
University of Alberta

Incremental Free-Space Carving for Real-Time 3D Reconstruction

by

David Israel Lovi

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©David Israel Lovi

Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or

sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise

made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein

before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any

material form whatsoever without the author’s prior written permission.

Abstract

This thesis addresses the problem of automatic real-time 3D reconstruction of general scenes from

monocular video. Whereas many impressively accurate reconstruction techniques exist in the multi-

view stereo literature, most are slow offline batch methods designed to work in highly calibrated

settings. Real-time reconstruction opens doors for real-time applications. This thesis presents a

swift but approximate incremental method based on visibility and free-space constraints. “Free

space” refers to the observation that lines of sight between photographed surfaces and their observing

cameras must be empty; otherwise the surfaces would be occluded. Our approach begins with a

sparse reconstruction from online Structure from Motion and interpolates the resulting points in

a free-space aware manner to produce a physically consistent dense 3D model. We validate our

algorithms on real and synthetic data, perform complexity analysis proving the real-time quality,

and demonstrate the algorithms’ usefulness for improving visualization in a tele-robotics context.

Acknowledgements

My friends, teachers, colleagues, and family have all influenced my work as well as my academic

and personal self. I am deeply grateful to all of you.

First, I would like to thank my supervisor, Martin Jagersand, as well as his wife and my unwritten

co-supervisor Dana Cobzas. You introduced me to computer vision, taught me and guided me

through my degree, nurtured my skills, put up with my epic procrastinations, and even traded bread

with me. The bread was delicious.

All of my colleagues have shaped the positive experience that I had over the past four years.

For this I say thanks. Alejandro Hernandez-Herdocia deserves special mention for his time spent

on the IROS tele-robotics project. His expertise with the WAM was essential. I consider Adam

Rachmielowski as my predecessor, as his work before mine was toward the same project and goals.

Uncountable thanks go out to Neil Birkbeck, the most driven person I have ever met. He helped

me greatly, both through insightful discussion and by sharing code. In fact, the IROS tele-robotic

system’s software was essentially developed by him. All I had to do was integrate my code-base and

algorithms. Needless to say, this software was a giant undertaking and an extraordinary help.

My lab mates and my friends are not without overlap. Thank you, Karteek Popuri, for being

awesomely ridiculous and thereby ridiculously awesome. Neil, we had good times both in Paris and

back at home, even when just griping at each other. Now that you have moved away, you are missed

more than you know.

Azad Shademan, Sheehan Khan, and of course my supervisor Martin Jagersand as well as my

defence committee John Bowman and Pierre Boulanger, have all provided invaluable feedback re-

garding the writing of this document.

I thank all the teachers that have raised me academically from the beginning. I dare not declare

this list exhaustive, but Mr. Bratu, Mr. Millar, Mr. Smilanich, and Mr. McNab were particularly

influential. Weirding out my high-school computing teacher, Harvey Duff, was extremely fun; I

look forward to the next time we bump into each other. Among the first and most important teachers

in my life were those in my immediate family. Thank you, my brother Aaron, for giving me a spark

and a head start on computing and math.

And thank you to my parents, Ita and Efim Lovi, and my friends, for being the excellent people

that you are.

Finally, thanks whoever stole my birthday cake! The memory will forever be hilarious. You

even returned the plates.

Table of Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Contributions and Contents . 4

2 Background 5
2.1 Camera Model . 5
2.2 Triangulation and Structure from Motion . 7
2.3 Delaunay Triangulation . 8

3 The Literature 11
3.1 3D Shape Reconstruction From Images . 11

3.1.1 Offline Reconstruction . 11
3.1.2 Free-Space Methods . 15
3.1.3 Real-time / Near Real-time Reconstruction 16
3.1.4 Shape From Points . 18

3.2 SLAM / Online Structure from Motion . 22
3.2.1 Recursive Filtering . 22
3.2.2 Online Bundle Adjustment . 25

3.3 Tele-robotics . 25
3.3.1 Photo-Realistic Predictive Display . 26

4 Method and Algorithms: Incremental Free-Space Carving 28
4.1 Free Space . 29
4.2 Inputs and Representation . 30
4.3 Algorithms . 31

4.3.1 Commonalities . 31
4.3.2 Keyframe Insertion . 32
4.3.3 Data Association and Dissociation . 33
4.3.4 Outlier Deletion . 34
4.3.5 Refinement . 35
4.3.6 Forgetting Heuristic . 36

4.4 Isosurface Extraction and Regularization . 36
4.5 Computational Complexity . 38
4.6 Software System . 39

5 Experiments 41
5.1 Reconstruction Results . 41
5.2 Timings and Heuristic Evaluation . 44
5.3 Synthetic Data Evaluation . 45
5.4 Application: Predictive Display for Tele-Robotics 51

5.4.1 System . 52
5.4.2 Alignment Experiment . 54
5.4.3 Inspection Experiment . 55

6 Conclusions 57
6.1 Limitations and Future Work . 58

Bibliography 60

A Complexity Proofs 66

List of Figures

2.1 Pinhole camera . 6
2.2 Triangulation problem . 8
2.3 3D Delaunay triangulation . 9
2.4 2D Delaunay triangulation . 9

4.1 Free space: the general concept and our discrete representation 29
4.2 The exact discrete free-space problem . 30
4.3 Reconstruction system . 32
4.4 A 2D illustration of Algorithm 1, Keyframe Insertion 33
4.5 The traversal algorithm for processing a free-space constraint 34
4.6 Free-space constraint similarity measure . 36
4.7 Illustration of the method’s graph-cut regularization 37

5.1 Three models reconstructed in real-time from video without regularization 42
5.2 A model reconstructed in real-time from video with regularization 43
5.3 Efficiency for K = 1, 5, and∞ on a representative dataset 44
5.4 Forgetting heuristic comparison . 45
5.5 Synthetic-data point cloud generation . 46
5.6 Ground truth meshes . 46
5.7 View sampling conditions for all the synthetic data experiments 47
5.8 Noiseless reconstructions . 48
5.9 Noisy reconstructions . 48
5.10 Accuracy error as a function of sampling noise 49
5.11 Accuracy error as a function of outlier ratio . 50
5.12 Dense Cup reconstruction for several outlier ratios 51
5.13 Reconstructions with regularization versus without 52
5.14 Tele-robotics system . 53
5.15 Illustration of predictive display . 53
5.16 Tele-robotics alignment task . 55
5.17 Mean normalized times to perform the tele-robotic tasks 55
5.18 Tele-robotics inspection task . 56

Chapter 1

Introduction

This thesis addresses the central yet difficult problem in computer vision that is the automatic re-

covery of 3D shape from camera imagery. Specifically, given a collection of photographs or video

frames redundantly observing a scene in our three dimensional world, and taken from multiple dis-

tinct viewpoints, the problem is to compute and reconstruct some representation of the geometry of

that scene such as a conventional 3D graphics mesh.

