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Abstract. In this paper we apply incremental evolution for automatic
synthesis of neural network controllers for a group of physically con-
nected mobile robots called s-bots. The robots should be able to safely
and cooperatively perform phototaxis in an arena containing holes. We
experiment with two approaches to incremental evolution, namely behav-
ioral decomposition and environmental complexity increase. Our results
are compared with results obtained in a previous study where several
non-incremental evolutionary algorithms were tested and in which the
evolved controllers were shown to transfer successfully to real robots.
Surprisingly, none of the incremental evolutionary strategies performs
any better than the non-incremental approach. We discuss the main rea-
sons for this and why it can be difficult to apply incremental evolution
successfully in highly integrated tasks.

1 Introduction

Automatic synthesis of robot controllers is an interesting field, which is likely
to some day contribute significantly to the advancement and adoption of robots
by industry and the general public. Techniques such as artificial evolution of
controllers for autonomous robots can free us from having to understand every
detail related to mapping sensory inputs to actuator outputs. Instead, we can
focus on more high-level aspects in order to obtain a controller capable of solving
a given task.

A robotics setup where artificial evolution can be applied usually starts off
with one or more robots and some task. A fitness function is defined, which,
given a behavior, assigns a number reflecting the goodness of that behavior with
respect to the task. An evolutionary algorithm is then used to find an appropriate
controller. The controllers themselves may consist of rule sets, decision trees or
similar, but it has become common to use artificial neural networks (ANNs)
due to their versatility and tolerance to noisy sensory input. If the controller is
represented as an ANN, an evolutionary algorithm can be employed to optimize
the weights, and possibly the morphology, of the network. Solutions found in this
way can exploit subtle environmental features as they are perceived through the
robot’s sensors. Therefore, artificial evolution might not only be a time-saving



approach for synthesizing controllers: better controllers than those hand-crafted
by human developers can be obtained in some cases [1].

The field in which evolutionary techniques are applied in order to develop
robotics hardware and/or software is called evolutionary robotics. One direction
of studies in this field is concerned with cognitive science and psychology [2],
while another direction focuses on the use of evolutionary techniques as an en-
gineering tool. Our interest falls in the latter category. We focus on the feasibil-
ity and efficiency of different approaches to automatic synthesis of controllers.
Hence, our objective is to find evolutionary setups that frequently produce con-
trollers capable of solving a given task.

The task we are concerned with is the evolution of controllers for a number
of autonomous mobile robots called s-bots [3]. Each s-bot has a variety of sensors
and actuators. Among these, particularly important is the gripper, which enables
multiple robots to physically connect and form an artifact called a swarm-bot.
In swarm-bot formation each s-bot maintains autonomous control. Our objective
is to obtain controllers for a group of real s-bots, in swarm-bot formation, that
allow them to safely navigate through an arena containing holes. The target
location is indicated by a light source.

In our previous work we managed to evolve controllers for the combined pho-
totaxis and hole-avoidance task in simulation, and we showed that the controllers
could be transferred successfully to real robots [4]. In that work we also compared
the performance of various non-incremental evolutionary algorithms: genetic al-
gorithms [5, 6], (µ, λ) evolutionary strategies [7], and cooperative coevolutionary
genetic algorithms [8, 9]. We found that the (µ, λ) evolutionary strategy in gen-
eral out-performed the other evolutionary algorithms with respect to the number
and quality of the successful solutions found. Furthermore, we tested a number
of ANN structures and found that a multilayer perceptron with a hidden layer
of two neurons is sufficient to represent successful solutions that can be trans-
ferred to real robots. For the study presented in this paper, we use the neural
network topology, the fitness function components, and the (µ, λ) evolutionary
strategy, which we previously found be the highest performing while resulting in
transferable controllers [4], [10].

In the following section we discuss what incremental evolution is and provide
examples of studies in which this technique has been applied in the field of au-
tonomous robots. The task and the robotic hardware are explained in Section 3
and 4. Our approach and experimental setup is discussed in Section 5. In Sec-
tion 6, our results are presented, discussed, and compared to results obtained in
our previous work.

