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SUMMARY

Incremental Dynamic Analysis (IDA) is presented as a powerful tool to evaluate the variability in
the seismic demand and capacity of non-deterministic structural models, building upon existing
methodologies of Monte Carlo simulation and approximate moment-estimation. A nine-story steel
moment-resisting frame is used as a testbed, employing parameterized moment-rotation relationships
with non-deterministic quadrilinear backbones for the beam plastic-hinges. The uncertain properties of
the backbones include the yield moment, the post-yield hardening ratio, the end-of-hardening rotation,
the slope of the descending branch, the residual moment capacity and the ultimate rotation reached.
IDA is employed to accurately assess the seismic performance of the model for any combination of the
parameters by performing multiple nonlinear timehistory analyses for a suite of ground motion records.
Sensitivity analyses on both the IDA and the static pushover level reveal the yield moment and the
two rotational-ductility parameters to be the most influential for the frame behavior. To propagate
the parametric uncertainty to the actual seismic performance we employ a) Monte Carlo simulation
with latin hypercube sampling, b) point-estimate and c) first-order second-moment techniques, thus
offering competing methods that represent different compromises between speed and accuracy. The
final results provide firm ground for challenging current assumptions in seismic guidelines on using a
median-parameter model to estimate the median seismic performance and employing the well-known
square-root-sum-of-squares rule to combine aleatory randomness and epistemic uncertainty. Copyright
c© 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The accurate estimation of the seismic demand and capacity of structures stands at the core of
performance-based earthquake engineering. Still, seismic performance is heavily influenced by
both aleatory randomness, e.g., due to natural ground motion record variability, and epistemic
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uncertainty, owing to modeling assumptions, omissions or errors. Ignoring their effect means
that structures are being designed and built without solid data or even adequate understanding
of the expected range of behavior. While guidelines have emerged (e.g., SAC/FEMA [1])
that recognize the need for assessing epistemic uncertainties by explicitly including them in
estimating seismic performance, this role is usually left to ad hoc safety factors, or, at best,
standardized dispersion values that often serve as placeholders. So, if one wanted to actually
compute the variability in the seismic behavior due to parameter uncertainty, the question still
remains: What would be a good way to do so?

As a partial answer to this issue, there have been several attempts to isolate some useful
cases and gain insight into the effect of the properties of a model to its estimated seismic
performance. For example, Luco and Cornell [2, 3] found that random connection fractures have
a detrimental effect on the dynamic response of steel moment-resisting frames while Foutch and
Shi [4] used different hysteretic models to show the effect of hysteresis of moment connections
on global demand. Perhaps the most exhaustive study on the influence of model parameters on
global collapse capacity has been performed by Ibarra [5] who studied the dynamic instability
of oscillators and idealized single-bay frames with beam-column connections having non-
trivial backbones including both cyclic and in-cycle degradation. Finally, Porter et al. [6],
have discussed the sensitivity of loss estimation to structural modeling parameters in order to
discern the most influential variables.

Such studies have offered a useful look into the sensitivity of structures to uncertain
parameters. Yet, only Ibarra [5] actually proposes a method to propagate the uncertainty from
model parameters to structural behavior using first-order-second-moment (FOSM) principles
verified through Monte Carlo to evaluate the collapse capacity uncertainty. Lee and Mosalam
[7] have also used FOSM to determine the response uncertainty of a reinforced-concrete (RC)
shear wall structure to several modeling parameters. However, in our opinion, two of the most
important contributions in this field have come from parallel research efforts that proposed the
use of Monte Carlo simulation [8] within the framework of IDA (Vamvatsikos and Cornell [9])
to incorporate parameter uncertainty. Liel et al. [10] used IDA with Monte Carlo and FOSM
coupled with a response surface approximation method to evaluate the collapse uncertainty of
an RC building. On a similar track, Dolsek [11] has proposed using Monte Carlo with efficient
Latin Hypercube Sampling (LHS) on IDA to achieve the same goal. While both methods were
only applied on RC frame structures and only discussed the estimation of uncertainty for
collapse or near-collapse limit-states, they are fairly generalizable and applicable to a variety
of building types and limit-states.

Working independently of the above research teams, we have also come to similar conclusions
on the use of Monte Carlo and simpler moment-estimation techniques to estimate seismic
performance uncertainty. Thus, in light of existing research, we aim to present our own
view on the use of IDA to offer a comprehensive solution to the issue of model-parameter
uncertainty, while drawing useful conclusions on the effects of uncertainties along the
way. IDA being a resource-intensive method, we will attempt to economically tap into its
power through computation-saving methods. Efficient Monte Carlo simulation and moment-
estimation techniques will also be employed to propagate the uncertainty from parameters to
the IDA-evaluated seismic performance offering different compromises in speed and accuracy.
Using a well-studied steel moment-resisting frame as a testbed and focusing on the plastic-hinge
modeling uncertainties, we will nevertheless present a general methodology that is applicable
to a wide range of structures.

Copyright c© 2009 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2009; 00:1–16
Prepared using eqeauth.cls



IDA FOR SEISMIC PERFORMANCE SENSITIVITY AND UNCERTAINTY 3

Figure 1. The LA9 steel moment-resisting frame.
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Figure 2. The moment-rotation beam-hinge backbone to be
investigated and its six controlling parameters.

2. MODEL DESCRIPTION

The structure selected is a nine-story steel moment-resisting frame with a single-story basement
(Figure 1) that has been designed for Los Angeles, following the 1997 NEHRP (National
Earthquake Hazard Reduction Program) provisions (Foutch and Yun [12]). A centerline model
with nonlinear beam-column connections was formed using OpenSees (McKenna et al. [13]). It
allows for plastic hinge formation at the beam ends while the columns are assumed to remain
elastic. This has been a conscious choice on our part: Despite the rules of capacity design,
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Figure 3. The backbone and hysteretic loops of the base-
case hinge.

there is always the possibility of a column yielding earlier than the connecting beams, an issue
aggravated by uncertain yield strengths. Preliminary tests found this effect to be minor for this
nine-story structure, especially when high correlation was assumed between the steel strengths
of beams and columns.