Many techniques have been devised in an attempt to solve this problem, however all solutions

thus far entail limiting assumptions, approximations, and compromises within their respective for-

mulations. No known solution is general enough to truly solve the problem for all cases and appli-

cations (and our method is no exception). The primary focus of the research community has been

on attaining the most detailed accurate and complete geometry possible given the inputs.

The multi-view stereo literature conveys the common approach, which is to use all the texture1

and color information in the images to contribute to the estimation of shape: the assumption is that

each point of the scene geometry should look the same from any imaged viewpoint, i.e., have the

same local image color and texture. This notion is called photo-consistency (and e.g. it is violated

for mirrors or specular objects that do not look the same from distinct viewpoints). Many algo-

rithms centred on this reconstruction cue have been developed that achieve impressively accurate

3D reconstructions from just handfuls of images. However, as a result of optimizing geometry us-

ing texture and color information densely, almost all published methods result in slow, offline batch

operation, requiring many minutes to hours of processing time for just tens of input images [95].

A few recently developed exceptions exist that can operate in real time, but they require extreme

computational horsepower and parallelized (GPU) hardware [77, 80]. This can be a problem e.g.

for robotics applications where onboard hardware is limited. We review multi-view stereo and other

techniques for 3D reconstruction in Chapter 3.

This thesis develops and explores a method for 3D reconstruction with an emphasis on speed

over geometric detail. The approach relies on different assumptions from the multi-view stereo

1Texture, in this context, refers to the pattern of brightness or luminosity on an imaged surface. This is related to tactile

texture, as distinct bumps or gratings on a surface will produce a corresponding distinct contrast when that surface is lit and

viewed.

1

norm, is comparably lightweight and provably real-time, and in this way attempts to broaden the

applicability of 3D reconstruction to new domains.

Our approach begins with a Structure from Motion (SFM) starting point. Structure from Motion

refers to the problem of estimating sparse, usually point-wise, 3D geometry from corresponding

image features that are photo-consistently matched across more than one view. Rather than a dense

3D model, the output is a point cloud that samples the scene surfaces. The geometry of imaging

is well studied and directly applicable [46], and robust real-time solutions to the SFM problem

exist [61].2 From a single moving camera, real-time SFM computes a set of 3D scene points, a

camera-pose track, and visibility information relating which points were visible from each camera

vantage point. This problem is fundamentally easier than dense 3D shape estimation because only

the most reliably estimable features need be matched and reconstructed. Ambiguous regions such

as mirrors or textureless parts of monotone walls need not be considered. We summarize Structure

from Motion in Chapter 2 and review real-time solutions in Chapter 3.

We take the points, camera track, and visibility information from SFM as input to our algorithms,

thus the method inherits a sparse feature-based approach. The algorithms coherently “connect the

dots” to output a dense interpolative 3D surface reconstruction. Interpolation is achieved by using

the visibility information to reason about where the scene surface can and cannot be. The concept

is called “free space,” [35, 49, 103] and it is presented in Section 4.1. Essentially, we know that

the space between photographed surfaces and their observing cameras must be empty, because oth-

erwise the surfaces would have been occluded. This geometric constraint is the method’s primary

reconstruction cue. Combining free space with the right adaptive spatial discretization results in a

favourable impact on the viewpoint or visibility sampling requirements as well as the computational

complexity of our algorithms. We introduce the Delaunay discretization in Chapter 2 and review its

known properties with respect to surface reconstruction in Section 3.1.4.

Since real-time SFM is an online process, as new video frames become available, our algorithms’

inputs continuously change online. Therefore, more precisely, our algorithms take small incremental

changes to the point cloud, camera track, and visibility as input. These incremental changes can be

classified as one of several events, e.g., the SFM system’s addition of a new keyframe view3, or

the deletion of an outlier point. The method encompasses a set of five algorithms to handle five

general types of changes in an incremental and event-driven fashion. The incremental nature of

the algorithms offers the speed necessary for real-time reconstruction from video sequences. The

algorithms are presented in Chapter 4, Method and Algorithms.

2In the robotics literature, Simultaneous Localization and Mapping, or SLAM for short, effectively reduces to the same

real-time problem when the robot’s sensor is a single camera.
3A keyframe is just a video frame chosen from a video sequence for special use. The selection scheme varies from system

to system. Keyframes can be selected periodically, e.g. every 30 frames, or at spatially disparate locations, e.g. when the

camera has moved a threshold distance away from all previous keyframe camera positions.

2

1.1 Motivation

The motivation for real-time reconstruction can be found in its potential applications. From the

perspective of utility, solving even the offline version of the problem is of great interest. Whenever

an artist would need to undergo the labour-intensive process of creating a 3D model of a real-world

object or scene, such as for the games or cinematography industry, the labour could be saved and

automated away. For example, vision-based reconstruction has been used for special effects in

films like The Matrix [26], and it has been used for digitally preserving and capturing historical

and archaeological sites or artefacts [86, 104]. However, if automatic modeling can be performed

quickly enough, real-time applications become possible.

An example is augmented reality, where renderings of virtual objects are mixed with real-world

footage [6]. To realistically meld in virtual objects, a 3D model of the real-world scene allows for

correct mutual occlusions when rendering them, and it facilitates physical interaction and contact

in animation. In the absence of a priori scene models, real-time modeling enables pick-up and

go augmented reality as demonstrated in [80]. Other applications of real-time modeling include

improving 3D visual modeling itself. Typically multi-view stereo reconstructs the object or scene

of interest from images captured separately at an earlier time. If the images taken did not observe

the subject’s surfaces everywhere sufficiently or did not cover enough variety in viewpoints, one

may have to repeat the interleaved processes of image capture and computation until the image

sampling suffices. This is laborious, especially when the subject is a far distance away from the

computer. Real-time modeling with visualization gives online feedback regarding whether the image

sampling is adequate, and images captured with such feedback can be used for more accurate offline

reconstruction later, when computational power is less restricted [91, 93].

Real-time 3D modeling is generally useful whenever 3D geometry cannot be known in advance.

Robotic operation in unknown environments is one such important case. For example, 3D modeling

of the environment’s obstacles, and specifically the explicit estimation of where obstacles are not

(i.e., free space), can supply constraints for autonomous robot navigation and motion-planning algo-

rithms. We have applied the method developed in this thesis to predictive display for tele-robotics,

and experiment with this application in Chapter 5. Tele-robotics refers to the scenario where a

human directly operates a distant remote robot. Such remote tele-operation lends itself to many

sub-applications where it would be dangerous or impractical for a human to perform the robot’s task

directly. Space and marine robotics, tele-surgery, and remote bomb defusal are just a few examples.

