
Incremental Division of Very Large Point Clouds

for Scalable 3D Surface Reconstruction

Andreas Kuhn Helmut Mayer

Bundeswehr University Munich

Abstract

The recent progress in Structure from Motion and Multi-

View Stereo as well as the always rising number of high

resolution images lead to ever larger 3D point clouds. Un-

fortunately, due to the large amount of memory and process-

ing power needed, there are no suitable means for manip-

ulating these massive amounts of data as a whole, such as

fusion by 3D surface reconstruction methods. In this paper

we, therefore, present an algorithm for division of very large

3D point clouds into smaller subsets allowing for a paral-

lel 3D reconstruction of many suitably small parts. Within

our space division algorithm, octrees are built representing

the divided space. To limit the maximum size of the under-

lying data structure, we present an incremental extension

of the algorithm which renders a division of billions of 3D

points possible and speeds up the processing on multi-core

systems. As the proposed space division does not guaran-

tee a density-based decomposition, we show the limitations

of kd-trees as an alternative data structure. Space division

is especially important for volumetric 3D reconstruction,

as the latter has a high memory requirement. To this end,

we finally discuss the adaptability of the space division to

existing surface reconstruction methods to achieve scalable

3D reconstruction and show examples on existing and novel

datasets which demonstrate the potential of the incremental

space division algorithm.

1. Introduction

The recent major improvements concerning scalability

of Structure from Motion (SfM) and Multi-View Stereo

(MVS) algorithms allow for the generation of vast num-

bers of 3D points. SfM methods usually optimize the rela-

tive camera poses for the entire image set, which is possi-

ble because image registration can be done with as few as

three points per image if the calibration of the camera(s) is

known. Concerning relative camera poses, stereo methods

can cope well with high resolution images, because only

two images have to be processed at once, e.g., by semi-

global optimization [10].

The next step in dense image-based 3D reconstruc-

tion pipelines is usually 3D surface reconstruction. Yet,

the reconstruction from point clouds derived from mul-

tiple disparity maps, is not easily separable. Important

competing classes for dense reconstruction are volumetric

[4, 9, 11, 7, 14, 8, 15] and variational [23, 21, 12] recon-

struction. Variational reconstruction produces globally op-

timal solutions with limited memory requirements, but is of

high computational complexity. Volumetric methods have

high memory requirements, but are suitable for fast unre-

stricted 3D surface reconstruction. Hence, they are dis-

cussed in this paper concerning their adaptability to process

subsets of the point clouds generated by our proposed space

division algorithm.

To avoid limitations in scalability and to achieve a high

runtime performance, in general the reconstruction space

cannot be considered all at once. Out-of-core methods can

be used to deal with the problem of scalability by holding

only important parts of the data in memory [3, 22]. Unfor-

tunately, because of expensive and complex caching strate-

gies, they are clearly limited concerning runtime perfor-

mance. Even though fast streaming algorithms have been

presented [1, 16], they do not perform well considering out-

liers or concerning manipulation of data with varying reso-

lution / density common for general MVS.

An alternative scalable pipeline taking into account run-

time constraints decomposes the reconstruction space into

small subsets which can be merged afterwards. Addition-

ally to the suitability for systems with small memory, it

allows for parallel processing on multiple cores. Unfortu-

nately, such a divide and conquer strategy can be of high

algorithmic and computational complexity.

In this paper, we focus on the space division step for very

large point clouds. Additionally, we demonstrate that 3D

surface reconstruction methods exist which avoid a complex

fusion concerning the merging of the subsets.

The idea of partitioning point clouds into small subsets

is not new. Tobor et al. [19] present a divide and conquer

method for multi-scale 3D reconstruction from large unor-

ganized point sets. Their method divides a point cloud into

an equally distributed number of points whose size can be

10

explicitly specified. To this end, kd-trees [2] are used which

recursively divide the point cloud considering the median of

the point set for the axis with the maximum spread. In [20]

this method was adapted by using the mean of the longest

axis instead of the median. We show in this paper that volu-

metric space division is feasible even for a very large point

clouds with a billion points, even though current imple-

mentations are limited to amounts of 3D points that fit into

main memory. This is due to the fact that sorting the point

clouds is computational complex when the data does not fit

into main memory. Therefore, we examined and extended

both methods [19, 20] to deal with billions of 3D points in-

crementally. Additionally, a method employing octrees is

shown to perform better on very large datasets.