2 Incremental Evolution and Related Work

Incremental evolution, applied in order to obtain controllers for a given task,
is a method in which evolution begins with a population that has already been
trained for a simpler, but in some way related, task [11]. This is done by changing
the fitness function during evolution in order to make the task progressively



more complex. In this way, bootstrapping problems can possibly be overcome
and evolution can be sped up. The use of incremental evolution can, however,
require a substantial engineering effort, because the goal-task has to be organized
into a number of sub-tasks of increasing complexity.

Note that some authors use the term incremental evolution for algorithms in
which the morphology of ANNs is under evolutionary control. Such algorithms
include SAGA where the morphology of ANNs is evolved in an incremental
manner by the algorithm itself [12]. Another example is the SGOCE paradigm
in which ANNs are constructed based on developmental programs that change
size and composition during evolution [13]. We will not consider such algorithms
here, but instead we use the term incremental evolution to denote evolutionary
setups in which the fitness function and/or the environment in which the robots
operate are modified during evolution.

A number of studies of incremental evolution of robot controllers has already
been performed. Nolfi et al. [14] used incremental evolution to overcome some
of the discrepancies between simulation and the real world. Controllers evolved
in simulation were transferred to real robots on which evolution was continued.
After a few generations, the performance of the controllers on real robots reached
the same level as achieved in simulation. Thus, incremental evolution was used to
adapt controllers, trained in simulation, to the sensory noise and behavior of the
physical robot hardware, which are both impossible to simulate accurately [15].

Harvey et al. [11] evolved controllers incrementally to let a robot distinguish
between white triangular and rectangular objects on a dark background. The
goal was to evolve controllers that would move robots towards triangles only.
The task was divided into sub-tasks where the robots would first learn to orient
themselves to face a large rectangle easily detectable by their sensors, then to
face and approach a smaller, moving rectangle, and finally to distinguish between
rectangles and triangles, and only move towards triangles. Thus, controllers were
first trained to follow white rectangles and then later trained not to follow them,
but instead to follow triangles only. The authors divided the goal-task into sub-
tasks in which recognition and pursuit were learnt in the first evolutionary phase,
or increment, while discrimination between the two geometric shapes was learnt
during later increments. The controllers obtained with incremental evolution
were shown to be more robust than controllers trained on the complete task
from an initial random population.

Gomez and Miikkulainen [16] used incremental evolution, combined with en-
forced sub-population and delta-coding, to evolve obstacle avoidance and preda-
tor evasion. Incremental evolution was performed by first evolving populations
of neurons capable of avoiding a single enemy moving at low speed on a discrete
10x10 grid. The size of the grid was then increased to a 13x13 grid and another
enemy was added. Two increments followed in which the speed of the two enemies
was increased. The authors found that evolving controllers for the complete task
directly was infeasible, while incremental evolution yielded satisfactory results.

In this paper we test different approaches to dividing the goal-task into sub-
tasks, one inspired by Harvey et al. [11], which we denote behavioral decompo-



sition, and one inspired by Gomez and Miikkulainen [16], which we call envi-

ronmental complexity increase. By performing incremental evolution we hope to
guide the evolution search towards regions of the fitness landscape containing
successful solutions. This should make the evolutionary process more efficient
and should therefore increase the likelihood that an evolutionary run finds a
good solution.

3 The Task

A group of physically connected s-bots should be able to navigate through each
of the four arenas shown in Fig.1. The s-bots are physically connected using the
rigid grippers mounted on the s-bots. The group is initially located in a starting
zone and should navigate to the location of the light source without falling
into any holes or over the side of the arena. Phototaxis and obstacle avoidance
for physically connected robots has previously been studied in simulation by
Baldassarre et al. [17].
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Fig. 1: The four arenas used to evolve controllers. Each of the arenas measures
480x240 cm. The dark areas denote holes, while the white patches denote the
arena surface on which the robots can move. The swarm-bot must move from
the initial location shown on the left-hand side of each arena to the light source
on the right without falling into any of the holes or over the edge of the arena.