Because of the distance, both operator commands and sensory feedback need to be transmitted, and

latency on the order of a fraction of a second in this transmission loop can be detrimental to the flu-

idity and performance of such a system [96, 47, 33, 36]. Online capture of the robot’s environment

enables undelayed predictive rendering for the operator’s visual feedback. We discuss such predic-

tive display at greater length in Chapter 3, The Literature, as well as in Chapter 5, Experiments.

3

1.2 Contributions and Contents

The remainder of this thesis is organized as follows, and the contributions of each part are high-

lighted.

Chapter 2, Background, introduces the very basics of how to obtain three dimensional informa-

tion from two dimensional imagery. This section does not contain a novel contribution in and of

itself, but rather provides a quick primer on the requisite terminology and geometry of shape recov-

ery. In particular, we describe Structure from Motion. We also define the Delaunay triangulation

here, a spatial decomposition that is intimately fused with the method developed in this thesis.

Chapter 3, The Literature, surveys what is most relevant to this thesis. Our work relates strongly

to those on 3D reconstruction from imagery, or multi-view stereo, as it is essentially this problem that

we are concerned with, but with an added constraint on execution time. These works are reviewed

to situate our own, and particular attention is paid to those sparse few that consider free space or

are real-time. Additionally, this chapter reviews works on the related Shape from Points literature

which speaks about the Delaunay triangulation and why one may want to use it for shape estimation.

Since the thesis’ algorithms rely on online Structure from Motion or Simultaneous Localization and

Mapping (SLAM), we cover these as well. Finally, we recount works on online visual modeling as

it applies to predictive display and tele-robotics, because this is a setting that we experiment with.

Chapter 4, Method and Algorithms: Incremental Free-Space Carving, presents in full the pri-

mary contribution of this thesis that is the shape recovery method and its implementation. We

formalize the inputs and the problem and discuss free space as a reconstruction cue in general. We

present a regularization scheme, as well as our heuristics and approximations. This chapter addition-

ally analyzes the method’s computational complexity. In combination with timings from the next

chapter, the complexity results solidify the claim that the method is real-time.

Chapter 5, Experiments, exhibits online reconstructions obtained from our method and system.

We present timings, as well as evidence that a heuristic that we employ for speed-up implies minimal

sacrifice with respect to reconstruction quality. Using synthetic data and corresponding ground truth,

we explore the method’s behaviour on inputs of varying quality and sampling properties. Also, we

present a prototype tele-robotics system which uses the real-time modeling for predictive display.

Here, we document two small-scale human-factors experiments performed with this system.

Chapter 6, Conclusions, closes the thesis by summarizing what was done. This part identifies

the important caveats and limitations of this thesis’ contributions, and discusses potential routes for

future work to address these lacks.

Finally, the Appendix completes the complexity proofs for our algorithms.

4

Chapter 2

Background

This chapter covers the requisite basics of geometric computer vision that are necessary to under-

stand the remainder of this thesis. After reading this chapter, the reader should have a general

understanding and vocabulary regarding basic estimation of 3D scene structure and camera position

from 2D photographs. This is a brief and selective primer; algorithmic and algebraic details and

alternatives for computing the discussed quantities are largely outside the scope of this thesis. Most

content in this chapter is influenced by portions of Hartley and Zisserman’s excellent book on this

topic [46]. We refer the reader to this resource for more detail on the geometry of computer vision.

Because we use the Delaunay Triangulation heavily in this thesis, this chapter also reviews this

geometric entity. The chapter contains the following major sections:

• “Camera Model” explains the linear pinhole camera model used in computer vision.

• “Triangulation and Structure from Motion” describes how to estimate 3D structure from 2D

image matches.

• “Delaunay Triangulation” presents the 2D and 3D Delaunay triangulation, which are combi-

natorial structures connecting sets of points in space.

2.1 Camera Model

To estimate 3D information from 2D photographs, we first need to understand and model the image

formation process before we can attempt to invert it. The simplest and most common image for-

mation model is the linear pinhole camera. A pinhole camera is essentially just a box with a small

aperture or pin prick on one face, as in Figure 2.1. Scene objects emit and reflect rays of light,

and those rays directed at the camera will pass through the aperture and fall onto the inside of the

opposite box face. Consider this box face the camera’s film. In this way, an image of the scene

is projected onto a planar film, or so-called image plane. Modern camera lenses approximate the

aperture.

5

Aperture

Focal Length

Scene

Image

Rays

O

P
Image

Ray

f

p

Z

y
Y

Figure 2.1: Pinhole camera projection. Left: Rays of light reflected off scene objects pass through

the pinhole aperture into the camera onto the image face. Right: The geometry of a pinhole camera.

The aperture is at optic center O. The image plane can equivalently be considered a focal length f

in front of O instead of behind. The intersection of the image plane with rays from any scene point

P through the optic center O defines the position of the image point p.

Figure 2.1 identifies some important geometric features of a pinhole camera. First, the aperture’s

position in the 3D world is called the optic center, which we denote as O. A coordinate frame is

affixed to this camera center, therefore the notation O is also suggestive of the origin. The distance

between the camera center and the image plane is called the focal length, f . We can see from the

figure that a pinhole camera image is vertically flipped with respect to the world. To abstract away

the flip, we can equivalently consider a virtual image plane the same distance f in front of the optic

center, as in the right-hand part of the figure.

Let P = (X,Y, Z)T be a three dimensional point on a scene surface, and p = (x, y)T be its

projected image position. Then, by similar triangles in Figure 2.1, the projection process follows the

following equation: Y
Z

= y

f
→ y = fY

Z
, and equivalently for the x coordinate: x = fX

Z
.

It is mathematically convenient to use homogeneous coordinates for projective geometry. In-

finity is handled elegantly, and equations can be written in linear form. In homogeneous coordi-

nates, a 3D point P is represented by a 4-coordinate vector up to an arbitrary scale factor. That is,

P = (X,Y, Z, 1)T ∼ (λX, λY, λZ, λ)T , where ∼ denotes equivalence w.r.t. projective scale λ. In

homogeneous coordinates, P ∼ (X,Y, Z, 1)T and p ∼ (x, y, 1)T , and we can write the projection

equation as a simple linear matrix multiplication with a projection matrix C.

p ∼ CP =

f 0 0 0
0 f 0 0
0 0 1 0

P

This projection matrix does not consider pixel to world-unit (e.g. mm) scaling, nor that the center

of the image may not be at the image coordinate frame’s origin; e.g. considering the top-left pixel

of an image to be the image origin is common. Therefore, the projection matrix can be written more

generally as:

p ∼ CP = K [I|0]P,

K =

fx s cx
0 fy cy
0 0 1

 .