A straightforward incremental space division method

based on octrees which can cope with big 3D data was

presented by [14]. It dynamically splits the reconstruction

space in eight subspaces if the number of points exceeds a

given threshold. This is suitable for multiple cores or clus-

ter systems, as the distribution of processing rises exponen-

tially. In this paper we present a more efficient incremental

division method which can be performed on a wide range

of different architectures also with multiple cores.

The paper is organized as follows: In Section 2 we dis-

cuss octrees and two types of kd-trees as data structures for

division of very large point clouds. In Section 3 an incre-

mental algorithm is presented which allows for space divi-

sion of point clouds which do not fit into main memory. The

adaptability of space division to 3D reconstruction is dis-

cussed in Section 4. Finally, Section 5 presents experiments

concerning the runtime behavior of the incremental algo-

rithm and scalable 3D reconstruction before in Section 6 a

conclusion is given.

2. Data Structure

When focusing on scalability, a discussion on the basic

data structure for the decomposition of the reconstruction

space is essential. Especially the strongly varying density

in MVS-generated point clouds is challenging. In previous

work, space decomposition by means of kd-trees has been

proposed for space division of large point clouds [19, 20].

Hence, this geometrically irregular data structure is dis-

cussed first.

The strategy underlying kd-trees is a binary division of

the data volume with respect to the density of the 3D point

cloud. The root node represents the entire dataset, which in

our case is a 3D point cloud. All nodes besides leaves have

two child nodes which contain a (nearly) equal number of

3D points. Traversing to deeper levels, the point cloud is

incrementally divided until a given usually small number of

points is left in an individual leaf node. Hence, at all non-

leaf nodes, the space is divided into (nearly) equal subsets.

For separating point clouds into two equal-sized point

sets, an axis-parallel hyperplane is estimated. This includes

calculation of the space dimension with the largest spread

and sorting the point cloud according to the direction of

the chosen space dimension for median calculation [19].

The hyperplane at the median coordinate exactly divides the

point cloud into two point clouds containing an equal num-

ber of points ±1 for odd-sized sets. While the calculation

of a dominant space dimension is feasible also when taking

into account our scalability constraint via bounding boxes,

the calculation of the median does not scale well.

We are especially concerned with datasets that do not

fit into main memory. Hence, sorting algorithms even with

low complexity have to use out-of-core strategies. Unfor-

tunately, in this case processing without an essential loss in

computational efficiency is not possible. Substituting the

median by the average (mean) of the 3D points [20] is pos-

sible, but it means that the density constraint can only be

partly satisfied (Figure 1). This restriction will be discussed

further concerning MVS-based 3D reconstruction.

Octrees offer an alternative data structure based on space

division into regularly distributed voxels / cubes only partly

dependent on the point cloud’s density. They represent a

cubic generalization of binary trees. While the root node

corresponds to a limited cube, the eight child nodes repre-

sent eight equally sized subspaces which add up exactly to

the space of the parent node. The side length of the child

nodes equals half the side length of their parent node. The

division strategy from parent to child node continues until

the leaf nodes are reached. The depth of leaf nodes can be

defined, e.g., by a maximum tree depth or the number of

points belonging to the node.

Octrees have the advantage that there is no need for an

individual separation of the point cloud on all depth levels

as for kd-trees reducing runtime complexity. The number of

nodes rises with 8d, where d is the depth, while the number

of kd-tree nodes rises with 2d. The smaller access time of

octrees is of high importance for space division of very large

point clouds. On the negative side, octrees cannot be con-

trolled directly by the point cloud density which can lead to

relatively small point sets in leaf nodes (Figure 1).

In general, the space requirement rises exponentially

with d, yet in turn leading to an access complexity loga-

rithmic with d. While octrees seem to be especially suitable

for fast scalable space division, there are some parameters

which have to be defined: First, the data structure needs

an initial limited space, represented by the root node (Fig-

ure 1). Second, the depth of the data structure has to be

limited, especially for systems with small memory. The lat-

ter constraint also applies to kd-trees. In the following, an

incremental space division algorithm which overcomes the

need for limiting the depth is described and analyzed for

MVS.