4 The Robots

In this study, we develop controllers for the SWARM-BOTS platform [3]. Fig. 2
shows photos of an s-bot and a swarm-bot. Each s-bot is equipped with four infra-



Fig. 2: Different views of an s-bot highlighting the location of the sensors used and a
swarm-bot. An s-bot has a diameter of 120 mm and a height of 190 mm.

red ground sensors, one pointing 45 degrees forward, two pointing straight down-
ward, and one pointing 45 degrees backward. The ground sensors are mounted
between the differential treels c© (a combination of tracks and wheels, see Fig. 2).
Microphones and speakers allow s-bots to emit and perceive sounds. An s-bot

can sense forces exerted on its body in the horizontal plane via a traction sen-
sor. These forces allow the s-bot to gauge the direction of motion of the rest of
the group. Thus, each s-bot can align its own direction of motion to that of the
other s-bots, allowing the swarm-bot to move coordinately. The traction sensor
is mounted inside the robot between the bottom part (the chassis) and the top
part (the turret). The turret can rotate independently of the chassis: up to 180
degrees in each direction from the neutral position. The result of an action in a
given situation is likely to depend on the current rotational difference between
the top and bottom parts of the s-bot. We therefore use two sensors that read
the rotational difference in the clockwise and counter-clockwise directions, re-
spectively, at every control step. The relative direction of the target, identified
by a light source, is perceived via 8 light-sensors distributed evenly around the
plastic ring on the chassis of the s-bot as shown in Fig. 2.

The ground sensors are located directly under the s-bot, which means that
the s-bot will only detect the presence of a hole once it is already partly over
it. If a single robot tries to navigate through an arena containing holes, it is
very likely to fall into a hole unless it approaches the hole perpendicularly. In



swarm-bot formation, however, the s-bots should be able to cooperate to safely
navigate through the arena and reach the location of the light source.

We have preprogrammed the s-bots to emit a sound, which can be perceived
by the other s-bots in the swarm-bot, when the presence of a hole is detected. This
has previously been found to be an efficient aid when evolving hole-avoidance
for a swarm-bot [18].

5 Methodology

5.1 Preliminary Fitness Function Components

In this section we present four components of the fitness function, which are used
in the incremental evolution setups. In our previous studies, we found that these
fitness components assist evolution in finding controllers capable of solving the
combined phototaxis and hole-avoidance task on real robots [10], [4].

The first component scores controllers depending on how close they manage
to get to the light source. In case they manage to get in the immediate vicinity
(within 50 cm) of the light source they are scored based on how fast they do so:

flight =

8

>

>

<

>

>

:

1 −

min distance
initial distance

if the light source is not reached,

2 −

time light is reached
total time

otherwise,

(1)

where total time is 240 seconds. A component penalizing controllers for falling
into holes:

fstayalive =



0.5 if the swarm-bot falls into a hole,
1.0 otherwise.

(2)

Previous studies have shown that coordinated-motion in a group of connected
s-bots can be obtained by minimizing the traction between the s-bots [19]. The
traction forces are measured in the two dimensions of the horizontal plane with 0
corresponding to no traction perceived and 1 to the maximum traction force per-
ceivable. At each control step i, we record the maximum traction τmax

i perceived
by any of the s-bots in the simulation:

fminimizetraction =

P

i
(1 − τmax

i )

total number of control steps
. (3)

The three components above are multiplied to form the function ffinal:

ffinal = flight · fstayalive · fminimizetraction. (4)

Finally, we introduce an additional fitness component fmove that is used in
one of our proposed incremental evolutionary setups. This component rewards
coordinated-motion and exploration by measuring the distance covered, mea-
sured in a straight line, during different time intervals. Initial experiments showed



that measuring the distance moved during multiple time intervals is necessary in
order to prevent circular paths and therefore three “good” intervals were found
by trial-and-error. Every 7, 13 and 29 seconds, the position of the swarm-bot is
compared to its position respectively 7, 13, and 29 seconds earlier. The controller
achieves a fitness score based on the accumulated distances covered during these
intervals divided by the maximum theoretical distance coverable.

5.2 Sub-task Divisions

We divide our goal-task in two different ways based on behavioral decomposition

and environmental complexity increase, respectively.