Here, fx and fy are the focal length scaled to account for the pixel size in world coordinates, i.e.

fx is the focal length in units of pixel widths, and (cx, cy)
T specifies the pixel location of the

6

principle point which is the intersection of the camera coordinate frame’s Z axis with the image

plane, ideally at the center of the image. The parameter s represents a skew to account for non-

perfectly rectangular pixel grids. Generally, the skew is negligible in real cameras and considered

zero. [I|0] is the 3 by 4 matrix with its left 3 by 3 part as the identity, and the rest as zeros.

To model cameras that don’t have their optic center O at the world’s origin, and that don’t look

down the world’s z-axis, we need to add a rotation and translation to the projection equation to align

world coordinates with the canonical camera coordinates:

p ∼ K [R|t]P.

Here, R is a 3 by 3 rotation matrix and t is a 3 by 1 translation vector. Now we can see the

reason why K was separated out of the projection matrix C, which we redefine to be C = K [R|t].

K speaks only of intrinsic camera parameters such as the focal length and principle point, and is

therefore called the intrinsic camera matrix. [R|t] defines the extrinsic parameters which situate the

camera in world space, and is called the extrinsic camera matrix. When we speak of intrinsic or

extrinsic camera calibration, we refer to estimation or knowledge of K or [R|t] respectively.

2.2 Triangulation and Structure from Motion

Now we have the complete form of the camera projection equation under a linear pinhole cam-

era model. With this we can mathematically simulate projection, but what of inversion? What of

recovering a 3D point P from its projection p and from camera knowledgeC? Note that C is a non-

square matrix and thus it is not directly invertible. Investigating its pseudoinverse or just referring

to Figure 2.1 leads us to the conclusion that projection is a depth-destructive process. All points on

the ray of projection between the optic center and P also project to the same image point p. All that

we can determine about the position of P is that it lies on somewhere on this ray from O through p.

This is true, unless we consider more than one image.

Projections of same world point P in two separate images are related. Suppose we can solve

the image matching problem that is to identify in two or more images where the same world point

projects, given just the images. For example, we might point out where in the images a certain table

corner is: p1,p2, . . . ,pM . Humans are good at this because they are good at understanding the

composition and context of visual scenes. Automatic approaches generally forgo image understand-

ing and consider color and texture similarity, i.e. photo-consistency, often in small local windows of

pixels around hypothesized match points; we refer the reader to [74, 7, 70, 94] for a small starting

point on the vast literature related to image matching. Now if we can solve the image matching prob-

lem, and if we have calibration for images taken from multiple distinct viewpoints O1, O2, . . . , OM ,

then we can estimate P as the intersection point of all the known rays of projection. This process

is called triangulation, and estimating P from image matches and camera calibrations is called the

triangulation problem.

7

Figure 2.2: The triangulation problem. We wish to find the optimal point P∗ given camera knowl-

edge and image correspondences p1,p2, Therefore we find the point P̂ that minimizes the total

reprojection error, which is the sum of pixel distances between each pi and p̂i.

Because of imperfect calibration as well as noise in the matching process due to pixel grid

discretization, poor image feature localization, mismatches, etc., the rays will not perfectly align

and intersect in three dimensional space for such simple triangulation. To find the optimal estimate

of P for triangulation under match noise, the best [46] approach is to minimize the total reprojection

error and find the 3D point P∗ most consistent with the data:

P∗ = argmin
P

M
∑

i=1

‖pi −CiP‖
2

Figure 2.2 illustrates reprojection error and triangulation. Minimizing this error can be done us-

ing a variety of numerical optimization techniques such as gradient descent or Newton-like methods.

We left implicit in the above equation a detail for computing the norm, ‖ · ‖. This norm denotes the

Euclidean 2-norm distance with respect to image x, y coordinates between a detected feature match

pi and the projection of the hypothesized world point p̂i = CiP̂. Therefore the fact that we use

homogeneous coordinates in the equation needs to be taken into account.

Structure from Motion is related to triangulation. It is also the problem of computing 3D struc-

ture, but it goes a step further. The problem is to compute both the 3D structure of several world

points P1,P2, . . . ,PN and all the camera matrices C1,C2, . . . ,CM from just the image matches

{pij |i = 1 . . .M, j = 1 . . .N}. SFM plus image matching entails a complete solution for obtaining

sparse 3D scene information from nothing but 2D images. It can be optimally solved by minimizing

total reprojection error, just as with triangulation [46]. This algorithm is called bundle adjustment:

{P∗}, {C∗} = argmin
{P},{C}

M
∑

i=1

N
∑

j=1

‖pij −CiPj‖
2

2.3 Delaunay Triangulation

Solutions to the Structure from Motion problem compute only a sparse reconstruction consisting of

a set of points, and not a dense 3D model. The difference is illustrated in the two left subfigures

8

Figure 2.3: 3D Delaunay triangulation. Far Left: A three dimensional object: a cup with a handle.

Middle Left: Points sampling the cup’s surface (e.g. as from SFM). Middle Right: A 3D Delaunay

triangulation of those points; the tetrahedra are drawn in wireframe. Far Right: A tetrahedron, the

volume element and simplex of the 3D Delaunay triangulation.

Figure 2.4: 2D Delaunay triangulation. Far Left: Points sampled from a curve. Middle Left: The

2D Delaunay triangulation of the points. Middle Right: The same Delaunay triangulation, with an

empty circumcircle shown. Far Right: The Voroni diagram overlaid in green.

of Figure 2.3. This thesis proposes a method that uses SFM point clouds to interpolate a dense

3D surface reconstruction. To interpolate, we take a volumetric approach; we first discretize space

using the 3D Delaunay triangulation of the SFM point cloud, and then carve out a 3D model using

free-space constraints.

Formally, a triangulation of a set of points {P} is a partition of the convex hull of {P} into a

connected set of simplices, which are triangles in two dimensions and tetrahedra in three. This defi-

nition is not to be confused with the triangulation problem of Section 2.2. A Delaunay triangulation

is a triangulation that satisfies the empty circumsphere property, i.e. the interior of every simplex’s

circumsphere contains no vertices from {P}. See Figures 2.4 and 2.3 for an illustration of the 2D

and 3D case.

Also depicted in Figure 2.4 is the Voroni diagram which is dual to the Delaunay triangulation.

The Voroni diagram is a partition of space into a set of Voroni cells, each associated to its own point

in {P} called the cell’s Voroni vertex. A Voroni cell is a polygon in 2D and a polyhedron in 3D. It is

the set of space consisting of all points (not only from {P}) that are nearer to its associated Voroni

vertex than to any other point of {P}. While not used explicitly in the method of this thesis, we

occasionally refer to Voroni diagrams.

Observe from the figures that the Delaunay triangulation of points sampled from a surface, or

equivalently from a curve in 2D, is adaptive. This is true in more than one sense. First, note that

sections of space with fewer points of {P} contain fewer but larger simplices. Places denser w.r.t.