The structural model also includes P-∆ effects while the internal gravity frames have
been directly incorporated (Figure 1). The fundamental period of the reference frame is
T1 = 2.35s and accounts for approximately 84% of the total mass. Essentially this is a first-
mode dominated structure that still allows for significant sensitivity to higher modes. Previous
studies (e.g., Fragiadakis et al. [14]) have identified the yield strength of the hinges as the most
influential parameter in a steel frame, compared to story mass and stiffness, for displacement-
related quantities. While stiffness might prove to be a more important parameter for floor
accelerations and contents’ damage, we will only focus on drift-sensitive structural and non-
structural damage. Thus, studying the influence of the beam-hinge properties on the structural
performance of the building will be our goal.

The beam-hinges are modeled as rotational springs with a quadrilinear moment-rotation
backbone (Figure 2) that is symmetric for positive and negative rotations (Ibarra [5]). The
backbone hardens after a yield moment of aMy times the nominal, having a non-negative slope
of ah up to a normalized rotation (or rotational ductility) µc where the negative stiffness
segment starts. The drop, at a slope of ac, is arrested by the residual plateau appearing
at normalized height r that abruptly ends at the ultimate rotational ductility µu. The spring
employs a moderately pinching hysteresis without any cyclic degradation, as shown in Figure 3.

This complex model is versatile enough to simulate the behavior of numerous moment-
connections, from ductile down to outright fracturing. A “base” hinge was defined using the
properties aMy = 1, ah = 10%, µc = 3, ac = −50%, r = 50% and µu = 6, which were assumed
to be the mean-values for all beam-column connections. Thus we have formed a reference frame
that will serve as the basis for comparing all our modified models.
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Table I. The suite of thirty ground motion records used.

No Event Station φ◦ ∗ Soil† M‡ R§(km) PGA(g)

1 Loma Prieta, 1989 Agnews State Hospital 090 C,D 6.9 28.2 0.159
2 Northridge, 1994 LA, Baldwin Hills 090 B,B 6.7 31.3 0.239
3 Imperial Valley, 1979 Compuertas 285 C,D 6.5 32.6 0.147
4 Imperial Valley, 1979 Plaster City 135 C,D 6.5 31.7 0.057
5 Loma Prieta, 1989 Hollister Diff. Array 255 –,D 6.9 25.8 0.279
6 San Fernando, 1971 LA, Hollywood Stor. Lot 180 C,D 6.6 21.2 0.174
7 Loma Prieta, 1989 Anderson Dam Downstrm 270 B,D 6.9 21.4 0.244
8 Loma Prieta, 1989 Coyote Lake Dam Downstrm 285 B,D 6.9 22.3 0.179
9 Imperial Valley, 1979 El Centro Array #12 140 C,D 6.5 18.2 0.143
10 Imperial Valley, 1979 Cucapah 085 C,D 6.5 23.6 0.309
11 Northridge, 1994 LA, Hollywood Storage FF 360 C,D 6.7 25.5 0.358
12 Loma Prieta, 1989 Sunnyvale Colton Ave 270 C,D 6.9 28.8 0.207
13 Loma Prieta, 1989 Anderson Dam Downstrm 360 B,D 6.9 21.4 0.24
14 Imperial Valley, 1979 Chihuahua 012 C,D 6.5 28.7 0.27
15 Imperial Valley, 1979 El Centro Array #13 140 C,D 6.5 21.9 0.117
16 Imperial Valley, 1979 Westmoreland Fire Station 090 C,D 6.5 15.1 0.074
17 Loma Prieta, 1989 Hollister South & Pine 000 –,D 6.9 28.8 0.371
18 Loma Prieta, 1989 Sunnyvale Colton Ave 360 C,D 6.9 28.8 0.209
19 Superstition Hills, 1987 Wildlife Liquefaction Array 090 C,D 6.7 24.4 0.18
20 Imperial Valley, 1979 Chihuahua 282 C,D 6.5 28.7 0.254
21 Imperial Valley, 1979 El Centro Array #13 230 C,D 6.5 21.9 0.139
22 Imperial Valley, 1979 Westmoreland Fire Station 180 C,D 6.5 15.1 0.11
23 Loma Prieta, 1989 Halls Valley 090 C,C 6.9 31.6 0.103
24 Loma Prieta, 1989 WAHO 000 -,D 6.9 16.9 0.37
25 Superstition Hills, 1987 Wildlife Liquefaction Array 360 C,D 6.7 24.4 0.2
26 Imperial Valley, 1979 Compuertas 015 C,D 6.5 32.6 0.186
27 Imperial Valley, 1979 Plaster City 045 C,D 6.5 31.7 0.042
28 Loma Prieta, 1989 Hollister Diff. Array 165 –,D 6.9 25.8 0.269
29 San Fernando, 1971 LA, Hollywood Stor. Lot 090 C,D 6.6 21.2 0.21
30 Loma Prieta, 1989 WAHO 090 –,D 6.9 16.9 0.638

∗ Component † USGS, Geomatrix soil class ‡ moment magnitude §closest distance to fault rupture

3. PERFORMANCE EVALUATION

Incremental Dynamic Analysis (IDA, Vamvatsikos and Cornell [9]) is a powerful analysis
method that can provide accurate estimates of the complete range of the model’s response,
from elastic to yielding, then to nonlinear inelastic and finally to global dynamic instability. To
perform IDA we will use a suite of thirty ordinary ground motion records (Table I) representing
a scenario earthquake. These belong to a bin of relatively large magnitudes of 6.5–6.9 and
moderate distances, all recorded on firm soil and bearing no marks of directivity. IDA involves
performing a series of nonlinear dynamic analyses for each record by scaling it to multiple
levels of intensity. Each dynamic analysis is characterized by two scalars, an Intensity Measure
(IM), which represents the scaling factor of the record, and an Engineering Demand Parameter
(EDP) (according to current Pacific Earthquake Engineering Research Center terminology),
which monitors the structural response of the model.