Behavioral decomposition Assuming that a successful overall behavior can
be decomposed into the sub-behaviors: coordinated-motion, hole-avoidance,
and phototaxis, it is possible that these behaviors can be learnt in an incre-
mental fashion. That is, the first learning task is concerned with coordinated-
motion in an arena without holes under a fitness function that rewards
coordinated-motion (fminimizetraction · fmove). Once a satisfactory solution
has been found, holes are added and the fitness function is extended with
a component, which rewards controllers that avoid steering the s-bots into
holes (fstayalive). Finally, phototaxis too is rewarded and the evolved con-
trollers should be able to solve the goal-task (ffinal). Hence, we assume that
the most fundamental task is coordinated-motion, since coordinated-motion
is needed for performing both phototaxis and hole-avoidance, followed by
combined coordinated-motion and hole-avoidance, and finally the goal task
(including phototaxis) in an arena containing holes1.

Environmental complexity increase: Evolution is started in one of two sim-
ple arenas, one containing no holes and the other containing a single hole.
More holes and different arena layouts are added as evolution finds solutions.
The purpose of applying incremental evolution in this manner is to shape the
initial fitness landscapes in such a way that solutions are easier to find be-
cause the task is less difficult. When the complexity of the arena is increased,
we expect the evolutionary search to resume in region(s) of the fitness land-
scapes closer to good solutions than a random population would cover. This
way of performing incremental evolution could, for instance, prevent evolu-
tionary runs in which the s-bots fail to coordinate and move, because in the
first increments swarm-bots are less likely to encounter a hole. Evolutionary
pressure is therefore towards controllers that cause the swarm-bot to move.
In all increments fitness scores are computed by ffinal.

For our experiments with environmental complexity increase we use the addi-
tional arenas shown in Fig. 3. Two different evolutionary setups are used to test

1 We experimented a different ordering of sub-tasks and with an initial increment
in which only fminimizetraction, as opposed to fminimizetraction · fmove, was used.
However, the behavioral decomposition described above was the highest performing
of those tested.
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Fig. 3: Additional arenas used for incremental evolution based on environmental com-
plexity increase. A population is first trained in (a) until an acceptable perfor-
mance is achieved, then in (b) and so on.

incremental evolution based on environmental complexity increase. One setup
consists of six increments while the other consists of three. In the setup com-
prising six increments, fitness scores of individuals are computed based on trials
in the simplified arenas shown in Fig. 3a, 3b, 3c, and 3d, in the first four in-
crements, respectively. In the 5th increment individuals are scored in two of the
final arenas shown in Fig. 1a and 1b during the fitness evaluation, while in the
6th and final increment all four arenas shown in Fig. 1 are used. In the environ-
mental complexity increase setup consisting of three increments, a population
starts in the arena shown in Fig. 3b containing a single hole. In the second in-
crement the arena shown in Fig. 3d containing multiple holes is used. Finally,
in the last increment, the goal-task is used and individuals are evolved based on
fitness scores in all of the four arenas shown in Fig. 1.

We base the transition from one increment to the next on the performance
of the population on the current sub-task. The fitness components we use are
all relatively noisy. We have to take this into account to avoid that a noisy
fitness function makes evolution move from one increment to the next before the
current sub-task has been truly learnt. We therefore require the fitness score of
the best performing individual to be above a certain threshold for 10 consecutive
generations before a transition is made. The thresholds are different for each
increment and they are determined based on the fitness function, stagnation of
fitness scores during trial runs, and visual inspection of strategies found during
the trial runs. Thus, the task of finding these thresholds is, like finding a suitable
sub-division of the goal-task, an engineering effort.

For each of the evolutionary setups described above, we run 20 evolutions.
Each evolutionary run comprises 1000 generations with a population size of
100 individuals. In all cases, we have used a (µ, λ) evolutionary strategy with



µ = 20 and a mutation rate of 15% on a chromosome of floating-point genes.
This evolutionary algorithm was found to be the highest performing in our pre-
vious study [4]. All evolutionary runs are conducted in our software simulator
TwoDee [10].

