
INCREMENTAL FILE REORGANIZATION SCHEMES

EDWARD OMIECINSKI

Computer Science Department
North Dakota State University

Fargo, North Dakota 58105 USA

ABSTRACT

For many files, reorganization is
essential during their lifetime in order to
maintain an adequate performance level for
users. File reorganization can be defined as
the process of changing the physical structure
of the file. In this paper we are mainly
concerned with changes in the placement of
records of a file on pages in secondary
storage. We model the problem of file
reorganization in terms of a hypergraph and
show that this problem is NP-hard. We present
two heuristics which can be classified as
incremental reorganization schemes. Both
algorithms incorporate a heuristic for the
traveling salesman problem. The objective of
our approach is the minimization of the number
of pages swapped in and out of the main memory
buffer area during the reorganization process.
Synthetic experiments have been performed to
compare our heuristics with alternative
strategies.

1. INTRODUCTION

We can define
process of changing
the file [9,12].

file reorganization as the
the physical structure of

Reorganization may be
performed for a variety of reasons such as to
improve performance (e.g. reduce retrieval
time) and to enhance storage utilization (e.g.
compact space). Due to changes in user access
patterns and unpredictable insertions and
deletions, file reorganization becomes a
necessary function.

File reorganization can be classified
into three basic approaches [9]: off-line
reorganization, incremental reorganization and
concurrent reorganization. The first method
prohibits user access to the entire file during

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di.
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or sperial permis-
sion horn the Endowment.

the reorganization period. The second method
is an on-line strategy in which reorganization
occurs incrementally. Under this strategy, the
part of the file which is being reorganized is
locked while user access is permitted to the
remainder of the file. The third method is
also an on-line approach but where
reorganization is done continuously with file
usage.

The traditional approach taken for file
reorganization is off-line
c9.131.

reorganization
With this approach, the major effort

addresses the problem of determining optimal
reorganization points c1,12,141. Work
concerning concurrent reorganization ’
oriented towards performance modelling [9,lU;s
For incremental reorganization, the problem of
determining optimal reorganization procedures
has not been addressed and is the focus of this
study.

In this paper, we consider file
reorganization as being required due to a need
to alter the placement of records of a file on
paw of a secondary storage device. An
example of this would be to place records which
are frequently accessed together on the same
page or pages in order to reduce retrieval
time, e.g. record clustering C5,153. A second
example would be to move records from overflow
pages to primary pages of the file, e.g. hash
based files [9].

In section 2 we model the file
reorganization problem in terms of a hypergraph
and show that this problem is NP-hard. In
section 3 we present our two heuristics for
incremental file reorganization:
STATIC COST REORGANIZATION and
DYNAMIC COST REORGANIZATION. We illustrate one
scheme -with- an example in section 4. In
section 5, we present the results of a number
of experiments used to evaluate the performance
of our reorganization schemes.

2. THE REORGANIZATION MODEL

Our reorganization approach is
incremental with file usage, and thus requires
locking only a small part of the file, while
permitting access to the remainder of the file.
We assume that the dominating cost is that

incurred by page accesses from secondary

Proceedings of VLDB 85, Stockholm 346

storage. We also assume that input and output
to the secondary storage device is accomplished
by using a single main memory buffer area.
Thus our objective function is the minimization
of the number of pages swapped in and out of
the buffer during the reorganization process.

Our procedure requires two mappings as
input: one PG, corresponding to the old
(file) state and another NPG, corresponding to
the new state. These mappings satisfy:

PC: R+P
NPG: P’+2R’ (1)

where R = set of record indentifiers
P = set of old page numbers
P’
2R’

= set of new page numbers (P C PI)
= set of subsets of R of size-

2 pagesize

To implement the mapping PC we assume the
existence of a PAGE-TABLE which associates with
every record identifier the page number on
which it resides. The use of the PAGE-TABLE
introduces another level of indirection between
any directory (index) and the data file, but
has the advantage that changes to the data file
do not affect the directory. Normally, in a
tree structured directory [7], the pointers in
the leaves represent the actual physical
addresses, i.e., page numbers, of the
corresponding records. Using the PAGE-TABLE
concept, the directory is modified such that
these pointers represent record identifiers.
In addition, we shall need a LOCK table which
contains a 1 bit entry for every page to
indicate whether or not the page is currently
being reorganized.