For moderate-period structures with no near-fault activity, an appropriate choice for the IM
is the 5%-damped first-mode spectral acceleration Sa(T1, 5%). While this selection is made
easier by the fact that we chose to vary strengths only, thus maintaining a constant first-mode
period, it can nevertheless prove useful beyond this limited example. Even under stiffness and
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mass uncertainties, the fundamental period of the base-case frame, T base
1 , can still serve as

a reliable reference point, as shown, for example, by the results of Vamvatsikos and Cornell
[15]. Therefore, Sa(T base

1 , 5%) can be recommended for general use, avoiding simpler but less
efficient IMs, such as the peak ground acceleration [9]. Regarding the building’s response, as we
have previously discussed, our focus is on deformation-sensitive structural and non-structural
damage. Therefore, the maximum interstory drift, θmax, of the structure is a good candidate
for the EDP.

It should be noted that recent studies have shown that simply using Sa(T1, 5%) as the IM will
generate biased results when using large scale factors (Luco and Bazzurro [16]). Unfortunately,
the limitations of the existing record catalogue do not allow us to refrain from scaling, which
was the basis of IDA after all. As observed by Luco and Bazzurro [16], these differences
are mainly an effect of spectral shape, something that can be corrected e.g., by considering
improved scalar or vector IMs that include spectral shape parameters, as proposed at by
Vamvatsikos and Cornell [15], Luco and Cornell [17] and Baker and Cornell [18]. Nevertheless,
we will maintain the use of Sa(T1, 5%) for the benefit of the readers, since it makes for better
understanding of the IDA curves. Renormalizing to another IM is actually trivial and only a
matter of postprocessing [15]. Furthermore, sufficiency and bias are actually most important
when combining IDA results with hazard information. Since we will not be engaging in any
such calculations, we are safe to proceed with running the analysis with Sa(T1, 5%).

Using the hunt&fill algorithm (Vamvatsikos and Cornell [19]) allows capturing each IDA
curve with only twelve runs per record. Appropriate interpolation techniques allow the
generation of a continuous IDA curve in the IM-EDP plane from the discrete points obtained
by the dynamic analyses. Such results are in turn summarized to produce the median and the
16%, 84% IDA curves that can accurately characterize the distribution of the seismic demand
and capacity of the structure for frequent or rarer ground motion intensities.

Having such a powerful, albeit resource-intensive, tool at our disposal, we are left with the
selection of the alternate models to evaluate. There is obviously an inexhaustible number of
variations one could try with the six parameters of the adopted plastic hinge, not including the
possibility of having different hinge models in each story, or even for each individual connection.
In the course of this study we chose to vary all six backbone parameters, namely ah, µc, ac,
r, µu and aMy, independently from each other but uniformly throughout the structure. Thus,
a perfect, positive spatial correlation of the beam hinges has been adopted: All beam-column
connections in the model have the same normalized properties, a deliberate choice that is
expected to substantially increase the parameters’ influence on the results.

Contrary to our assessment above, it could be argued that non-perfect correlation of the
hinges in the structure might cause strength irregularities that can lead to a higher variability
in the response. Still, for strong-column, weak-beam moment-frames with rigid diaphragms
it is the combined response of all hinges within a story that defines its response, not the
individual strength. Therefore, such irregularities will not arise unless there is high positive
correlation within the hinges of each story but no, or negative, correlation from story to story,
an unrealistic assumption in general. Weak-column, strong-beam designs can further magnify
such effects. Since the above conditions do not apply in our nine-story structure, it makes
sense to expect relatively high variabilities as an outcome of our assumptions.

In the following sections, we evaluate the effect of the six parameters, first by varying them
individually, one at a time, to perform sensitivity analysis and then concurrently for uncertainty
analysis.
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Figure 4. Sensitivity of the SPO curves to the beam-hinge backbone parameters.
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Figure 5. Sensitivity of the median IDA curves to the beam-hinge backbone parameters.
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4. SENSITIVITY ANALYSIS

To evaluate the behavior of our model we performed a sensitivity study by perturbing each of
the six backbone parameters independently of each other and only one at a time, pushing
each random parameter above and below its central, base-case, value. The sensitivity of
each parameter is evaluated using both static pushover and IDA for the following pairs
of modifications: aMy = {0.8, 1.2}, ah = {1%, 20%}, µc = {2, 4}, ac = {−100%,−25%},
r = {20%, 80%} and µu = {4, 8}.

4.1. Static pushover sensitivity

While IDA is indeed a powerful tool, making sense of its complexity is often difficult without
performing a static pushover (SPO) analysis first. Despite criticism on its performance-
estimation abilities, the pushover is a simple method that offers useful intuition on the expected
behavior of a structural model. It has been shown to correspond to the fractile IDA curves [9],
thus helping us understand and qualitatively predict the dynamic behavior of the structure.
Therefore, static pushover analysis with a first-mode lateral load pattern has been performed
as a preliminary evaluation of the performance sensitivity of the base-case versus the modified
curves shown in Figures 4(a–f). Therein, plotted in base shear versus roof drift ratio θroof

coordinates, the response of the base-case frame always appears as a solid line in the middle,
while the upgraded and degraded parameter curves fan around its sides.