11

Figure 1. Space division of a point cloud with 200 points with varying density via a kd-tree with median division (left), a kd-tree with mean

division (middle) and via an octree (right). Space is divided into clusters of points (example: maximum four points). While the kd-tree

with median division leads to a density-based decomposition into a similar number of points (example: two to four), the mean division

kd-tree and the octree cells can also contain single points (marked by red boxes). Octrees allow for fast division but result in many more

spaces with only a few points.

3. Incremental Space Division Algorithm

As described in the previous section, octrees and kd-

trees with mean division allow for space division of mas-

sive numbers of 3D points. Yet, extensions are necessary

for both data structures to guarantee fast space division of

very large point clouds. In this section, we discuss the strat-

egy for space division tackling two significant problems:

1. Strongly varying density within the point cloud and

2. Point clouds that do not fit into main memory.

Both problems are common for real world data and

their solution is essential for an efficient MVS-based 3D

reconstruction. To this end, we first propose an incremental

extension of kd-trees with mean division [20] for arbitrarily

large 3D point clouds. The incremental algorithm has

limited memory requirements as never more than one 3D

point has to be held in memory. Second, we show that an

underlying octree data structure is even more suitable for

arbitrarily large 3D point clouds concerning the runtime of

incremental space division.

Kd-trees with mean division require the mean of all 3D

points in every node as well as a hyperplane corresponding

to the space dimension with maximum spread (Section 2).

To this end, the algorithm runs through all points for all kd-

tree levels and calculates for every node the axis-parallel

bounding box defined by the minimum and maximum 3D

point. This corresponds to the positive and negative L∞

norm over all 3D points. All points are individually tracked

through the root node to the corresponding child nodes on

level i, where i=0 at the initial run. The mean of all points

is calculated from the overall sum and a counter is incre-

mented for all visited points. The resulting axis-parallel hy-

perplane needed for space division intersects the mean and

is defined orthogonally to the largest spreading space di-

mension corresponding to the largest axis of the bounding

box. After running through all points, the individual nodes

hold information about the number of points; the points

themselves are not saved as they do not fit into main mem-

ory.

This step is repeated until a given maximum kd-tree

depth, which has to be limited. To this end, the maximum

depth dmax is defined, with 2dmax as factor for the neces-

sary memory resources. A similar restriction of volumet-

ric data structures for efficient processing of large 3D point

clouds was proposed by [6]. In contrast to their approach,

in our incremental algorithm all nodes only hold informa-

tion about their binary existence, their centre point, a point

counter and the dimension of the maximum spread in the

case of kd-trees. This renders data processing possible, even

if the data does not fit into main memory.

The incrementally called division is summarized in Al-

gorithm 1, where P is the complete point cloud and N the

nodes in the kd-tree. The function calcHyperplane derives

the hyperplane through the mean point and orthogonal to the

space dimension with the maximum spread corresponding

to the largest bounding box dimension.

At this point, all child nodes which contain an insuffi-

cient number of points are not of interest. The so-called

important nodes at higher levels represent the volumes that

contain a maximum number of points below a given size. In

a final run, the 3D points are traced through the tree up to

these important nodes and are written in subspaces.

One general disadvantage of the maximum depth limita-

tion is that on depth dmax nodes can exist that exceed the

threshold for maximum point size (Figure 2). In this case

the algorithm is recursively repeated in the respective sub-

spaces: The leaf nodes are used as new root nodes and the

12

49

9 0 319

2 4 3 0 3 0 6 0 14 3 7 7

Figure 2. Dynamic iterative division of the reconstruction space (2D). The algorithm counts all points on all levels up to a given depth

dmax (here: 2). For nodes with the number of points below a given threshold (here: 10), the subtree below it is cut off, i.e. the nodes are

not visited. The 3D points are written in the final leaves (here: green and red). One leaf node (red) is above the threshold of 10 and is

further processed as new root node.