{P} contain more numerous finer simplices. This is important for our discretization choice not

9

only in terms of computational efficiency, but also in terms of allowing our method to operate with

sparser samplings of free space. Second, note that it appears that the Delaunay triangulation contains

within it a good approximation of the original surface or curve. This is important for reconstruction.

We can see the wireframe of Figure 2.3’s cup showing through as a subset of the wireframe of the

Delaunay triangulation. We can see a likely curve connecting the points of Figure 2.4 as a subset of

the lines of that Delaunay triangulation. This observation is not coincidence, and there is theory in

the literature on this point [2, 3, 29, 75]. However, the case is not so simple when there is noise in

{P} w.r.t. sampling the surface, and there is always noise in SFM point clouds. We refer the reader

to the review on Delaunay-based Shape from Points in Section 3.1.4 that highlights this property of

the Delaunay triangulation.

10

Chapter 3

The Literature

This chapter surveys the literature most related to our approach for 3D reconstruction from 2D im-

ages. Chapter 2 covered the fundamentals behind sparse point-wise geometric reconstruction from

2D image information. Our method begins with these same fundamentals, but the implementation

is real-time; we review online Structure from Motion and SLAM (Simultaneous Localization and

Mapping) systems here.

Our method however also connects the sparse 3D structure coherently to form a dense 3D surface

estimate by geometrically reasoning about occlusions and free space in the imaged scene. Before

covering real-time SFM and SLAM, we discuss dense reconstruction and review the multi-view

stereo literature. Our survey has a particular focus on real-time and free-space based methods. In

addition, we review works on the Shape from Points problem, where one would like to infer dense

3D geometry only from a sparse 3D point-wise reconstruction without occlusion information or

color and texture from images. Much of the Shape from Points literature explicitly or implicitly

makes use of the same discretization of space that we do, and therefore some theoretical results

from this literature are notably of interest.

A potential application for real-time reconstruction that we have experimented with is improving

visualization for remote-controlled or tele-robotics. We conclude by reviewing works on “predictive

display” that apply computer vision to this goal.

3.1 3D Shape Reconstruction From Images

3.1.1 Offline Reconstruction

While Structure from Motion addresses the problem of reconstructing sparse 3D scene information

from 2D images, two-view and multi-view stereo addresses how to obtain dense 3D from images.

In stereo, the pose and calibration of each image’s camera is usually assumed known and given as

input.

Two-view stereo considers reconstruction from just two calibrated views, one of which is des-

ignated as the reference view. The 3D representation used is a discrete per-pixel mapping from

11

image space to camera-relative scene depth w.r.t. the reference image. This representation is called

a “depth map.” The two-view problem boils down to finding the optimal depth map via dense

image-matching and triangulation. In this way, it is similar to feature-based Structure from Mo-

tion but with a match generated for every pixel rather than at sparsely detected feature points. Depth

maps are often referred to as a 2.5D representation because they do not encode connectivity between

depth estimates. For example, if simply assuming 8-connectivity between neighbouring depth pixels

to generate a back-projected surface, foreground objects will incorrectly join with the background

of the scene. There are several algorithms and formulations, varying primarily in terms of the

texture-based matching cost, spatial regularization, and depth-map optimization scheme. For a good

summary, we defer the reader to the two-view Middlebury stereo review and benchmark [94].

This section instead concentrates on multi-view reconstruction from more than 2 images. The

multi-view stereo literature is vast. While an exhaustive review would be excessively lengthy and

peripheral to this thesis, it is important to situate our work in relation to this body of research. Both

our work and stereo have a similar goal: to reconstruct a 3D model from a set of input images.

While a multitude of methods with differing properties exist, a common trend is that they compete

to find a reconstruction that is as accurate and complete as possible. This emphasis can be seen in the

very popular Middlebury multi-view benchmark dataset and survey [95], which collects impressive

results from the state of the art. As a result of this focus on quality, most multi-view methods are

designed to operate on small sets of images (on the order of ten or a hundred), and they can take up to

hours to process such datasets. Real-time reconstruction from video is rare; we cover a selection of

these works in more detail in Section 3.1.3. In contrast to the norm, this work attempts to reconstruct

more approximate models, but in real time.

Commonly, stereo methods are cast as an optimization problem where a representation of the

3D scene or object to reconstruct is fit to the image data. The approaches vary and are distinct from

each other broadly in terms of the optimization framework, 3D parametrization, and cost function

or functional to optimize.

The objective function invariably contains some form of a texture-based photo-consistency match-

ing cost. This measures how well the recovered 3D surface’s projections match between the input

images based on scores derived from color or intensity differences, such as Normalized Cross Corre-

lation (NCC) scores used in [15, 39, 43, 48, 64, 98], or the Sum of Squared Differences (SSD) as used

in [44, 45] and others. Photo-consistency is the primary reconstruction cue in stereo. Other common

terms in the objective function relate to secondary reconstruction cues such as silhouette constraints

(in the case of reconstruction of a single object segmented in image space) [5, 13, 48, 64, 98], vis-

ibility (enforcing correctness when optimizing the photo-consistency with respect to occlusions in

the images) [27, 40], and spatial regularization or smoothness priors.

Optimization of the chosen objective can be performed using a number of standard techniques,

which include iterative derivative-driven numerical optimization (e.g. gradient descent for surface

12

deformation or level-set evolution [27, 99, 40, 48] or conjugate gradient for surface-patch refine-

ment [39]) and discrete combinatorial optimization such as with graph cuts [66, 52, 98, 17]. The

choice of optimization procedure influences properties of the method such as convergence, recon-

struction quality, initialization, and speed. The applicability of a given optimization procedure also

depends on both the form of the objective and the parametrization or representation of the reconstruc-

tion. For instance, graph-cut optimization can efficiently find global minima for a restricted class of

objective functions in polynomial time [65], and it does not require any specific initialization. On

the other hand, local gradient-driven surface evolution supports more general objective functions

and regularization schemes, but it can require a close initialization to the optimal reconstruction to

prevent convergence to local minima. In the case of object reconstruction via surface evolution,

Shape from Silhouettes (SFS) [69] can provide an approximate initial surface by back-projecting

the (segmented) object’s silhouettes to form generalized cones in 3D space and then computing the

volumetric intersection of all such cones [5, 48]. For scene reconstruction where silhouettes cannot

directly apply, initialization is a limitation.

Generally, the 3D representation used by a stereo algorithm falls under one of four categories:

a volumetric discretization of space, an implicit or explicit surface representation, a collection and

fusion of depth maps, or a set of small disjoint surface patch elements called surfels [95].