The effect of aMy appears in Figure 4(a) and it is indeed impressive. As expected, the
connection yield moment is directly related to the global strength and deformation capacity
of the system; increasing aMy by 20% provides a beneficial effect practically everywhere on
the SPO curve, improving the maximum base shear by 22% and increasing the maximum
attainable roof drift by a similar amount. Figure 4(b) shows the effect of the post-yield
hardening slope ah. Clearly, increasing the slope to 10% seems to raise the SPO curve to
the second highest base shear observed in any of the cases studied, while it slightly delays
its drop due to fracturing. Lowering ah to almost zero has the exact opposite effect. Still,
when the negative slope takes over and the SPO starts dropping, it becomes hard to find any
considerable differences. Connections in stories different from the one where fracturing has
occurred may indeed be enjoying the benefits of a higher (or lower) hardening, but the sheer
loss of strength seems to nullify this effect anywhere beyond 3% roof drift.

On the other hand, increasing the µc in Figure 4(c) to a value of 4 instead of 3 seems to
have a much more substantial effect. The fracturing drop is delayed at least by a 0.8% roof
drift, while there is a moderate increase in the maximum load. Similarly, lowering µc to only 2
has the inverse effect, forcing the SPO to lose strength earlier, both in force and deformation
terms. Even when fracturing occurs, the changes in µc still seem to help, even if only by a
little: The three curves follow converging descents that end in relatively close values of roof
drift. Unsurprisingly, both ah and µc expend most of their influence in the pre-fracturing
nonlinear range, as they both control the hardening, positive stiffness segment but have little,
if any, control on the segments that follow. Figure 4(b) shows a rather minor influence of the
negative slope ah on the system performance. Reducing the descent slope to 25% seems to
help the post-fracture performance, but only marginally. Making it steeper seems to have an
even smaller effect. The reason is obviously the relatively high base-case value of r = 0.5 which
means that no matter how fast the connection loses strength, it will maintain a healthy 50%
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10 D. VAMVATSIKOS AND M. FRAGIADAKIS

residual strength that will always boost its performance. Had we used a lower central r-value
the results would probably have been quite different.

The final two parameters, namely r and µu, only influence the hinge behavior beyond the
negative drop. Therefore in Figures 4(e) and 4(f) we see no change at all in the SPO curves
before the loss of strength occurs. Afterwards, it is obvious that increasing the height of the
residual plateau r is less useful than increasing its length µu before the ultimate failure. The
former only provides some marginal benefits in the post-fracture area, while the latter is
the best way to extend the SPO curve of the building to roof drifts higher than 7%, while
maintaining somewhat higher strengths than the base case. Similarly, reducing r to 20% makes
only a small difference while decreasing µu seems to force an earlier collapse of the structure:
The drop to zero strength now appears at about 4% versus the 5% of the base case.

4.2. IDA sensitivity

Having studied the SPO curves, we have now formed an idea on what to expect qualitatively
from dynamic analysis. Still, there is only so much that we can discern using just static results.
Therefore, for each modified frame we performed IDA to evaluate the sensitivity of the seismic
performance which we chose to express by comparing, in IM-terms, the median IDA curves
of the base case versus the modified ones appearing in Figures 5(a-f). Keeping in mind that
only thirty records were used to trace the median IDA curves shown, we should discount small
differences as statistically insignificant. Thus we can safely state that a modified structure
is better or worse-performing than the base case only when its median IDA appears at a
reasonable distance higher or lower (in IM-terms) than the base case median.

In view of the above, Figure 5(a) is clear-cut: Increasing or decreasing the yield strength
of the plastic hinges through aMy does indeed cause an almost equal increase or decrease,
respectively, of the seismic capacity of most post-yield limit-states. Actually this is the only
parameter whose variability is propagated practically unchanged through the model; the other
five parameters generally show much reduced effectiveness. Figure 5(b) shows one such case
where both a large increase and a decrease of the hardening slope ah seem to offer only a
10% respective change in global collapse capacity. On the other hand, accelerating or delaying
the occurrence of the strength drop is of decisive importance (Figure 5(c)). Increasing µc to
4 has produced an almost 20% improvement practically everywhere in the median capacities
after 3% interstory drift. Reducing µc to 2 has a -20% impact on the structural capacity
as the accumulation of serious damage begins much earlier in the point hinges. The impact
of ac is shown in Figure 5(d) where, as expected, reducing (in absolute terms) the negative
slope provides benefits up to 10% while making it steeper has a 15-20% detrimental effect.
As discussed previously, the relatively low value of these sensitivities is a direct result of the
relatively high default residual plateau; at r = 50% it tends to trim down the effect of the
negative drop, thus reducing its importance.

Figure 5(e) shows the effect of r, where it appears that for a given negative drop and a
relatively short plateau (µu = 6), the residual moment of the plastic hinge has little influence
on the predicted performance of the LA9 structure. However, different default settings on ac

and µu can easily change such results; therefore no general conclusions should be drawn just
yet. On the other hand, for µu there can be no objection that the median IDAs are greatly
influenced by its reduction but not significantly by its increase (Figure 5(f)). A 33% decrease
in ultimate-ductility cost the structure a 40% reduction in collapse capacity, while an equal
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improvement made no difference statistically. It seems that the strength loss caused by a
brittle and fracturing connection will dominate the response of the building. On the other
hand, even a substantial increase in the rotational ductility does not make much difference for
this building, perhaps because of other mechanisms or effects, e.g., P-∆, taking the lead to
cause collapse. In other words, even letting µu go to infinity, as is typically assumed by most
existing models, we would not see much improvement as the building has already benefited
from ultimate rotational ductility as much as it could.