Algorithm 1 Space division via kd-tree

1: for all d = 0 to dmax do

2: for all p in P do

3: n← getNode(p, d)
4: n.counter ← n.counter + 1
5: n.mean← n.mean+ p
6: if n.pMin[x|y|z] > p[x|y|z] then

7: n.pMin[x|y|z] = p[x|y|z]
8: end if

9: if n.pMax[x|y|z] < p[x|y|z] then

10: n.pMax[x|y|z] = p[x|y|z]
11: end if

12: end for

13: for all n in Nd do ⊲ Go through nodes on level d
14: n.mean← n.mean/n.counter
15: calcHyperplane(n.mean, n.pMin, n.pMax)
16: end for

17: end for

18: for all p in P do ⊲ Write data in final run

19: for all d = 0 to dmax do

20: n← getNode(p, d)
21: if n.counter < maxPoints then

22: writeToF ile(p, n.filename)
23: break

24: end if

25: end for

26: end for

reduced point cloud as input point cloud, i.e., algorithm 1 is

repeated on the resulting subspace point cloud. This incre-

mental processing can be advantageous, e.g., for multi-core

systems, where the multiple new spaces can be distributed.

This will be explored in Section 5.

For kd-trees, the incremental method is costly, as in

every depth the hyperplane from the corresponding point

cloud has to be estimated. A loop over all points is needed

for every level, resulting in long runtimes for very large

point clouds. This is a problem of our space division

extension based on [20] using kd-trees. Therefore, it is not

reasonable to work with large dmax even though memory

consumption would allow for it. We will show that using

octrees can avoid this problem.

An octree for point clouds with an unknown number of

points needs an initial bounding volume which covers the

complete point cloud space (Section 2). To this end, for

octrees our algorithm initially runs through all points and

calculates the axis-parallel bounding box defined by a min-

imum and maximum 3D point over all points.

Because octree division is based only on the cube size of

parent nodes, there is no need for hyperplane estimation for

the octree levels. Hence, with a single second run through

all 3D points the individual points can be directly traced to

the defined maximum level. This is an essential advantage

over kd-trees, as this step has not to be repeated for all lev-

els, leading to reduced runtimes for space division. While

visiting octree levels a counter is incremented in the cor-

responding nodes. To limit the memory resources, again a

maximum depth is defined. For octrees the maximum depth

dmax limits the memory size by a factor of 8dmax .

The third run for octrees corresponds to the last for

kd-trees. Within this run points are streamed in a separate

file for those nodes on the minimum level, which do not

exceed the maximum point number (Figure 2). Hence,

for octrees the complete point cloud has only to be read

three times from the hard disk. The incremental called

division is summarized in Algorithm 2. For nodes on the

maximum depth which exceed the threshold the algorithm

is recursively repeated with a strongly reduced number of

3D points.

The result of the algorithm is a separated set of point

clouds for which the size can be limited according to given

specification. The subsets can be merged by 3D surface

reconstruction methods, even with high memory require-

ments.

13

Algorithm 2 Space division via octree

1: for all p in P do ⊲ Initial run

2: if pMin[x|y|z] > p[x|y|z] then

3: pMin[x|y|z] = p[x|y|z]
4: end if

5: if pMax[x|y|z] < p[x|y|z] then

6: pMax[x|y|z] = p[x|y|z]
7: end if

8: end for

9: for all p in P do ⊲ 2. run

10: for all d = 0 to dmax do

11: n← getNode(p, d)
12: n.counter ← n.counter + 1
13: end for

14: end for

15: for all p in P do ⊲ 3. run

16: for all d = 0 to dmax do

17: n← getNode(p, d)
18: if n.counter < maxPoints then

19: writeToF ile(p, n.filename)
20: break

21: end if

22: end for

23: end for

4. Adaptability to 3D Reconstruction Methods

Space division per se, as described in Section 3, does

not solve the problem of scalable 3D surface reconstruction.

Especially the conquer fusion part can be highly complex.

Particularly, when performing global optimization in MVS

considering, e.g., watertightness constraints, the same sur-

face can be inconsistent for neighboring volumes. This can

be solved by complex fusion of specific volumes. Vu [20]

uses graph-cut-based surface merging of variationally opti-

mized MVS surfaces. Yet, this does not scale well.

Kuhn et al. [14, 15] proposed a local optimization in

MVS for sets of neighboring volumes. To avoid complex

fusion, the volumes overlap taking into account the locally

limited influence of the employed optimization (Figure 3).

Thus, in border volumes non-equal surfaces can be directly

cut off leading to consistent overall models with a very

small redundancy. A more detailed description is given in

[13]. Similar local optimization based on volumetric fusion

[4] was proposed by Fuhrmann and Goesele [7, 8]. Even

if the meshing step in [7] uses global tetrahedralization, the

approaches are suitable for 3D surface reconstruction from

split point clouds.