Given the mappings from (1) we can obtain
the mapping: A:P’+P which is defined as
follows:

AP’ = {PC(r)] r E NPG(p’)) where p’ E P’.

Thus A gives the set of pages (actually page
numbers) which have to be available in a main
memory buffer in order to construct a new page.

Our reorganization problem can now be modelled
as a hypergraph [2], H=(V,E) where the vertices
correspond to the current pages, i.e., V=P, and
the edges correspond to the new pages, i.e.,
E={A ,\p’ E P’].

P
Figure la illustrates a

simp e hypergraph H, with four edges,
corresponding to the pages in the new state:

Al = 11,2,3I, A2 = I1,2,4,6), A3 = (5,6,7) and
A4 = I3,7,8I.

Given a hypergraph H, we can obtain its
representative graph which we denote as HR. HR

pair (V’,E’)
~‘=~~~~~A.)/Ai, Aj E V’

when V’=E and

representdtive graph HR of’F:e ?y;giAif&h H’::
Fig. 1.a is pictured in Fig. 1.b.

(a)

81

A2
0

A4

A2
J

(b)

FIGURE 1 HYPERGRAPH H AND ITS
REPRESENTATIVE GRAPH

Since we assume that the major costs
involved in the reorganization are due to page
fetches, we shall associate with every edge
(Ai,Aj) in HR a Cost, COSt(Ai,A.), which
reflects the number of page faults o curred d in
constructing A. given that the pages relevant
to hi are curr&tly in the buffer.

We can formally define the file
reorganization problem as follows:

Given, a set of m pages (i.e. the vertices of
HR:A, ,A2,. . . , A,) to be constructed for the new
file state where the number of distinct pages
in the old state that need to be accessed is

n = 1 ii,AiJ ; l<B<n where B is the buffer

capacity in pages; for all i, (Ai1 <B; and a
Cost function COST(Ai,Aj) for each pair of new
Pages hi, AjeV’. Determine an ordering in
which new pages should be constructed (i.e., a
permutation <n(l), n(2), n(m)>) such that
m-l

E COST(A,(iJ, An(i+,J) is minimized.
i-1

Theorem: The file reorganization problem is
NP-hard.

Proof: If we restrict for all i, 1 Ai1 =B, then
we have eliminated the effect of any page
replacement policy. Hence, the only pages that
would be contained in the buffer would be those
needed by the current Arci). As such, the cost

347

associated with an edge (Ax(i),
simply IAn(i+l) - Ai? i) *

I ’

A;[;;1)) is
this

restriction the problem s one of finding a
tour or a Hamiltonian path of least cost for

HR* also known as the open traveling salesman
problem [4,6] which is a known NP-complete
problem.

We should note that if the buffer
capacity B is equal to n then every tOUr would
yield a minimum cost of n since no page would
be swapped from the buffer and fetched back at
a later time.

At this time, we will define the cost
function in more detail. Actually, we utilize
two separate cost functions, each associated
with a different reorganization scheme. The
first cost function which is associated with
the edges of HR is naive in the sense that it
only considers the pages brought into the
buffer by the most recently constructed page.
This cost function is defined as

COST(Ai,Aj) = /Aj - Ail / IAjl.

The cost is expressed such as to give
preference to an edge (AilA.) where
IAinAjl / 1~~1 is closest! to 1. The second
cost function is defined as follows:

COST(A~A~) = I Aj - BUFFER1 / I AjJ

where BUFFER = set of page numbers
corresponding to

pages currently in the buffer.

The latter cost function takes into account the
entire contents of the buffer. Thus, the cost
associated with an edge (Ai,Aj) is the ratio of
the number of pages needed to construct A.
which are not currently in the buffer to th<
total number of pages needed for Aj.