6 Results

In order to compare the performance of the controllers evolved in the different
evolutionary setups, we took the highest scoring controller from each of the final
generations, post-evaluated them 25 times in each of the four arenas shown in
Fig. 1, and recorded their average fitness scores. The results for incremental evo-
lution through behavioral decomposition and through environmental complexity
increase are shown on the box-plot in Fig. 4. Each box represents post-evaluation
results for 20 evolutionary runs. We have included results for the (µ, λ) evolu-
tionary strategy with µ = 20, obtained without the use of incremental evolution.

An example of a successful strategy can be seen in Fig. 5. All evolved con-
trollers capable of performing integrated hole-avoidance and phototaxis dis-
played a similar strategy: The swarm-bot moves coordinately towards an edge
of the arena and follows that edge in the direction of the light until the light
source is reached.

As it can be seen in Fig. 4, on average the incremental evolutions did not
produce better controllers than the evolutionary runs without increments. In the
following, we discuss why this is the case.

In the evolutionary setup where integrated phototaxis and hole-avoidance
behaviors were evolved incrementally based on behavioral decomposition, we
assumed that a successful behavior can be decomposed into coordinated-motion,
hole-avoidance, and phototaxis. If we take a closer look at the successful solutions
found by artificial evolution (an example is shown in Fig.5), it is questionable if
such a decomposition is valid and if a suitable decomposition can be found at
all. Regardless of the initial position of the swarm-bot, the initial orientation of
the s-bots, and the layout of the arena, the result we observe is always that the
swarm-bot starts moving left (or right) with respect to the light. Therefore, it
appears that the s-bots mainly coordinate based on the sensed direction of the
light, which serves as a global point of reference, and not on the readings of the
traction sensors. Hence, in a successful integrated behavior, coordinated-motion
is partly a by-product of phototaxis and it is therefore not beneficial to evolve
the two behaviors independently.

In the evolutionary setup based on environmental complexity increase with
six increments, only 11 out of the 20 evolutionary runs reached all increments. In
the remaining 9 setups the populations did not reach an adequate performance
in one of the previous increments. If an evolutionary run does not reach the final
increment, then the controllers produced by this run have not been evolved with
respect to the goal-task but only with respect to a simpler task. We assume that
such controllers obtain a lower post-evaluation score. In the evolutionary setups
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Fig. 5: Example of how a controller capable of solving the task behaves using a simple,
but nonetheless general and successful, hole-following strategy.



using only three increments, 17 of the 20 evolutionary runs reached the final
increment before the 1000th generation.

No assumptions regarding decomposition of behaviors were made in the ex-
periments for incremental evolution through environmental complexity increase.
Nonetheless, the resulting controllers did not on average perform better than con-
trollers evolved non-incrementally. According to the results in Fig. 4, it appears
as if the results for incremental evolution through environmental complexity in-
crease are not better than the results for the non-incremental approach. This is
surprising given that we started evolution in a simplified arena and increased the
complexity gradually in order to avoid bootstrapping issues and assist evolution
in finding good solutions. We believe the major reason for the lack of superior
performance is that some solutions found in the earlier increments are in fact
not in regions of the fitness landscape that contain successful strategies for later
increments. To illustrate this, take for instance the arena shown in Fig. 3b con-
taining a single hole. In this arena, successful solutions include moving directly
towards the light and then to move either left or right around the hole if/when
it is encountered. However, this strategy does not work in the arenas shown in
Fig. 1c and 1d, which both contain a number of turns and which cannot be solved
by controllers that turn either only left or only right around holes. Given the
reactive nature of the ANN controller, such strategies cause the swarm-bot to get
trapped in one of the corners. In this way, incremental evolution through envi-
ronmental complexity increase does in fact results in evolution taking a detour,
because the highest scoring solutions in the initial increments are not simpler
versions of successful behaviors in later increments.

The results of our study illustrate a fundamental issue related to applying
artificial evolution in the field of robotics: The fact that evolution can find so-
lutions, which we as human developers would not have anticipated, is a double-
edged sword. On the one hand we can obtain novel solutions, while on the other
it can complicate the applicability of techniques like incremental evolution for
the very same reason.
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