Volumetric approaches discretize a subset of space in which the object or scene to reconstruct

is known to reside. They then label the discretized volume elements as either belonging inside or

outside the surface to reconstruct. The reconstruction is implicitly defined by the boundary between

inner and outer volume elements. Usually the spatial discretization is a regular grid of cubic volume

elements, called voxels, e.g. as used in [67, 15, 43, 52, 66, 109, 103]. Simple reconstruction schemes

can simply carve away photo-inconsistent voxels one at a time [67]. More complex schemes per-

form optimization on objective functions including smoothing terms using e.g. graph-cuts for global

optimization [66, 52, 98, 17]. Voxel-based approaches often lend themselves to a straightforward

graph structure, but suffer from a trade-off between resolution of the voxel grid and computational

slowdown. Additionally, tight bounds on the location and size of the scene must be known a pri-

ori. While more adaptive irregular volumetric discretizations have been used for 3D reconstruction,

e.g. [98, 68, 82], they are not common. In this thesis, we utilize the 3D Delaunay Triangulation

for adaptive discretization and efficient reconstruction. As reviewed in Section 3.1.4, the Delaunay

triangulation has properties that make it conducive to shape recovery.

Surface-centric approaches can express the reconstruction either explicitly, e.g. as a triangular

mesh [48, 27, 5], or implicitly via level sets [40, 99, 64]. They usually employ iterative gradient-

decent based surface deformation until an objective is optimized. In the level-set formulation, a

scalar function f mapping some region of R3 → R implicitly defines a surface at its zero crossings.

Usually, the function is discretely sampled and evolved over a voxel grid, and thus level sets inherit

similar limitations to volumetric approaches in terms of resolution versus cost trade-offs. For evolu-

13

tion of explicit meshes, while optimization drives and displaces the mesh vertices, topology changes

can occur e.g. when the surface evolves to intersect itself or when the initialization mesh does not

have the same genus as the real-world object.1 Topology change becomes a complex issue to handle

correctly [87] and is sometimes ignored or heuristically prevented [48, 5]. In the implicit level-set

approach, topology changes during the evolution are handled transparently because the topology is

only recovered and output after the level set converges. A practical limitation for these approaches is

that they expect a fair initialization surface, which, as previously mentioned, may be hard to obtain

for open scenes or for online reconstruction of unknown environments.

Alternative to performing optimization on a single world-space 3D representation, several au-

thors opt to perform consecutive independent depth-map estimations between nearby camera views

and then merge the resulting 2.5D depth maps into a single 3D mesh [13, 15, 43, 44, 71, 109, 110].

This approach requires a high degree of overlap in the image sequence so that depth maps may

be recovered, and is therefore best applied to video-like sequences. While most methods based

on depth-map fusion are not designed for real-time use (and some use a voxel grid for depth-map

fusion as only a final step [15, 43, 109, 110]), they trend faster run times, and a few reviewed in

Section 3.1.3 have shown real-time or near real-time results on live video.

The surfel approach estimates a set of small oriented surface patches with normals. Surfels can

be circular discs as in [45] or rectangular as in [39, 17]. Once an initial set of photo-consistent

surfels is recovered, the set is iteratively expanded via local photo-consistent region growing, and

the patch position and orientation parameters are refined using photo-consistency optimization, e.g.

using conjugate gradient as in [39] or other numerical techniques. Visibility and occlusion detection

for deletion of erroneous patches is typically handled as a step interleaved with the surface growing.

Once the surfel reconstruction is dense enough and complete, the result is still an oriented set of

patches instead of a single surface with topology information. While such a reconstruction can

be directly rendered, some applications prefer a conversion to a conventional triangle mesh. This is

often done in the literature using a Shape-from-Points-and-Normalsmethod, such as Poisson Surface

Reconstruction, which is reviewed in Section 3.1.4 [39, 45]. Surfel-based methods are typically

computationally intensive, solving multiple photo-consistency optimizations for every patch, the

results of which can be thrown out due to deletion or re-estimation of patches occluded by newly

grown surfels inducing new visibility information. They however can produce very good results on

both objects and open scenes without the requirement of a nearby surface initialization from SFS or

otherwise. Furukawa’s popular PMVS reconstruction system is exemplary [39].

In the following two subsections on free-space and online reconstruction, we present a selective

sample of the most related multi-view methods in more depth.

1The genus of an object’s surface refers to the number of holes in that object. For example, a donut has a single hole,

therefore its surface has genus 1. A coffee mug has a hole at its handle, therefore its surface also has genus 1.

14

3.1.2 Free-Space Methods

As just reviewed, multi-view stereo for 3D reconstruction is most commonly cast as optimization

over dense photo-consistency. The use of dense texture as a primary reconstruction cue necessitates

that a large amount of pixel data per input image is processed. This choice of dense information

cue, while powerful for reconstruction, naturally leads to slow run times. Additionally, methods

that rely on a texture-based cue without imposing strong regularization or other constraints on the

geometry may fail in areas with low texture information, e.g. when modeling a wall painted with a

single color. This section concerns itself with methods that exploit the idea of using visibility plus

occlusion reasoning, i.e. information about the empty free space around and outside of the scene or

object to be recovered, as an explicit and central reconstruction cue.

The idea of free space for reconstruction can be summarized as follows. If a 3D feature or

surface patch is observed in a camera image, then, assuming opacity, the entire volume comprised

of the rays of projection between the 3D feature and the camera’s center of projection must be

empty. This imposes an explicit constraint on the geometry to be recovered, and a collection of

these constraints can be used for reconstruction. This idea is similar to but distinct from Shape

from Silhouettes (SFS) [37, 38]. In SFS, silhouettes of a segmented object are back-projected from

each input image into generalized cones in 3D space, and the intersection of these cones defines an

approximate volume bounding the object to reconstruct. SFS carves everything that projects exterior

to a 2D image silhouette, whereas free-space carves everything that projects in front of a detected

patch. Unlike SFS, free space is applicable to scenes in addition to objects, and it can model an

arbitary level of concavity. See Section 4.1 for illustration and a more in-depth discussion of the free

space concept.

In contrast to dense photo-consistency optimization, a free-space cue can make use of sparser

visibility information induced by surfels (or even degenerate points), and thus can result in faster

reconstruction as realized in this work.

Similar to our work, there exist algorithms that infer a graphics model from a set of sparse or

quasi-dense features via the 3D Delaunay triangulation of feature points for volumetric discretiza-

tion, plus free-space carving. Two such works are that of Faugeras et al. [35] and Gargallo [41].

Our proposed method builds on these works. It essentially computes the same result, but in a faster

way. More recently, Labatut et al. developed methods that combine, via graph cuts, the 3D Delau-

nay triangulation and free space with photo-consistency and regularization [68, 105]. They achieve

impressive reconstructions. Unfortunately, all of these related methods are designed for offline batch

use. Our contribution is primarily algorithmic. We achieve real-time performance by exploiting the

incremental structure of the Delaunay algorithm to complement it with fully incremental carving.