3. HEURISTIC REORGANIZATION SCHEMES

Since the file reorganization problem is
NP-hard we will focus our attention on
efficient heuristics. One assumption which
applies to both reorganization schemes is that
the number of pages needed to construct any
given new page will not exceed the buffer
capacity. If this assumption does not hold we
will not only have to determine an order in
which to construct new pages but also an order
for bringing the pages contained in Ai into the
buffer. An outline of our first reorganization
algorithm is shown below.

Algorithm: STATIC COST REORGANIZATION -

Input:
output:

HR = (V’,E) with lV’I=m and file F
A permutation of V’, i.e., Ax(,),

and reorganized file F’
Step 1:

An(2)r --*
Determine a tour of HR based on the
cost function
COST(Ai,Aj) = IAj - Ail 1 IAji
using a greedy heuristic:

Step 2: For
2.1

R+l to m do
Determine pages to be swapped from
the buffer using a K-lookahead
buffer paging policy UNLOCK pages
swapped out;
Bring in pages needed by A,,(&) not
currently in buffer LOCK pages
brought in;
Rearrange records on buffer pages
until all records which make up

PAGE-TABLE;
Write page AxcII) to disk;

2.2

2.3

2.4
End.

We see that the STATIC COST REORGANIZA-
TION algorithm employs a K-iookahead buffer
page replacement strategy. With K-lookahead
buffering, we examine the next K new pages to
be constructed. If pages necessary to
construct the next K new pages are in the
buffer then we want to retain those pages if
possible by giving priority to the pages for
A Wgr;+p; p”‘i’e2

- ,
)h, . . . , A,cvk) in this order.

ave the op imal strategy that
selects for replacement that page which will
not be referenced for the longest time in the
future [8].

To determine a solution for the traveling
salesman problem, the STATIC COST REORGANIZA-
TION algorithm uses the Greedy heuristic [6].
Starting at a given vertex of HR, the Greedy
algorithm constructs the tour by choosing the
next edge of minimum cost until all vertices
are contained in the tour. Once the complete
tour has been determined, the reorganization is
performed by constructing one new page at a
time for the given order.

Our second algorithm, DYNAMIC COST REOR-
GANIZATION, alternates between finding the next
edge in the tour and doing the reorganization
for the vertex reached by this edge, i.e.,
constructing a new page. In order to determine
the next edge in the tour we again employ a
greedy approach which chooses that unvisited
edge which has minimum cost.

Once a new vertex, say A.
?A

has been
reached in the greedy phase, have to
construct this new page in a single page of the
buffer, say the first one for the sake of

348

simplicity. It could be that the first page of
the buffer corresponds to physical page 11, and
consequently Aj will be stored in physical
location R since we are using only the storage
space available originally. We shall also see
that records can be moved around the other
pages in the buffer in order to determine which
pages are to be swapped if necessary. Hence
our HR graph is a dynamic one, i.e., the
numbers of the Aits for the successive vertices
in the tour may change.

We proceed now to give an outline of our
second reorganization algorithm:

Algorithm: DYNAMIC COST~RRORGANIZATION
Input: HR = (VT,E’) with (V’(=m and file F
Output: A permutation of V’, i.e.,

reorganized file 8
A,(1)9A,(2)****sA (m) and

Notation: BUFFER = the set of page numbers of
the pages currently residing in the

buffer BUFFER = the set of records
contained in the pages currently
residing in the buffer BUF = the
buffer capacity in pages

While tour of HR is not complete do

1 .l Determine next edge of tour based on cost
function COST(Ai ,Aj)=l Aj-BUFFER1 /I AjI
using a greedy heuristic; let Anla) be the
new vertex reached by this edge.

1 .2 Determine pages to be swapped from the
buffer using fewest-records buffer
paging policy;
UNLOCK pages swapped out;

1.3 Bring in pages needed by Anca) not
currently in the buffer:
LOCK pages brought in;

1.4 Rearrange records on buffer pages until all
records which make up the current page
Alt(k

11’
i.e. NPG(A,,(g)), are contained on a

sing e page in the buffer;
modify PAGE-TABLE;

;*; y;;;eg,y;“,“,&n) to secondary storage;

Rearrange records for pages in the buffer
such that records which belong to the same
new page are grouped together as follows:

a) For each keP’
yet) and

such that (Ak not in tour

(NPG(k)nBUFFER + 0) do

Sk = {r\reNPG(k) and P(r)e BUFFER);

SO = BUFFER - US,

b) Order above sets (excluding So) by
non-increasing size to obtain
Se(l)tSe(2)~..,,Se(n)

c) Allocate sets in order

?a’)
,...,S6(,),So to buffer pages,

,...,BUF and modify PAGE-TABLE.