Because overlapping spaces are a prerequisite for a con-

sistent fusion of MVS results by means of the above ap-

proaches, our scalable space division algorithm has been

extended to deal with them. Although this leads to a higher

computational complexity: When visiting child nodes in an

Figure 3. Illustration of the basic idea of [14], also used in

[15]. The left image shows a point cloud and four neighboring

subspaces with overlap (dashed boxes). The right image illus-

trates critical and non-critical optimization areas for two overlap-

ping subspaces. To this end, five example points are emphasized

with circles representing the local optimization area. The green

points are not critical as they are totally contained in one subspace,

whereas the other points appear in two subspaces. The optimiza-

tion area of the blue point extends beyond the overlap (dashed) of

the red subspace. Hence, it is removed from the red but kept in

the blue subspace. Accordingly, the red point is kept in the red

but removed in the blue subspace. The magenta point is between

the red and the blue overlap and is kept in both subspaces. As the

optimization leads to equal results in both subspaces, the points

appear at very similar positions, even after optimization.

octree, all coordinates of the eight (kd-trees: two) child

nodes have to be checked for intersection. Even though

heuristics can avoid checking all child nodes, the theoretical

complexity of child traversing is eight times higher when

considering overlap.

For kd-trees the overlap constraint is even more severe,

because overlap for nodes cannot be simply derived from

the fixed voxel sizes: The bounding box has to be calculated

during mean calculation, further increasing the runtime.

In the following, the incremental space division algo-

rithm presented in this paper is used to compare some volu-

metric MVS methods [11, 7, 8, 15] in all cases considering

overlapping subspaces.

5. Experiments

This section describes experiments concerning runtime

behavior as well as the effects of the separated subspaces on

MVS-based 3D reconstruction. The parameter of maximum

structure depth dmax (Section 3) is set according to the

available hardware. For the parameter of maximum point

cloud size in subspaces, we use 10 million points, because

this is a feasible number to process on smaller systems. The

overlap of neighboring subspaces is set to 0.1 of the sub-

space size. When having scale values for all points imply-

ing the local optimization area [8, 15], the overlap should

be determined by the maximum local optimization area in

the corresponding subspace (Figure 3).

The runtime is measured depending on the number of

14

octree depth
1 2 3 4 5 6 7 8

ru
n

ti
m

e
 [

m
in

u
te

s
]

20

30

40

50

60

70

80
1 core
2 cores
4 cores
8 cores

kd-tree depth
1 2 3 4 5 6 7

ru
n

ti
m

e
 [

m
in

u
te

s
]

100

200

300

400

500

600

700

800

1 core
2 cores
4 cores
8 cores

Figure 4. Runtime comparison of incremental space division by means of octrees (left) and kd-trees (right) up to a given octree depth and

recursive splitting – please note the different scaling on the vertical axis. In general, octree-based space division is about five times faster.

The experiments used 1-8 CPU cores. The incremental formulation allows a faster processing on multiple cores. The dataset of 1.5 billion

points was divided fastest (18 minutes) by means of octrees.

available CPU cores. In the experiments we use 1, 2, 4 and

8 cores reading and writing data on one single Solid-State-

Drive (SSD) without a special RAID configuration.

The point cloud used for runtime measurement is de-

rived from SGM disparity maps of a registered image set

[17] from 822 images captured from a UAV and from the

ground leading to a point cloud with 1.513.711.066 points

(Figure 7). This dataset is especially challenging, as it con-

tains strongly varying distances to the reconstructed object

and, hence, a point cloud of strongly varying density.

To demonstrate the effect of space division on MVS re-

sults, we give results for the popular Ettlingen dataset [18].

Even though this does not show the division efficiency for

very large point clouds, it is is very suitable to present the

effects of separated subspaces on 3D surface reconstruction.

5.1. Runtime Behavior

The limitation of the octree depth described in Section 3

is in conflict with the main challenge of division into sub-

spaces which contain less than a given number of 3D points.

To overcome this problem, the algorithm is incremental:

Those leaf nodes with too many 3D points on the maxi-

mum octree depth are reprocessed (Section 3). Fortunately,

this incremental processing does not necessarily decrease

the space division runtime on current hardware configura-

tions. For multiple leaf nodes on the maximum depth level

with too many points the subspaces can be reprocessed in-

dependently. This can be very useful when incrementally

dividing very large point clouds using multi-core systems.

