are, for the purposes of illustration,
four CPUs. Each CPU definition in the model indicates the scheduling policies (Fixed
Priority (FP) and First-Come-First-Served (FCFS) respectively) and processor capac-
ity (number of cycles per unit time). For the CPUs that will just run a single thread
we used a FCFS scheduling algorithm. For the case of CPU4 that contains both the
rateController and heartController threads we opted for a fixed priority
policy, assuming that the stimulation of the patient heart is more important than adjust-
ing the rate of the stimulation.

cpul : CPU := new CPU(<FCFS>,3E2);
cpu2 : CPU := new CPU(<FCFS>,3E2);



cpu3 : CPU := new CPU(<FCFS>,3E2);

cpu4 : CPU := new CPU(<FP> ,3E2);
In order to define the communication topology, we create three bus objects linking
the specified CPUs with a certain bandwidth (1E6) and the chosen network control
protocol, in this case FCFS.

busl : BUS := new BUS (<FCFS>,1E6, {cpul,cpud}l);
bus2 : BUS := new BUS (<FCFS>,1E6, {cpu2,cpud}l);
bus3 : BUS := new BUS (<FCFS>,1E6, {cpu3,cpud}l);

The final element in this system class is the constructor operation that deploys the func-
tionality across the resources. Here the leads are deployed on two processors (represent-
ing the physical wires and lead controllers) and the accelerometer is deployed using the
same approach. The remaining devices are deployed on cpu4:

public Pacemaker: () ==> Pacemaker
Pacemaker () ==
(cpul.deploy
cpu2.deploy

atriumLead) ;
ventriclelLead) ;
cpu3.deploy (accelerometer) ;
cpu4d.deploy(rateController);
cpu4d.deploy (heartController);
cpud.setPriority (HeartController ‘pace, 3);
cpud.setPriority (RateController ‘adjustRate, 1l);
)i
Implicitly there is always a virtual CPU and BUS where elements run that are not ex-
plicitly deployed to a CPU. Also the communication between objects in different CPUs
with no explicit bus connecting them will occur using the virtual bus.
Whenever a Lead is stimulated it simply delegates this stimulus on to the statically
declared heartController as a notification:

public
stimulate : Sense ==> ()
stimulate (s) ==
Pacemaker ‘heartController.sensorNotify (s, chamber) ;

When the heartController is notified it adds the new signal that has been
sensed to a mapping of sensed entries and that is then taken into account subsequently
by a periodic thread determining whether a pace is necessary depending upon the mode
of operation of the pacemaker.

public
sensorNotify : Sense * Chamber ==> ()
sensorNotify (s,c) ==

sensed := sensed ++ {c |-> s};

5 Validation

5.1 Validation of Abstract, Sequential, Concurrent and DR-T Models

A systematic testing approach [3] was used to validate the models derived during the
staged development process. “Validation” in this context refers to the activity of gain-



ing confidence that the formal models developed are consistent with the requirements
expressed in the requirements document [8]. A comprehensive model of the full Pace-
maker specification would additionally entail domain experts in both the setting of val-
idation conjectures and the detailed review of the model; for the initial study reported
here, we had only limited access to domain expertise.

Test scenarios were defined to model interesting situations such as the absence of
input pulses. These were run over the several models while collecting the test coverage
data for each model. Tests developed for the abstract model can be used, adapted, as
regression tests in the later model development phases.

To validate the sequential model we used the re-shaped scenarios, augmenting them
with new tests derived from the process of constructing and debugging of the model and
its algorithmic subtleties. The validation process involves loading the chamber senses
into the Environment which will deliver them at the correct time to the respective
lead. During the simulation reactions (pulses delivered by the leads) were collected
by the environment and then displayed. All of the test scenarios were reused in the
validation of the Concurrent model and the DR-T model using the same paradigm.

5.2 Timing Conjectures and their Validation

The capabilities of VDMTools have been extended to support automated checking of
timing-related conjectures on traces derived from runs of test scenarios over VDM++
models [6]. A simple language of standard conjecture forms has been defined and the
semantics have been embedded directly into the tool set. The result of checking con-
jectures on a trace is displayed using the trace display format, with conjecture violation
points identified as shown in Figure 2. These timing conjectures are not part of the re-
quirements; they are assertions that the developers expect to hold over the traces derived
from scenario executions. The timing conjectures analysed so far in this pilot study are
naive; a fuller set would be derived from interactions with domain experts in a full-scale
modelling and verification study.

The forms of timing conjecture used in the pacemaker study are: separations, re-
quired separations and deadlines [6]. Separation conjectures describe a minimum sep-
aration between occurrences of specified events, should the events occur. A Separa-
tion conjecture is a 5-tuple separate(eq, ¢, e, d, m) where e; and e, are the names of
events, c is a state predicate, d is the minimum acceptable delay between an occurrence
of e; and the next following occurrence of e, provided that ¢ evaluates to true at the
occurrence time of e;. If ¢ evaluates to false when e; occurs, the validation conjec-
ture holds independently of the occurrence time of e;. The Boolean flag m, when set
to true, indicates a requirement that the occurrence numbers of e; and ey should be
equal. This allows the designer to record conjectures that describe some coordination
between events. The Required separation conjecture is similar to the separation conjec-
ture but additionally requires that es does indeed occur. The Deadline conjecture places
a maximum delay on the occurrence of es. Again, the m option may be used to link the
occurrence numbers of the events. A validation conjecture deadline(ey, ¢, ea, d, m); if
c holds, d is the maximum tolerable delay between e and es.