The buffer paging policy employed by our
reorganization procedure chooses the candidate
pages for swapping to be the pages in the
buffer which contain the fewest number of
records needed by new pages. As a result of
the consolidation procedure (Step 1.6) all that
the fewest-records buffering algorithm has to
do is to select the pages in reverse order of
consolidation, i.e., page[BUF], page CBUF-1 1,
. . . where page[x] stands for the page in
position x in the buffer.

As shown in [5], the two dominant time
costs in running the STATIC COST and
DYNAMIC COST reorganization algos thms are
incurreT by the greedy algorithm and the buffer
paging strategy. The greedy algorithm requires
time proportional to the square of the vertices
visited, (i.e., the number of new pages to be
constructed). The total worst case time
complexity for the STATIC COST reorganization
is B(m2+m*BUF*Pagesize) where m = number of new
pages to construct and BUF = buffer capacity in
pages. The worst case time complexity for the
DYNAMIC COST reorganization is 0(m2*Pagesize +
m*BUF*Pzgesize 10g2BUF*Pagesize).

4. EXAMPLE

For the sake of brevity, we will
illustrate only the DYNAMIC~COST~REORCANIZATION
scheme by way of the following example. The
hypergraph and associated representative graph
for this example is pictured in Figure 2.

EXAMPLE : REORGANIZATION PROBLEM
_--- ---

11
21

t:
52
62
7 2
02
93

10 3
11 3
12 3
13 4
14 4
15 4
16 4
17 5
18 5

PG 19 5
20 5
21 6
22 6
23 .6
24 6
25 7
26 7
27 7
28 7
29 8
30 8
31 8
32 8

;; g 9
35 9
36 9

349

PAGE # BUFFER BUFFER
----------------- ----------__----_

9 14 15 25
------ ------ ------ -----

18 19 26 29
----- ------ ----- -----

22 23 30 33

Buffer Size = 4 Pages

FIGURE 2: Hypgergraph and representative
graph for example

*5

Hypergraph H

dLiz%L
Al "3 *4 *5

Representative graph HR

Since the buffer is initially empty, the
cost of choosing any of the vertices as a
starting point of the tour is the same. We
choose the vertex Aj where (A .I is the smallest
as is done with the static c st d reorganization
scheme. In this example, where more than one
vertex satisfies this criterion, we choose the
one whose subscript is smallest. We choose A,
to start with and bring pages 1, 2 and 3 into
the buffer. The buffer contents before (on
left) and after (on right) record rearranging
is shown below. At this point we write page 1
back to secondary storage.

1 12 3 4 12 5 10

2 5 6 7 a 3 6 7 a

3 9 10 11 12 9 4 11 12
----^-_-_-------- -------------_--_

(BEFORE) (AFTER)

The number of page accesses is four (i.e. three
for reading and one for writing). Next, we
rearrange records on pages 2 and 3 using the
consolidation procedure, Step 1.6. The result
is the following:

2 3 9 7 a

3 6 4 11 12

S2 = 131 s3 = 191

SO = I7,8,6,4,11,121

To determine the next edge of the tour we
apply the Greedy algorithm to the cost
function:

con (*,,A,) = 314
con (*,,A~) = 313

COST (A1 ,A3) = 213
COST (A, ,A5) = 3/3

The edge of least cost iS (A,,A3) so we bring
in pages 4 and 7. The buffer contents before
and after rearranging records and after
consolidation appears below.

BUFFER BUFFER
_----------------- __---_---_--__---_

2 3 9 7 a 14 9 15 25

3 6 4 11 12 6 4 11 12

4 13 14 15 16 13 3 7 16

7 25 26 27 28 8 26 27 28
----------------_- -----------------1

before after
rearranging rearranging

BUFFER

3 13 3 26 16

4 6 4 11 12

7 a 7 27 28

after
consolidation

350

This new pwt “3’ requires three page
accesses. Now we determine the next edge of
the tour.