To demonstrate the adaptability for current hardware

configurations, we use an 8-core CPU system. We evalu-

ate the runtime behavior, particularly examining if a strong

limitation of the data structure depth implies an increased

runtime. We limit the memory space to at maximum 32 GB.

Considering eight times (8 cores) 8n characters of 32 bytes,

on all levels n, a maximum octree depth of dmax = 8 is

possible. For kd-trees the parameter is three times larger.

Only on a depth of 3dmax an equal number of subspaces is

reached. Nonetheless, a large maximum depth is not suit-

able, as for all levels several loops over the complete point

cloud are necessary (Section 3). Hence, we evaluate the

depth for both trees for dmax = [1, 8]. Additionally, the

number of cores is varied from 1 to 8.

The overlap constraint leads to an increased runtime

(Section 4). Nonetheless, we only give results for divi-

sion with overlapping subspaces as overlap is necessary

for MVS. The graphs in Figure 4 show that limiting the

octree depth does not necessarily imply higher runtimes

and that our incremental space division allows for a fast

division of very large point clouds. A maximum depth

of dmax = 3 representing at maximum 512 subspaces is

among the fastest configurations. The fastest configuration

for octrees is about five times faster than for kd-trees. For

the latter, the continuous rise of runtime depending on the

core number beyond depth 2 confirms the assumption that

kd-trees are not suitable for space division of very large

point clouds.

Additionally, it is important to compare the runtimes

with base line algorithms. Unfortunately, there are no suit-

able space division implementations publicly available. To

process very large point clouds, the method by [20] is only

feasible by means of the extension presented in this pa-

per, which was shown to lack in runtime performance (Fig-

ure 4). For volumetric space division, an extension to Vrip

[4] (pvrip) exists [5]. This space division algorithm divides

the reconstruction space, in such a way, that the fusion vol-

umes are limited within this area. Unfortunately, the 3D

reconstruction is restricted to constant voxel sizes and is

not capable to process point clouds with strongly varying

density. This is an important aspect of the novelty of our

incremental space division algorithm.

Nonetheless, to offer runtime comparison with an exist-

ing implementation, we compared our space division with

the seminal out-of-core 3D surface reconstruction method

[3]. Octrees are used for globally optimized volumetric 3D

reconstruction by means of Poisson reconstruction [11]. To

15

3D reconstruction method [3] (dp=10) [3] (dp=11) [3] (dp=12) [3] (dp=13) [3] (dp=14) space division + [11]

Runtime (8 CPU cores) [mins] 8 11 16 51 170 9

Table 1. Runtime comparison of an out-of-core 3D reconstruction method [3] and our space division in combination with a similar surface

reconstruction method [11]. The octree depth dp has a fundamental influence on the runtime for [3]. As can be seen in Figure 5, only the

result for dp=14 is comparable to the result of space division + [11]. I.e., division of the reconstruction space offers faster reconstruction

without loss in details (Figure 5). The runtime of space division is negligible (≪ 1 min).

process large 3D point clouds, individual levels of the octree

are written to the hard disk.

The 3D reconstruction of the Ettlingen dataset combin-

ing Ettlingen30 and EttlingenFountain gives an impression

of the runtime behavior without space division. Figure 5

shows two example images and the point cloud with about

50 million 3D points generated via MVS [10]. The im-

age configuration causes large differences in the generated

point cloud density. Hence, for detailed 3D reconstruction

via Poisson reconstruction [11, 3] it is necessary to choose

a large maximum octree depth dpoisson (dp). This in turn

leads to high runtimes (Table 1).

[3] (dp=10) [3] (dp=12)

[3] (dp=14) sd + [11]

Figure 5. The two top rows show two example images from Et-

tlingen [18] and the MVS-generated point cloud demonstrating

strongly varying densities on top of the fountain. The two bot-

tom rows present results from out-of-core reconstruction [3] con-

sidering varying octree depths dp. The right image in the bottom

row shows the results from our space division (sd) with successive

surface reconstruction [11]. In spite of the smaller octree depth

(dp = 7), it gives the highest resolution and the overall runtime

comparable to the much less detailed [3] with dp=10 (3. row left

image).