5. UNCERTAINTY ANALYSIS

In order to evaluate the effect of uncertainties on the seismic performance of the structure
we chose to vary the base-case beam-hinge backbone by assigning probabilistic distributions
to its six parameters. Since existing literature does not provide adequate guidance on the
properties of all six variables, we chose to arbitrarily define them. Thus, each parameter is
assumed to be independently normally distributed with a mean equal to its default value and
a coefficient of variation (c.o.v) equal to 0.2 for aMy (due to its overwhelming effect) and 0.4
for the remaining five parameters. Since the normal distribution assigns non-zero probabilities
even for physically impossible values of the parameters, e.g., r < 0, or ah > 1 we have truncated
the distribution of each parameter within a reasonable minimum and maximum that satisfies
the physical limits. We chose to do so by setting hard limits at 1.5 standard deviations away
from the central value, thus cutting off only the most extreme cases as shown in Table II. All
distributions where appropriately rescaled to avoid the concentration of high probabilities at
the cutoff points [20].

Table II. The distribution properties of the uncertain parameters.

mean c.o.v min max type

aMy 1.0 20% 0.70 1.30 truncated normal
ah 0.1 40% 0.04 0.16 truncated normal
µc 3.0 40% 1.20 4.80 truncated normal
ac -0.5 40% -0.80 -0.20 truncated normal
r 0.5 40% 0.20 0.80 truncated normal

µu 6.0 40% 2.40 9.60 truncated normal

5.1. Monte Carlo with LHS

Faced with the non-existence of a closed-form solution for the seismic response of a complex
nonlinear model, there are few routes we can follow to estimate its variability. The most
comprehensive, but at the same time most computationally expensive, solution is the Monte
Carlo simulation. By sampling N times from the parameter distributions, Monte Carlo creates
a population of N possible instances of the structure, each of which needs to be analyzed.
Assuming a large enough number of structures has been sampled, we can reliably estimate the
full distribution of the seismic performance of the structure.

Monte Carlo simulation can be further improved by replacing the classic random sampling
of the population with latin hypercube sampling (LHS, McKay et al. [21]). Similar conclusions
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Figure 6. 200 static pushover curves shown against the 16, 50, 84%
fractile curves of base shear given θroof.
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Figure 8. 200 median IDAs shown against their mean and ± one
standard deviation curves of Sa(T1, 5%) given θmax. The corresponding
16, 50 and 84% fractiles are practically coincident with the mean-sigma,

mean and mean+sigma curves shown.

have been reached earlier by Dolsek [11] who has also chosen this route to handle the parameter
uncertainties within IDA. This makes absolute sense as LHS is a special case of stratified
sampling that allows efficient estimation of the quantity of interest by reducing the variance of
classic Monte Carlo. While random sampling produces standard errors that decline with

√
N ,

the error in LHS goes down much faster, approaching the rate of
√

N3 for linear functions
(Iman [22]). In other words, we can reduce the number of simulations needed to achieve the
desired confidence in our results by a factor of N2 at best. This might seem trivial, especially
since most people might think of buildings as highly nonlinear creatures. Actually, buildings
are only mildly nonlinear in functional terms, especially compared to physical processes (e.g.,
weather forecasting), since most nonlinearity is isolated in relatively few elements of the model.
This is actually one of the reasons why simple elastic analysis or modal combination rules still
remain useful in structural analysis. Thus LHS is ideally suited to reducing the dispersion of
Monte Carlo simulation on nonlinear structures.

Unfortunately, the nature of LHS does not allow us to determine a priori the appropriate
sample size N to achieve a certain confidence level (Iman [22]). Still, the use of a relatively
high N that is at substantially larger than the number of parameters will always result to
reasonably accurate estimates for practical purposes. The optimal N to use is obviously a
function of the number of random variables and their influence on the response; this remains
a subject of further research. In our case, Monte Carlo with latin hypercube sampling was
performed for N = 200 realizations of the frame, a relatively high number (compared to e.g.,
Dolsek [11]) that was chosen to allow pinpoint accuracy in our estimates. To further improve
the quality of our calculations, we employed the Iman and Conover [23] algorithm to reduce
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any spurious correlation appearing between the samples.
To provide some insight on the range of models generated, their SPO curves were evaluated

and plotted in Figure 6. Therein, the flexibility of our model becomes apparent: The sample
ranges from ultra-ductile systems that continue to gain strength up to 4.5% roof drift down
to brittle frames that rapidly lose strength after only 1.5% roof drift. The maximum and
minimum strengths are equally impressive, varying within 7000–15000kN. The 16, 50, 84%
fractile pushover curves of base shear given θroof also appear in Figure 6, showing a coefficient
of variation that rapidly increases with θroof: Starting from zero, in the elastic range, it goes
almost to 100% at θroof =4%, being dominated by the decreasing value of base shear and
the relatively constant standard deviation. Clearly, the wide distribution of the beam-hinge
parameters has produced a very diverse sample of structures.

As an early taste of discussions to follow, Figure 7 shows a comparison of the mean pushover
curve versus the base case pushover, i.e., a comparison of the actual mean response versus the
response of the mean model. Considering the excellent accuracy offered by the N = 200
samples, there is obviously a clear violation of the typical first-order assumption: the mean
response is not the same as the response of the mean structure. On the other hand, the
median pushover curve is quite closer to the base case, although some differences are still
there. Nevertheless, for engineering purposes, one can still argue that the differences shown
might not be significant. It remains to be seen whether such observations in the pushover space
actually translate to similar conclusions in the IDA results.

Thus, by performing IDA on each of the N samples we have obtained 30×N = 6000 IDA
curves and the N = 200 corresponding median IDAs shown in Figure 8. The variability in the
results is apparent, even within just the medians: Showing a similar spread to the pushover
results (Figure 6), there exist realizations of the nine-story structure that collapse for half the
records at Sa(T1, 5%)-values as low as 0.3g, while others remain stable up to 1.5g, the average
case having a (median) capacity of about 0.9g. In order to draw useful conclusions from such
results, we need to quantify and simplify the probabilistic nature of the curves. Therefore, we
have to estimate their moments. We will attempt to do so first by taking advantage of the
Monte Carlo results (Figure 8) and then by attempting simpler approximations that bypass
the cumbersome Monte Carlo simulation.