COST(A3,A2) = 213

COST(A3,A$ = 213

COST(A3,A5) = 313

We choose (A ,A) for the next edge and bring
pages 5 a?d 2 6 into the buffer which
necessitates writing page 7 back to secondary
storage. Again, we show the buffer before and
after rearranging records for the new page and
after consolidation.

BUFFER BUFFER
_______---_______- _---_-------------

5 17 18 19' 20 17 21 13 3

6 21 22 23 24 18 22 23 24

4 13 3 26 16 19 20 26 16

3 6 4 11 12 6 4 11 12
_____-__-______--- __---__-----------

before after
rearranging rearranging

BUFFER
--_-_-------------

6 18 19 26 24

4 22 23 20 16

3. 6 4 11 12

after
consolidation

Constructing A2 generates four page accesses.
We then determine the next edge of the tour
using our cost function.

COST(A2,A4) = l/2

COST(A2,A5) - 213

We construct A4 next by bringing page 8 into
the buffer. The buffer snapshot follows.

BUFFER BUFFER
_----------------- __________-__---__

8 29 30 31 32 29 18 19 26

6 18 19 26 24 30 31 32. 24

4 22 23 20 16 22 23 20 16

3 6 4 11 12 6 4 11 12
________---------- ------------------

before after
rearranging rearranging

BUFFER
~~~~~--_----~___-- 

6 22 23 30 16 

4 24 20 31 32 

3 6 4 11 12 
-----_-_-----___-_ 

after 
consolidation 

Building new page A4 required 2 page accesses. 
The last new page to be constructed is A5. 
This requires bringing page 9 into the buffer. 
The buffer snapshots appear next. 

BUFFER BUFFER 

_---_-____----_--_ __-_______________ 

6 22 23 30 16 22 23 30 33 

4 24 20 31 32 24 20 31 32 

3 6 4 11 12 6 4 11 12 

9 33 34 35 36 16 34 35 36 
_---__------__---- __----__------__-- 

before after 
rearranging rearranging 

The last new page needed two page accesses 
(i.e. one for reading and one for writing) and 
an additional three page accesses to write the 
remaining pages from the buffer to secondary 
storage. This yields a total of 18 page 
accesses using the DYNAMIC COST REORGANIZATION - - 
algorithm. 

351 



5. EXPERIMENTAL RESULTS 

This section presents the results of a 
number of synthetic experiments. The objective 
Of the experiments is to compare the 
STATIC COST and DYNAMIC COST reorganization 
schemes with various alternative strategies. 
For the other strategies we will use two 
different ordering schemes as well as two 
different page replacement policies. We also 
modify the buffer size to see what effect the 
buffer capacity has on the various 
reorganization strategies. 

For these experiments, we random1 y 
generate records for 25 pages where the page 
size is 10 records. The record identifiers are 
in the range from 1 to 1000 and the buffer size 
is initially IO pages. These 25 pages 
represent the new paw that must be 
constructed. The original state of the file 
(100 pages) is represented by the following 
formula: 

set of record identifiers on page 
10 

P= 0 I10 * (P-1) + i). 
i=l 

In the first set of experiments, shown in 
Table 1, we are interested in the effect the 
ordering scheme has on the STATIC-COST and 
DYNAMIC COST reorganization schemes. We have 
two versions of each scheme differing only in 
the order in which new pages are constructed. 
The version denoted as LINEAR simply constructs 
the new pages in numerically increasing order 
(i.e., Al ,A2,Aj,...) and the ORDERED version 
constructs pages in the order determined by the 
greedy heuristic. The two rightmost columns of 
the table represents reorganization strategies 
that use a LINEAR ordering and either an LRU 