Independently and recently, Pan et al. developed ProFORMA, a system for online reconstruc-

tion that is very similar to our own [82]. ProFORMA constructs a 3D Delaunay triangulation, and

it carves free-space via a probabilistic voting scheme which obtains a smoother mesh. Our system,

15

however, has at least two key advantages. First, ProFORMA is only capable of reconstructing iso-

lated objects; we support complex scenes. Second, as discussed in Section 3.1.3, the computational

complexity of their system is worse than ours, and our algorithms compare favourably in terms of

speed and real-time performance.

Hilton describes a method that incrementally reconstructs a 3D model from sparse features with

strong run-time guarantees [49]. His algorithm performs 2D Delaunay triangulations of the sparse

feature points in each image, and it back-projects and merges these triangulations into a free-space

consistent mesh. This approach is akin to estimating approximate depth maps by interpolating the

projections of features via the Delaunay triangulation, and then stitching the resulting back-projected

triangular depth meshes together in a free-space aware manner.

Taylor et al. similarly consider merging approximate depth maps computed via the 2D Delaunay

triangulation of a denser set of feature points [103]. The semi-dense features are obtained in terms of

depth w.r.t. each reference view via a stereo system that only reports the depth values for pixels with

high-confidence matches. Unlike Hilton, Taylor et al. interpret the space that projects in front of

each approximate depth map as free space, and they merge depth maps using volumetric free-space

carving on a voxel grid. An approximate interpolative depth map however may result in overzealous

carving if the base stereo system produces too sparse matches, because in this case the free-space

volumes induced by these depth maps are also significantly approximate. (Taylor et al. propose a

heuristic to attempt to correct for this.) While impressive results were obtained, reconstruction was

only demonstrated given inputs from a well-calibrated stereo rig that produced fairly dense matches.

A true stereo system developed by Merrell et al. and Pollefeys et al. computes photo-consistent

depth maps from video and then merges them into a triangular mesh while taking free-space into

account [77, 85]. Because their method is geared toward real-time operation, they opt to compute

noisy depth maps using a fast method. While depth estimates from overlapping maps are obtained

independently, and thus can conflict, free-space constraints, formulated with respect to the depth

maps, help to filter out the noise and guide a coherent and accurate reconstruction. We compare this

method’s computational requirements to our approach in the following section.

3.1.3 Real-time / Near Real-time Reconstruction

Real-time2 3D surface reconstruction from video is a challenging problem with relatively few pub-

lished solutions.

As previously mentioned, Merrell et al. and Pollefeys et al. published a real-time method based

on fusing quick and noisy depth maps together into a free-space consistent surface mesh [77, 85].

Other near real-time approaches based on depth-map fusion via voxel grids have been published,

2By “real-time”, this thesis considers a practical time-budget definition. E.g., if a system takes video as input to perform

computation on each frame, we require that the computation completes at frame rate to consider it real time. We may call a

system real time in a soft sense. E.g., a reconstruction system can be called real time if it generally operates at frame rate, but

occasionally violates its budget and spends upwards of a second on a single video frame. Frame rate is not the only budget

possible; Chapter 4’s algorithms operate on inputs that come at an event rate less than typical video frame rates.

16

but their use is more limited because of the voxel representation, e.g. [109, 110]. The results of

Merrell et al. and Pollefeys et al.’s are very impressive, and are competitive in terms of accuracy

and completeness with offline stereo methods [95]. They demonstrate large-scale video-based fusion

at rates of 20 to 30 fps on sequences as long as 170, 000 frames. Their method, however, assumes

extrinsically calibrated images as input, and they obtain this calibration in part from an expensive

inertial measurement system. This calibration can be costly to obtain from vision in an online

scenario [24, 30, 61, 85], and their depth-map fusion alone exhausts computational resources on fast

hardware, both CPU and GPU. In contrast, our approach obtains more approximate reconstructions,

but it is lightweight enough to run in parallel with SLAM for camera localization on a modest mobile

laptop CPU.

Very recently, Newcombe et al. developed a real-time reconstruction system that operates on

video [80]. Online Structure from Motion [61] is performed both for camera pose estimation and

to reconstruct a sparse point cloud. At every new keyframe, this sparse point cloud is passed off to

an efficient Shape from Points method based on implicit-surface fitting using radial basis functions

(RBFs) [81]; see Section 3.1.4. Once this approximate surface is computed, it is used as a good ini-

tial estimate for photo-consistent refinement, which is implemented parallelized on the GPU. This

system currently represents the state of the art in real-time dense stereo from monocular video, and

it is capable of producing very impressive reconstructions efficiently. While this system is unlike

Merrell et al.’s mentioned above, in that it is more complete, and it computes everything from vision

in real-time including the camera trajectory, this system’s comparison with our method is the same.

Our approach is certainly more approximate, but it is also more lightweight. Newcombe et al.’s sys-

tem was shown to run on a very high-end desktop architecture (a quad-core machine circa 2010 with

two dedicated graphics cards). These heavy computing requirements limit the system’s potential

applications, e.g. in mobile robotics where computing power is more limited; see Section 3.3.

Pan et al.’s ProFORMA system reconstructs real-time 3D meshes via a method very similar to

our own [82]. It incorporates an online SFM system as well to generate a sparse point cloud with visi-

bility information, and it carves away tetrahedral volume elements that violate free-space constraints.

While their system has been shown to reconstruct isolated objects in real time, their free-space carv-

ing algorithm is not incremental: it starts over and processes all O(NM) free-space constraints at

every keyframe, where N is the number of feature points and M is the number of keyframe views.

As a result, their per-keyframe processing time is Ω(NM). Unlike our method, ProFORMA’s run-

time complexity suffers from free-space constraint accumulation and scales poorly in the number of

keyframes. This dependence on M shows that ProFORMA must eventually slow below real-time

capability as the system continues to run. We show in Section 4.5 that the complexity of all of our

algorithms is independent of M , and practically constant-time.

Hilton proves that his free-space consistent local model merging algorithm has a run time com-

plexity that is practically constant per frame [49]. As just stated, we show in Section 4.5 that our

17

algorithms enjoy a similar run-time guarantee. However, his method is strictly incremental in that it

only considers incorporation of new local models from reference frames as they appear. Compara-

tively, our algorithms handle a superset of events, including the incorporation of information from

new frames, as well the deletion of erroneous outliers and the refinement of previously estimated

structure and visibility information. In this sense they are incremental and event-based. Chapter 4

describes our algorithms and the different events that they can handle in more detail. But we remark

here that our approach is more flexible and can integrate correctly with a larger variety of SLAM

and SLAM-like systems (see Section 3.2).