5.2. Moment Estimation via Monte Carlo

In our development we are interested in estimating a central value and a dispersion for the Sa-
values of capacity for a given limit-state defined at a specific value of θmax. As a central value
we will use the median of the Sa(T1, 5%)-capacities given θmax, ∆Sa|θmax , while the dispersion
caused by the uncertainty in the median capacity will be characterized by its β-value, [24], i.e.,
the standard deviation of the natural logarithm of the median Sa-capacities conditioned on
θmax: βU = σln Sa|θmax . In terms of the work of Jalayer [25] we will be essentially adopting the
IM-based method of estimating the mean annual frequency of limit-state exceedance. Since
we will be implicitly using all Sa-related quantities as conditioned on θmax, we will simplify
notation by dropping the conditioning “. . . |θmax” from all formulas.

Thus, let ln S i,j
a be the natural log of the Sa-capacity for a given value of θmax, structure j

(j = 1, . . . , N) and record i (i = 1, . . . , P ), while ln Sa is the overall mean of the log-capacities.
Then, ln S j

a,50% is the log of their median value for a structure j, and ln Sa,50% is the mean
of the corresponding natural logarithms of the medians over all samples. We can obtain the
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overall median ∆Sa
, its dispersion βU due to parameter uncertainty and the total dispersion

βRU due to both uncertainty and record-to-record variability as:

∆Sa = medj

(
S j

a,50%

)
≈ ln Sa,50% ≈ ln Sa (1)

βU =

√√√√
∑N

j=1

(
ln Sj

a,50% − ln Sa,50%

)2

N − 1
(2)

βRU =

√√√√
∑N

j=1

∑P
i=1

(
ln Si,j

a − ln Sa

)2

NP − 1
(3)

where “medj” is the median operator over all indices (structures) j. It is worthwhile to note
that since all sampled structures were analyzed with the same number of records (P = 30),
if we took the mean-log of all NP = 6000 single-record IDA curves, we would find the same
results as with taking the mean of the N = 200 mean-log (or median) capacities. This is where
the last approximate equality in Equation 1 comes from.

5.3. Point estimate methods

Point estimate methods (PEM) can be used to calculate the first few moments of a function in
terms of the first moments of the random variables. Rosenblueth’s 2K +1 method [26] is based
on a finite difference concept and is one of the easiest point estimate methods to implement. In
essence, it is a simulation technique that requires 2K + 1 simulations, where K is the number
of random variables. The advantage of the method is that it does not require knowledge of the
distribution of the random variables since only the first two moments are sufficient. To apply
it for our purpose, the log of the median Sa-capacities given θmax is considered a function of
the six random parameters,

ln Sa,50% = f (X) = f (aMy, ah, µc, ac, r, µu) (4)

where f is a function (with unknown analytical form) of the random variables for the given
limit-state (i.e., value of θmax considered) and X = [aMy, ah, µc, ac, r, µu] is the vector of the
random modeling parameters.

First of all, PEM requires the evaluation of lnS 0
a,50%, the base-case value of f that

corresponds to all random variables being set equal to their mean mXk
. The remaining 2K

simulations are obtained by shifting each parameter Xk (k = 1, . . . , 6) from its mean by
±σXk

while all other variables remain equal to their mean mXk
. When the Xk parameter

is perturbed, the logs of the median Sa-capacities are denoted as ln S k+
a and ln S k−

a , where
the sign indicates the direction of the shift. For example, if the 4th parameter, X4 = ac, is
perturbed, then the corresponding capacities are calculated as:

ln S 4±
a = f

(
maMy ,mah

,mµc , mac ± σac ,mr,mµu

)
(5)

Copyright c© 2009 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2009; 00:1–16
Prepared using eqeauth.cls



16 D. VAMVATSIKOS AND M. FRAGIADAKIS

Based on Equation 5, the conditional mean and coefficient of variation (c.o.v) of Sa are:

mln Sa = ln S 0
a,50%

K∏

k=1

ln S k+
a + ln S k−

a

2 ln S 0
a,50%

(6)

Vln Sa
=

√√√√√




K∏

k=1


1 +

(
ln S k+

a − ln S k−
a

ln S k+
a + ln S k−

a

)2





− 1 (7)

Then, assuming lognormality, the median Sa|θmax and the dispersion βU can be estimated as:

∆Sa = exp (mln Sa) (8)
βU = mln Sa

· Vln Sa
(9)

For every limit-state, Equations 5–9 are used to estimate the median IDA curve and the
β-dispersion values with only 2K + 1 IDA simulations.

5.4. First-Order Second-Moment method

The first-order second moment (FOSM) method is another easy-to-implement approximating
method that can be used to calculate the first moments of a nonlinear function, and has
often been used to estimate uncertainty (e.g., Lee and Mosalam [7], Baker and Cornell [27])
The number of simulations required is only 2K + 1, equal to that of the PEM, while it also
does not require prior knowledge of the distribution of the random parameters. According
to FOSM, the unknown, in closed form, nonlinear function f can be approximated through
the use of a Taylor expansion to obtain its first and second moments. Following the notation
of Equation 4, the function f = ln Sa is approximated using Taylor series expansion around
the mean X =

[
maMy ,mah

, mµc ,mac ,mr,mµu

]
. Assuming that the random variables are not

correlated, the approximation takes the form (Pinto et al. [28]):

f (X) ≈ f
(
X

)
+

K∑

k=1

(Xk −mXk
)

∂f

∂Xk

∣∣∣∣
X

+
1
2

K∑

k=1

(Xk −mXk
)2

∂2f

∂X2
k

∣∣∣∣
X

(10)