(least recently used) [83 or ARBITRARY (random) 
page replacement policy. 

Table 2 shows the average number of page 
accesses and the percentage of page accesses 
less than the LINEAR ordering scheme using the 
ARBITRARY page replacement policy. From Table 
2, we see that the versions of the STATIC-COST 
and DYNAMIC COST schemes utilizing their 
ordering heuristic are super ior to the 
associated schemes using a linear ordering. 
However, the DYNAMIC COST scheme with a linear 
ordering produces a seater savings than either 
STATIC COST version. This demonstrates the - 
importance of the buffer management scheme for 
the DYNAMIC COST strategy. Another observation 
is that the LRU page replacement policy which 
is used in operating systems does not fair much 
better than the arbitrary page r.eplacement 
policy. This has also been shown in other 
studies concerning database systems [3,11]. 

In the second set of experiments, Table 
3, we want to observe, for the STATIC COST 
scheme, whether a complete lookahead Ti .e. 
24-lookahead) yields an increased savings over 
the 1-lookahead. In addition, we want to see 
what improvement can be gained by using the 
greedy heuristic as in the DYNAMIC COST 
algorithm to determine the ordering witk the 
LRU and arbitrary page replacement strategies. 
Table 4 summarizes the results of these 
experiments. As we see, using the 24-lookahead 
gives us essentially no improvement. This is 
as anticipated for these experiments. Since 
the 10 records for a new page are randomly 
generated, we would expect the 10 records to 
reside on close to ten different pages. Hence, 
with the 24-lookahead scheme as well as with 
the 1-lookahead scheme it would be possible to 
keep Only a few if any pages in the buffer 
beyond those needed for the current new page. 
By using the greedy algorithm for determining 
the order we see that the LRU and arbitrary 
schemes are just as good as the STATIC COST 
method. Although, the DYNAMIC COST ordered 
scheme is the best showing approximately a 41% 
savings, 

Tables 5 and 6 show the results of the 
third set of experiments. For these 
experiments the buffer capacity is increased by 
50%. Once again, the DYNAMIC COST ordered 
scheme provides the largest savings, about 45%. 
However, since the buffer capacity is extended, 
the 24-lookahead STATIC-COST scheme now shows a 
marked improvement over the l-lookahead scheme 
and the dynamic ordered LRU and arbitrary 
schemes. Again, the improvement of the 
24-lookahead scheme is due to the fact that we 
can keep more pages in the buffer (i.e., pages 
which will be referenced in the future). 

Tables 7 and 8 show the results of the 
fourth set of experiments. For these 

experiments the buffer capacity is increased 
100% over the initial buffer size. The 
DYNAMIC COST ordered scheme is still the best 
approach with approximately a 47% savings. 
Again the 24-lookahead scheme is showing an 
improvement due to the increased buffer size. 
The performance of the other schemes remains 
about the same. 

352 



_______________--_-_--------------------------------------------- 
STATIC DYNAMIC 

.____------------------ _______----~_----_---~ 

------------ 

LINEAR 
.___------- 

426 

420 

434 

388 

436 

426 

418 

418 

426 

424 
-- 

ORDERED 
.---------- 

364 

376 

372 

352 

360 

374 

366 

368 

382 

358 
---------- -_ 

LINEAR ORDERED LRU ARB 
---------- .---------- .------ -----_-_ 