Please note, that in the small Ettlingen dataset the high

runtimes are not only caused by the out-of-core strategy as

especially a large octree depth dp leads to high runtimes.

Nonetheless, is has been shown that out-of-core methods

per se cannot solve the problem of scalable 3D reconstruc-

tion especially for point clouds with varying density. Par-

ticularly, for the complete reconstruction space of the very

large 3D point cloud with 1.5 billion points (Figure 7) a

very large octree depth would be necessary. Unfortunately,

even for smaller octree depths, the out-of-core method by

[3] was not able to process the data within weeks. When di-

viding the space and using [11] the depth can be essentially

reduced in the subspaces and reconstructed within hours.

We have shown that our incremental algorithm allows for

space division of arbitrarily large 3D point clouds. In con-

trast to using kd-trees [20] and out-of-core methods [3] an

essential runtime reduction is achieved. In the next section

we finally analyze the suitability of the results of different

surface reconstruction methods for fusion of subspaces.

5.2. 3D surface reconstruction

Section 4 discussed the adaptability of space division for

existing MVS methods. In the following, we show 3D sur-

face models reconstructed from subspaces. The subspaces

were divided with an overlap of 10% cut off during fusion.

One important restriction of octrees which has to be dis-

cussed for 3D surface reconstruction is their inability to di-

rectly divide space according to density (Figure 1). Exper-

imental evidence shows that in real world datasets the im-

pact of this restriction is marginal. Even though relatively

smaller numbers of points can occur in subspaces, they are

very unlikely to be very small. In the experiments, we use

a maximum of millions of points per subspace. This makes

it very unlikely that the minimum number is below a cou-

ple of points. This in turn, does not negatively influence

the resulting surfaces. Especially because of voxel overlap

and the use of local optimization the restriction is close to

irrelevant. Hence, in the following we only show results for

octree-based space division, which is employed, because it

is significantly faster as mentioned above.

First, we analyze the results for the Ettlingen dataset

(Figure 5). Figure 6 shows results for a challenging part

with overlapping subspaces from different MVS methods

[11, 7, 8, 15]. Especially for global optimization with water-

tightness constraint [11] inconsistent surfaces are obtained.

For [7] which uses a global tetrahedralization and [8] which

16

[15] [8] [7] [11]

Figure 6. A challenging part from the Ettlingen30 sequence. Bottom: Slanted view of the surfaces. Top: (Zoomed) view of the corre-

sponding triangle mesh. The global optimization of the subspaces by [11] causes strong inhomogenities (right column: marked red). When

using (partly) local optimization [7, 8], the inhomogenities at the borders are not visible in the slanted views. They can only be seen on the

hard borders in the top row (red arrows). Using only local optimization and meshing [15], the inconsistencies are avoided and reduced to

numerical errors (left column).

Figure 7. On the left four example images of a registered image set of 822 images are shown. The right part presents a screenshot of the

colored surface model reconstructed by [15] from 1.5 billion points and shaded zoomed parts from the surface model demonstrating the

preservation of small details. In spite of the space division, the 3D model has consistent surfaces.

employs fast volumetric meshing the volume borders are

visible as grey lines in the visualization with triangles. Be-

cause of the local volumetric fusion, the errors are quite

small and not visible in the shaded view. When using lo-

cal optimization and meshing by [15], the differences also

for the visualization with triangles are very small and can be

attributed to numerical errors (small red circle). The space

division runtime for this small dataset amounts to a couple

of seconds.

Second, to demonstrate the reconstruction for a large

data set, we processed the large dataset containing 1.5 bil-

lions points with the local-optimization-based MVS method

[15] (Figure 7). Especially the zoomed areas (red boxes)

demonstrate the configuration-dependent high density in

specific areas. 3D surface reconstruction of this large point

cloud was only possible with our incremental space divi-

sion. The space was divided into over 600 subspaces, which

were processed by MVS in a couple of hours on a cluster

system. The local optimization in [15] leads to consistent

surfaces in spite of space division.

6. Conclusion

In this paper we have presented an incremental space di-

vision algorithm for Multi-View Stereo reconstruction from

very large point clouds. The incremental formulation ex-

tends existing space division methods to arbitrarily large

point clouds. Furthermore, we showed that octrees allow

a faster decomposition of the reconstruction space than kd-

trees which are usually employed so far.