The gradient and curvature of f can be approximated with a finite difference approach,
which is why we need 2K +1 simulations. The random parameters are set equal to their mean
to obtain S 0

a and then each random parameter is perturbed according to Equation 5. Thus,
the first and the second derivative of f with respect to Xk, will be:

∂f

∂Xk
≈ ln S k+

a − ln S k−
a

2σXk

(11)

∂2f

∂X2
k

≈ ln S k+
a − 2 ln S 0

a + ln S k−
a

σX2
k

(12)

Truncating after the linear terms in Equation 10 provides a first-order approximation for the
limit-state mean-log capacities, where essentially they are assumed to be equal to the base-
case values ln S 0

a . A more refined estimate is the mean-centered, second-order approximation,
which according to Equation 10 can be estimated as:

mln Sa ≈ ln S 0
a,50% +

1
2

K∑

k=1

∂2f

∂X2
k

∣∣∣∣
X

σX2
k

(13)
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Thus the median Sa capacity, assuming lognormality, comes out to be:

∆Sa
= exp (mln Sa

) (14)

while, using a first-order approximation, the standard deviation of the logs is estimated as:

βU ≈
K∑

k=1

(
∂f

∂Xk

∣∣∣∣
X

)2

σ2
Xk

. (15)

5.5. Median and Dispersion Estimates

The results of all three methods for the overall median IDA curve appear in Figure 9(a).
FOSM and PEM offer almost identical estimates of the median, which are very accurate up to
θmax = 5% but tend to oscillate off the mark and underpredict the LHS results for all higher
limit-states. Interestingly enough, the LHS median of all sample medians shows a collapse
capacity of 0.9g, i.e., 0.1g lower than the base case median of almost 1.0g. Given the dispersion
shown and the sample size used, this difference becomes statistically significant at the 95%
confidence level. Thus, considerable doubt is cast on the typical, first-order assumption that
the median-parameter model will produce the median seismic performance (e.g., [24]). Still,
the 10% error found in this case may only be of theoretical interest; it should not be considered
important for practical applications. Were this difference any larger, it could have far-reaching
implications: Almost all building analyses executed by engineers utilize central values (means
or medians) for the parameters, implicitly aiming to estimate the “central value” (mean or
median) of response. This is only approximately true for the structure studied.

In order to better understand the reasons behind this apparent disagreement with current
engineering intuition, we have repeated the simulation for a deterministic µu = 6 and only five
random parameters using N = 120 samples. The resulting medians, appearing in Figure 9(b),
show a much improved picture that is now closer to what we might normally expect. While
there is still a statistically-significant difference (at 95% confidence) of about 4% between the
base-case and the LHS median, the two curves are practically indistinguishable from each
other. Even the PEM and FOSM approximations perform much better and manage to provide
a good estimate. Thinking back to the extremely asymmetric influence of µu on the median
IDAs (Figure 5(f)) it becomes apparent that the unbalanced response of the system to changes
in µu is the reason why the overall median has been dragged down and away from the response
of the median-parameter model. Still, this is not an isolated case by any means. Structures
under earthquake loads can be visualized as links in a chain: A series system of collapse
mechanisms. The weakest link will always cause collapse. As long as we keep sampling from
the distributions of the parameters, the capacity of some mechanisms will be increased and for
others it will decrease. Similar conclusions have been drawn for a reinforced concrete frame
by Liel et al. [10]. Thus, on average, we should always expect that the overall median/mean
capacity will be lower than the capacity of the median/mean model, even if by a little. The
number of asymmetric sensitivity plots in Figure 5 should provide ample warning.

As a postscript to the discussion of medians, it should be noted that the approximate FOSM
and PEM-derived median Sa(T1, 5%)-given-θmax results in Figures 9(a)–(b) cannot be thought
of as IDA curves in the classical form; the reason is that due to the inverse method of their
construction, there are multiple values of θmax-demand for a given value of Sa(T1, 5%). To
rectify this issue, one can simply apply a monotone smoother (e.g., Zhang [29]) and obtain
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(b) All parameters except µu, unsmoothed.
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(d) All parameters except µu, smoothed.

Figure 9. Median IDA curves estimated for 6 or 5 parameters using LHS, FOSM and PEM.
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Figure 10. Values of βU given θmax estimated for 6 or 5 parameters using LHS, FOSM and PEM.
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Figure 11. The values of βU , βR, βRU compared against the
SAC/FEMA approximation βSRSS

RU given θmax.

the perfectly acceptable curves shown in Figures 9(c)–(d). Such methods, though, need IDA-
quality data to work with. When performing a limited performance estimation using dynamic
runs at a single IM-level, it would be advisable to stay with the base case or, even better, use
Monte Carlo with LHS for a reasonable estimate of the median.

The estimates of βU obtained by the three methods for six and five random parameters
appear in Figures 10(a) and 10(b), respectively. In all cases the epistemic uncertainty smoothly
rises from a zero value in the elastic range (reasonable, as all modifications to the plastic hinges
are post-yield) and slowly increases up to its collapse-level value. For the six-parameter case
this is estimated to be βU = 0.30 by Monte Carlo, while both PEM and FOSM manage to
get quite close, moderately overpredicting the dispersion at collapse as 0.36, showing errors of
20–25%. Obviously, both methods can provide a usable estimate to βU using only 2×6+1 = 13
sample points, rather than 120–200 for LHS. That is almost an order-of-magnitude reduction
in computations at the cost of a reasonable error. Monte Carlo might become more competitive
at lower sample sizes [11], but as discussed, coming up with an appropriate number a priori
can be difficult. A different strategy aimed at reducing the computational load can be found
in Fragiadakis and Vamvatsikos [30], using static pushover analyses rather than IDA.