Validation conjectures can be proposed for the test scenarios on the Distributed
Real-Time model. For example, a conjecture might be stated that the minimum delay



between a ventricular pace event and the next ventricular pace shall be 500 ms. After
converting it to the modelled time unit i.e. 0.1 ms, this is expressed as the following
conjecture C1:
separate (#fin (Lead‘dischargePulse (-, <VENTRICLE>), true,
#fin (Lead‘dischargePulse (-, <VENTRICLE>), 5000, false)

A requirement that, after an atrial event there must be a ventricular pace after 150
ms (£ 4 ms), leads to the following conjecture which includes a requirement that the
second event occurs, C2:

separatereq (#fin(Lead‘dischargePulse (-, <ATRIUM>), true,
#fin (Lead‘dischargePulse (-, <VENTRICLE>), 1460, true)

A requirement on the maximum delay between pulses being, say, 100 =8 ms would
be expressed as a deadline conjecture as follows, C3:
deadline (#fin (Lead‘dischargePulse (-, <ATRIUM>), true,
#fin (Lead‘dischargePulse (-, <ATRIUM>), 1080, false)
The three validation conjectures above have been applied to test runs of the valida-
tion scenarios. In several cases this identified violations in the model and in this way
the model could be improved as such bottlenecks were discovered [20,21].

6 Related Work

Efforts are being made to support the incremental development of formal models, but
has not so far been extended to model-oriented specifications of real-time systems with
explicit deployment. Work in SCTL/MUST [22] addresses the iterative production of
early-stage models of real-time systems. As in our approach, validation by testing is
supported and the model production process feeds back into requirements scenarios.
The Credo project [23] focuses on modelling and analysis of evolutionary structures for
distributed services and also includes formal models similar to those described here but
without so far considering deployment issues. Our incremental approach also has simi-
larities with refinement-oriented approaches, such as those in event-based B work [24]
but here the focus is more on the formal aspects of the refinement, not explicitly ad-
dressing time or deployment.

Related work by Suhaib et al. [25] proposes a methodology derived from that of
eXtreme Programming, in which “user stories” are expressed as LTL formulae repre-
senting properties which are model-checked. On each iteration, new user stories are
addressed. The ordering of properties is significant for the practical tractability of the
analysis on each iteration. In the context of research on real-time UML [26], a com-
bination of UML and SDL [27] with a rigorous semantic foundation. However, in this
work the ability to carry out the validation is more limited when deployment is con-
sidered. Burmester et al. [28] describe support for an iterative development process for
real-time system models in extended UML by means of compositional model check-
ing, and Uchitel et al. [29] address the incremental development of message sequence
charts, again model-checking the models developed in each iteration.

Regarding our particular pacemaker example, we believe that the McMaster pilot
problem example has not previously been attacked. It is always a challenge to be first
with a new case study and the work presented here should only be seen as the first step



in attacking the pacemaker challenge. From the cardiac pacing domain, the work that
comes closest to ours is that of Liu and others addressing safety analysis of a pacemaker
product line using state-based modelling [30]. They have a very similar split between
the environment and system; the main difference is that they use Rhapsody’s executable
state models for simulations in contrast to our model-oriented specification supporting
deployment. The focus there is on safety analysis while ours is on the incremental
development of models.

7 Concluding Remarks and Further Work

Our objective in the work reported here was to assess the feasibility of using an incre-
mental approach in the production of a useful model of an industrially relevant real-time
distributed system. The pacemaker case study suggests that such an approach can yield
a viable model that can be subjected to validation against system-level properties at an
early stage in the development process. The study encourages us to apply the approach
to a wider range of examples. The study revealed that the regression test suite built from
the validation activities on the intermediate models was valuable in validating the later,
more complex models.

It is important to stress that we have not attempted a comprehensive attack on the
full Pacemaker specification [8]. Our validation activity in particular, has been prelimi-
nary. We would like as a next stage to seek domain expert involvement in the definition
of validation conjectures.

The scheduling models in the current VICE formalism limit the range of exploration
supported. An important future task is extending this range and increasing the config-
urability of the model set. In the pacemaker example, we would like to explore a wider
range of scheduling assumptions.

Our approach has been pragmatic, driven by the aim of providing a fully formal
modelling approach with a low barrier to industrial adoption. As a consequence we
have emphasised validation by animation rather than verification by proof. The state of
the art in VDM tool support reflects this. Facilities such as the application program-
mer interfaces and dynamic link libraries in VDMTools allow for co-simulation [31,32]
in which models of the environment (e.g. a Matlab model of electrical activity in the
heart) can be linked to VDM++ models of discrete event controllers. We plan to do this
for the Pacemaker application in order to explore the fault tolerance characteristics of
alternative candidate architectures.

Looking forward to proof-based verification, modern implementations of proof sup-
port for VDM [33] currently handle a subset of the modelling language but require fur-
ther work to adapt them to the needs of distributed real-time models in VDM++. Once
the tool support is enhanced, enabling analysis of proof obligations for the Pacemaker
model, this will be carried out.

We have not yet dealt with the relationship between the incremental addition of
detail and formal refinement. In particular, we would like to be able to drive useful proof
obligations out of the “refinement” steps. An examination of this issue must address the
treatment of atomicity in the abstract and sequential models (for example in handling
the maintenance of invariants). To encourage adoption, we feel it is essential that we
automate a larger part of the validation process.
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