Based on the octree structures at no time more than one

point has to be in memory for the division. Limiting the

octree depth allows processing of point clouds of basically

unlimited size. It also makes it possible to incrementally

decompose the algorithm. We showed that this can be ex-

ploited to improve the runtime on multi-core CPU systems.

Finally, we have demonstrated the suitability for fusion

of results from subspaces for various surface reconstruction

methods.

17

References

[1] R. Allègre, R. Chaine, and S. Akkouche. A streaming algo-

rithm for surface reconstruction. In Eurographics, 2007.

[2] J. L. Bentley. Multidimensional binary search trees used for

associative searching. Commun. ACM, 18(9):509–517, 1975.

[3] M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe. Mul-

tilevel streaming for out-of-core surface reconstruction. In

Eurographics, 2007.

[4] B. Curless and M. Levoy. A volumetric method for building

complex models from range images. In SIGGRAPH, 1996.

[5] B. Curless and M. Levoy. VripPack: Volumetric Range

Image Processing Package, 2010 (accessed September

1, 2015). https://graphics.stanford.edu/

software/vrip/vrippack_roadmap.html.

[6] J. Elseberg, D. Borrmann, and A. Nuchter. Efficient process-

ing of large 3d point clouds. In ICAT, 2011.

[7] S. Fuhrmann and M. Goesele. Fusion of depth maps with

multiple scales. In SIGGRAPH Asia, 2011.

[8] S. Fuhrmann and M. Goesele. Floating scale surface recon-

struction. In SIGGRAPH, 2014.

[9] M. Goesele, B. Curless, and S. Seitz. Multi-view stereo re-

visited. In CVPR, 2006.

[10] H. Hirschmüller. Stereo processing by semi-global matching

and mutual information. PAMI, 30:328–341, 2008.

[11] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface

reconstruction. In Eurographics, 2006.

[12] K. Kolev, T. Brox, and D. Cremers. Fast joint estimation

of silhouettes and dense 3D geometry from multiple images.

PAMI, 34(3):493–505, 2012.

[13] A. Kuhn. Scalable 3D Surface Reconstruction by Local

Stochastic Fusion of Disparity Maps. PhD thesis, Univer-

sity of the Bundeswehr, 2014.

[14] A. Kuhn, H. Hirschmüller, and H. Mayer. Multi-resolution

range data fusion for multi-view stereo reconstruction. In

GCPR, 2013.

[15] A. Kuhn, H. Mayer, H. Hirschmüller, and D. Scharstein. A

TV prior for high-quality local multi-view stereo reconstruc-

tion. In 3DV, 2014.

[16] J. Manson, G. Petrova, and S. Schaefer. Streaming surface

reconstruction using wavelets. Computer Graphics Forum

(Proceedings of the Symposium on Geometry Processing),

27(5):1411–1420, 2008.

[17] H. Mayer, J. Bartelsen, H. Hirschmüller, and A. Kuhn. Dense

3D reconstruction from wide baseline image sets. In 15th

International Workshop on Theoretical Foundations of Com-

puter Vision, 2011.

[18] C. Strecha, W. von Hansen, L. Van Gool, P. Fua, and

U. Thoennessen. On benchmarking camera calibration and

multi-view stereo for high resolution imagery. In CVPR,

2008.

[19] I. Tobor, P. Reuter, and C. Schlick. Multi-scale reconstruc-

tion of implicit surfaces with attributes from large unorga-

nized point sets. In SMI, 2004.

[20] H. H. Vu. Large-scale and high-quality Multi-view stereo.

PhD thesis, École des Ponts ParisTech, France, 2011.

[21] H.-H. Vu, P. Labatut, J.-P. Pons, and R. Keriven. High accu-

racy and visibility-consistent dense multiview stereo. PAMI,

34:889–901, 2012.

[22] K. Wenzel, M. Rothermel, D. Fritsch, and N. Haala. An out-

of-core octree for massive point cloud. In IQmulus Workshop

on Processing Large Geospatial Data, 2014.

[23] C. Zach, T. Pock, and H. Bischof. A globally optimal algo-

rithm for robust TV-L1 range image integration. In ICCV,

2007.

18

https://graphics.stanford.edu/software/vrip/vrippack_roadmap.html
https://graphics.stanford.edu/software/vrip/vrippack_roadmap.html