In terms of combining epistemic uncertainty and aleatory randomness, the epistemic
uncertainty βU is competing against the dispersion due to record-to-record variability of
Sa(T1, 5%) given the EDP θmax. This dispersion is also important for the performance
evaluation of structures and similarly represented by its β-value [1], i.e., by the standard
deviation of the natural logarithm of the IM given the EDP. This can be directly estimated
from the sample IDA curves of the base case, as we will do, or it can be approximated from
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the corresponding fractile IDAs as

βR ≈ 1
2

(
ln S84%

a − lnS16%
a

)
, (16)

where S84%
a and S16%

a are the 84% and 16% values of Sa(T1, 5%)-capacity.
Both the epistemic uncertainty βU and the aleatory randomness βR contribute to the value of

the total dispersion βRU caused by the record-to-record randomness and the model uncertainty.
This is often used, e.g., in the SAC/FEMA framework, to assess performance in the presence
of uncertainty (Cornell et al. [24]). Since we have available the full IDA data from the Monte
Carlo simulation, we can estimate βRU directly from the 200 × 30 single-record IDA curves
(Equation 3). Alternatively, SAC/FEMA [1] estimates βRU as the square-root-sum-of-squares
(SRSS) of βR and βU , an approximation which is usually taken for granted:

βSRSS
RU =

√
β 2

R + β 2
U (17)

Such a value for every limit-state, or value of θmax, serves as a useful comparison of the relative
contribution of randomness and uncertainty to the total dispersion as shown in Figure 11. Of
course, we should keep in mind that we are only showing a simple example that does not
include all possible sources of uncertainty. Therefore, any conclusions that we draw should be
viewed in light of these limitations.

Having said that, in our case the high βR generally overshadows the lower βU , despite the
use of perfect spatial correlation and moderate-to-high values for the parameter c.o.v of 0.2
to 0.4. The record-to-record variability is higher for any limit-state, ranging from 0.30 up to
0.40. Still, the βU increases rapidly as the structure approaches global dynamic instability.
At such higher limit-states the uncertainty caused by all parameters rises to such an extent
that βU can almost reach, in this example, the corresponding value of βR; 0.29 for βU versus
0.31 for βR. Finally we see that the SRSS estimate of βRU is very close to its value estimated
by LHS. On average Equation (17) accurately predicts the actual βRU . The error is in the
order of 5% or less, except for drifts within 0.05 to 0.08 where the error grows to almost 20%.
For all practical purposes, the SRSS rule for combining aleatory randomness and epistemic
uncertainty can be considered accurate for this structure.

As a final comment we have produced histograms showing the probabilistic distributions of
Sa(T1, 5%)-values of capacity for four limit-states, i.e., conditional on θmax = 0.03, 0.06, 0.09,
0.12. Figure 12 presents the distribution of the median Sa(T1, 5%) due to parameter epistemic
uncertainty and Figure 13 shows the distribution of Sa(T1, 5%) due to combined epistemic
and aleatory variability. In other words, βU and βRU can be estimated for each of the four
θmax-values by calculating the standard deviation of the natural logs of the Sa(T1, 5%)-data
contained in Figures 12 and 13 respectively.

To better judge the distribution of this data we have also plotted the best-fit normal density
function. Obviously the actual distributions are only approximately symmetric and slightly
skewed to the right. Having used normal distributions for the parameters, the epistemic
uncertainty in Sa(T1, 5%) also comes out to be approximately normal. Kolmogorov-Smirnov
distribution tests [20] confirm the appropriateness of the normality assumption at the 95%
level for all but the lowest values of θmax. On the other hand, the lognormality assumption is
rejected. Furthermore, the heavy tail of the record-to-record variability skews the combined
aleatory plus epistemic uncertainty to the right, pushing it closer to the lognormal rather than
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Figure 12. The distribution due to epistemic uncertainty of the median Sa(T1, 5%)-values of capacity,
given four values of θmax.
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Figure 13. The distribution due to both epistemic and aleatory uncertainty of the Sa(T1, 5%)-values
of capacity given four values θmax.
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the normal. This trend becomes more prominent for the lower values of θmax where βR is
dominant (Figure 11). Still, statistical tests at the 95%, or even the 90% level do not confirm
the feasibility of either of the two distributions. In other words, the theoretically-attractive
lognormal assumption may be good enough for the record-to-record variability, but, depending
on the assumed distribution of model parameters, it may not be appropriate for the epistemic
uncertainty or the combined total.

6. CONCLUSIONS

The parameter sensitivity and epistemic uncertainty in the seismic demand and capacity
of a nine-story steel moment-resisting frame with non-deterministic beam-hinges have been
estimated using IDA. Sensitivity results have shown the differing effect of the hinge moment-
rotation backbones to the system’s behavior: While the yield moment, the capping ductility,
the negative stiffness ratio and the ultimate ductility have a significant impact, the hardening
stiffness ratio and the residual moment are only marginally important. In addition, in line with
recent research, Monte Carlo simulation with latin hypercube sampling has been employed as
the primary means to propagate the uncertainty from the model parameters to the seismic
performance, while simplified methods based on point-estimate methods and first-order second-
moment techniques have also been proven to allow accurate estimation at a fraction of the
cost of simulation.

All in all, the epistemic uncertainty in beam-hinges is shown to be an important contributor
to the overall dispersion in the performance estimation as well as a key point that raises
issues regarding the validity of current assumptions in performance evaluation. The classic
notion that the median-parameter model produces the median seismic demand and capacity
has been disproved. Nevertheless, the error is low enough that it can still be considered as
reasonably accurate for practical applications. Finally, the simple square-root-sum-of-squares
rule for the combination of aleatory randomness with epistemic uncertainty has been proven to
be accurate enough for some limit-states but significantly off the mark for others. In summary,
corroborating existing research, IDA has been shown to possess the potential to become the
standard for performance uncertainty estimation. Although resource-intensive and sometimes
controversial for using record-scaling, it can be used as a basis for developing and validating
simpler methodologies that can provide reliable results at a reduced computational cost.
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