296 226 436 438 

304 270 426 424 

286 260 434 434 

280 230 398 398 

288 242 446 448 

268 242 434 432 

296 240 424 424 

282 242 424 424 

290 270 434 434 

320 238 434 436 

- 
LINEAR 

.--------------- 

TABLE 1. Comparison of Reorganization Schemes with 
Buffer Size = 10 

(In Page Accesses) 

_________------________________________ 

STATIC-LINEAR 

STATIC-ORDERED 

DYNAMIC-LINEAR 

DYNAMIC-ORDERED 

LINEAR-LRU 

LINEAR-ARB 

AVERAGE PAGE $ LESS THAN 
ACCESSES LINEAR-ARB 

.------------------ ----------__--_-_ 
421.6 1.77 

367.2 14.45 

291 .o 32.20 

246.0 42.68 

429.0 0.04 

429.2 0.00 

TABLE 2. SUMMARIZED DATA FROM TABLE 1 

351 



STATIC-ORDERED 
,___-___---_-~-~~--~~ 
l-LOOK 24-LOOK 

.-------- .---------- 
360 360 

‘350 350 

354 352 

356 356 

370 366 

350 350 

378 378 

378 376 

380 378 

370 368 

DYNAMIC 
ORDERED 

!---"------ 
246 

264 

234 

264 

244 

254 

254 

282 

272 

252 

LINEAR 
,----C--_--_-__ I- 

LRU ARB 
.------ _------ 

444 446 

422 416 

438 438 

440 440 

438 440 

436 436 

432 432 

438 438 

436 436 

440 442 

DYNAMIC-ORDER 
.-----_-----_--_ 

LRU ARB 
.-__--__ _------ 

358 356 

348 356 

362 358 

358 358 

360 360 

358 360 

370 372 

360 360 

384 384 

364 364 

TABLE 3. COMPARISON OF REORGANIZATION SCHEMES WITH BUFFER SIZE = 10 
(In Page Access) 

-----------__-____-_--------------- 
AVERAGE PAGE $ LESS THAN 

ACCESSES LINEAR-ARB 

---------_--_--______ _-_-__-____-__-_- _______________ 
1 - LOOK 364.6 16.45 

24 - LOOK 363.4 16.73 

DYNAMIC-ORDERED 256.6 41.20 

LINEAR-LRU 436.4 0.00 

LINEAR-ARB 436.4 0.00 

DYNAMIC-LRU 352.2 19.29 

DYNAMIC-ARB 362.8 16.87 
--__-_____-__-__________________________---------------- 

TABLE 4. SUMMARIZED DATA FROM TABLE 3 

354 



_______________-____------------------------------------------------ 
STATIC-ORDERED 

,-------------------- 
l-LOOK 
,-------- 

326 

324 

312 

332 

350 

318 

348 

336 

344 

332 

24-LOOK 
__-_--_---- 

282 

280 

284 

290 

302 

284 

312 

294 

308 

298 

DYNAMIC 
ORDERED 

238 

226 

208 

220 

232 

228 

216 

226 

218 

226 

LINEAR 
_-------------- 

LRU ARB LRU ARB 
_------ .------ .------- - - - - - - 

426 408 332 334 

384 388 316 334 

410 414 330 330 

410 408 348 354 

412 410 332 344 

414 412 326 350 

412 412 350 356 

414 418 334 354 

406 416 342 358 

434 418 342 340 

- 
DYNAMIC-ORDER 

.----_---_______ 

TABLE 5. COMPARISON OF REORGANIZATION SCHEMES WITH BUFFER SIZE = 15 
(In Page Accesses) 

l-LOOK 

24-LOOK 

DYNAMIC-ORDERED 

LINEAR-LRU 

LINEAR-ARB 

DYNAMIC-LRU 

DYNAMIC-ARB 

AVERAGE PAGE 
ACCESSES 

.--__-__-________-_ 
332.2 

293.4 

223.8 

412.2 

410.4 

335.2 

% LESS THAN 
LINEAR-ARB 

.----------------- 
19.05 

28.51 

45.47 

-0.44 

0.00 

18.32 

15.84 

TABLE 6. SUMMARIZED DATA FROM TABLE 5 

355 



STATIC-ORDERED 
________------------- 
l-LOOK 24-LOOK 

_-___---- .---------- 
304 250 

308 244 

298 256 

320 262 

332 266 

306 252 

336 280 

320 264 

336 282 

318 262 

DYNAMIC 
ORDERED 

.---------- 
208 

198 

200 

204 

202 

200 

198 

202 

202 

200 

LINEAR DYNAMIC-ORDER 
.-------------- ,-------____-___ 

LRU ARB LRU ARB 
--w---m .---e-w .------_ .------ 

382 370 316 320 

356 362 292 306 

378 390 312 318 

380 382 306 332 

382 394 314 324 

392 396 306 324 

388 380 330 332 

382 384 304 320 

384 382 330 342 

412 396 298 320 

STEP 7. COMPARISON OF REORGANIZATION SCHEMES WITH BUFFER SIZE = 20 
(In Page Accesses) 

l-LOOK 

24-LOOK 

DYNAMIC-ORDERED 

LINEAR-LRU 

LINEAR-ARB 

DYNAMIC-LRU 

DYNAMIC-ARB 

AVERAGE 
PAGE ACCESS 

.------_--_---- 
317.8 

261.8 

201.4 

383.7 

383.6 

310.8 

323.8 

% LESS THAN 
LINEAR-ARB 

-----_--_--__-_- 
17.15 

31.75 

47.50 

-0.03 

0.00 

18.98 

TABLE 8. SUMMARIZED DATA FROM TABLE 7 

6. CONCLUSION 

The file reorganization problem has been 
mocielled in terms of a hypergraph and was shown 
to be NP-hard. Two heuristics have been 
introduced which include specific buffer paging 
strategies. Experiments were performed to 
compare a number of alternative strategies 

356 



featuring different orderings and page 
replacement schemes. The DYNAMIC COST 
reorganization algorithm is clearly - the 
superior approach in the experiments. The 
STATIC-COST algorithm with complete lookahead 
is good if the buffer capacity is large. The 
linear LRU and linear arbitrary schemes produce 
essentially the same results which are poor. 
The dynamic LRU and dynamic arbitrary schemes 
produce approximately the same savings and in 
the case where the buffer capacity is small 
they are as good as the STATIC-COST algorithm. 

Cl1 Batory, D.S., “Optimal File Designs and 
Reorganization Points”, ACM Transactions 
on Database Systems, Vol. ~No. 1, (198.21, 
pp. 60-81. 

c21 Berge, C., Graphs and Hypergraphs, North 
Holland, New York, (1973). 

c33 Brice, R.S. and Sherman, S.W., “An 
Extension of a Database Manager In A 
Virtual Memory System Using Partially 
Locked Virtual Buffers”, ACM Transactions 
on Database Systems, Vol. 2, No. 2, (1977), 
pp. 196-207. 

c41 Carey, M. and Johnson, D., Computers and 
Intractability: A Guide to the Theory z 
NP-Completeness, Freeman, San Francisco, 
(1979). 

c51 Omiecinski, E., Algorithms for Record 
Clustering and File Reorganization, Ph.D. 
Dissertation, Northwestern University, 
Department of Electrical Engineering and 
Computer Science, (1984). 

C61 Rosenkrantz, D. J., Stearns, R.E., and 
Lewis, P.M., “An Analysis of Several 
Heuristics for the Traveling Salesman 
Problem”, SIAM Journal of Computing, Vol. 
6, No. 3, (19771, pp. 563-581. 

c71 Scheuermann , P. and Ouksel, M., 
“Multidimensional B-trees for Associative 
Searching Database Systems”, 
Information SyiFems, Vol. 7, No. 2, (19821, 
pp. 123-137. 

C81 Shaw, A.C., The Logical Design of 
Operating Systems, Prentice-Hall, Englewood 
Cliffs, N.J., (1974). 

REFERENCES 

[9] Sockut, G.H. and Goldberg, R.P., “Database 
Reorganization - Principles and Practicet’ , 
ACM Computing Surveys, Vol. 11 , No. 4, 
(19791, pp. 371-395. 

[lo] Soderlund, L., “Concurrent Database 
Reorganization - Assessment of a Powerful 
Technique through Modelling,” Proceedings 
of VLDB, (19811, pp. 499-509. 

Cl11 Stonebraker, M., “Operating System Support 
for Database Management,” Communications 
of the ACM, Vol. 24, No. 7, (1981), pp. 
412-418. 

cl21 Teory, T.J. and Fry, J.P., Design of 
Database Structures, Prentice-Hall, 
Englewood Cliffs, N.J., (1982). 

[ 133 Wiederhold, G., Database Design, 
McGraw-Hill, New York, (1977). 

[14] Yao, S.B., Das, K.S., and Teory, T.J., “A 
Dynamic Database Reorganization Algorithm,” 
ACM Transactions on Database Systems, Vol. 
1, No. 2, (19761, pp. 159-174. 

Cl51 yu, C.T. and Suen, C., “Adaptive Record 
Clustering”, Technical Report, Department 
of Electrical Engineering and Computer 
Science, University of Illinois at Chicago, 
(1983). 

357 