Depending on the application, real-time reconstruction of a single coherent 3D mesh may not

be necessary. Rachmielowski et al. demonstrate that a fair geometry proxy for image-based render-

ing and visualization can be obtained by simply back-projecting a view-dependent 2D-Delaunay-

approximated depth map from sparse tracked 3D features [93, 91]. This is similar to Hilton’s

approach, but without any model stitching involved [49]. In this case, because the geometry is

view-dependent in a discontinuous way, popping artifacts occur as the visualization’s viewpoint

changes. While the goal of this thesis is to compute rough approximate models for applications

that entail visualization, we opt instead to reconstruct a single coherent 3D mesh that respects the

physical free-space constraints of the scene. A coherent representation can be used for more than

visualization, e.g. to aid robotic path planning, etc.

3.1.4 Shape From Points

From a Structure from Motion starting point, as in our approach to 3D reconstruction, we have a set

of 3D points sampled from the scene or object to reconstruct. Therefore, although directly employ-

ing any approaches from the shape from points literature would ignore and discard useful visibility

information, this literature is relevant to our work. We begin with the disclaimer that almost all of

the results in this body of literature have been applied to dense low-noise no-outlier point clouds,

usually obtained from laser scans. They are designed to work on inputs that differ substantially from

SFM point clouds in terms of sampling properties. While other categorizations exist, e.g. [76], most

methods either fall under the scope of implicit-surface techniques, or combinatorial methods. The

primary focus of this section is on combinatorial methods, as they are most related to our work; we

use the Delaunay triangulation in our work, and in these methods it is ubiquitous. We are interested

in what we can learn about the Delaunay triangulation from this literature.

Implicit Surface Techniques

In the implicit-surface approach, the reconstruction is typically the zero-contour or level set of some

scalar function defined on three-dimensional space (mapping R3 → R). The function is either fit

to or defined relative to the input points such that the zero-set lies on or close to the points. In this

sense, the result is not an exact interpolation of the points since it does not have to touch the points,

18

but rather it is a surface that minimizes distance to the points in some sense while maintaining certain

regularization properties.

One idea is to choose the function for the level set to be a signed distance function. For example,

an early and famous work is the signed-distance approach by Hoppe et al. [51]. At every sample

point, they first assign a tangent plane to the surface by finding the K Nearest Neighbours (KNN)

in the point set and then fitting a plane to them using least squares. The distance function to any

query point in space evaluates as the distance to the closest input sample point’s tangent plane via

projection onto the plane. The sign of the distance function depends on the side of the plane that

the point falls on, and the tangent planes of nearby sample points are given a consistent orientation.

(This consistent orientation is achieved via a graph-based algorithm.) A voxel grid is used, and

the reconstructed surface is extracted via marching cubes [72] as the zero-set of the signed distance

function evaluated in voxel space. This method, while certainly effective for dense regularly sampled

point sets as obtained from laser scans, has shortcomings. There is no noise model describing

perturbation of the sample points, and the locally estimated planes are heuristically and inexactly

computed from the KNN, thus the results are not perfect.

More recently, methods have fit signed distance or indicator functions represented by a set of ba-

sis functions, by solving for the basis function weights in a linear system of constraints derived from

the point set. Radial basis functions of different types (e.g. global, or local and compactly supported)

have proven a powerful and popular choice, capable of excellent interpolative reconstructions from

points containing some noise and large holes of missing data [81, 16]. Once the function is fit, it

is again typically evaluated on a discretized mesh, and then the zero-set isosurface is computed,

e.g. using voxels and marching cubes, or as in [16] using a marching-cube like marching tetrahedra

technique. While these methods were demonstrated to work on a small amount of noise, results with

outliers are generally not presented.

A newer technique called Poisson Surface Reconstruction for shape from oriented points, i.e.

shape from points and normals, exhibits very detailed excellent reconstructions supporting sharp

features, smooth areas, some amount of input noise, irregular point sampling, and arbitrary surface

topology [57]. This method is popular, and has been implemented as the final stage of several

successful stereo algorithms [39, 44, 45], as well as appearing as a standard technique in software

like MeshLab and libraries like CGAL [1]. Essentially, the idea is that the indicator function defined

as 0 outside the mesh and 1 inside has a gradient field (convolved with a smoothing function to be

finite) that is equal to the gradient field represented by and sampled as the oriented points (convolved

with same smoothing function). Taking the divergence operator on both sides of this equality results

in a differential equation. The indicator function and gradient field are approximated in a function

space with sparse compactly supported and approximately Gaussian basis functions. Reconstructing

the indicator function becomes an optimization problem of solving a sparse linear least squares

system. The resulting isosurface of the indicator is extracted with a modification of marching cubes.

19

The runtime speed is reasonable, on the order of seconds to minutes on dense data, although not

quite real-time.

Combinatorial Methods

The combinatorial approach to shape from points, in contrast to implicit-surface methods, finds a

surface reconstruction that consists of exactly the input point samples, connected and interpolated

by discrete facets. Essentially, these are connect-the-dot methods.

In the 1980s and 1990s, people began to show that for points sampled from a 3D surface, the

3D Delaunay triangulation of the points imposes structure on the point set and can define the shape

of a point set [11, 32]. Boissonnat showed that by computing the 3D Delaunay triangulation of the

points and carving away tetrahedra from outside the convex hull inward using specific topological

rules and a priority ordering, a reasonable but heuristic reconstruction results [11]. The topological

rules are meant to enforce the constraint that the carved surface must be polyhedral. The carving

order depends on the observation that as point sampling density increases, the relevant Delaunay

circumspheres approach tangency to the surface S to be reconstructed. This notion foreshadows a

property of every method in this literature: they require sufficient sampling density w.r.t. the curva-

ture of S to produce correct results. However, in this early work, no concrete sampling conditions

are given, and no noise model is considered.

The 3D alpha shapes of Edelsbrunner and Mucke consider the ambiguous question of how to

define the shape of a point set [32]. Intuitively, alpha shapes can be described by carving. To para-

phrase a common description of alpha shapes, imagine that R3 is comprised of some soft malleable

substance such as ice cream, as well as hard bits of chocolate chips that are the points in the sample

point set. An eraser sphere or ice cream scoop of size α, where α is a level-of-detail parameter,

scoops all of the ice cream wherever it will fit without touching any of the hard chocolate chips.

The remaining boundary between carved and uncarved space includes curves and domes: straighten

each of these out into lines and discrete planar faces, and you have the resulting alpha shape. Alpha

shapes are intimately related to the 3D Delaunay triangulation, as the spherical eraser α is related

to the empty circumsphere property. Alpha shapes can be computed efficiently as a subset of the

points, edges, facets, and tetrahedra of the Delaunay triangulation. For dense relatively uniformly

sampled point sets, results with tuned α show that the alpha shape can remarkably resemble the

original surface S. However the topology of an alpha shape is not necessarily a manifold (i.e., a

topologically well formed surface), and when point samples are spaced non-uniformly w.r.t. α, the

quality of an alpha shape reconstruction degrades with spurious connectivity and incorrect carvings.

No noise model is considered in the definition or results.

Extensions of alpha shapes and related algorithms attempt to address the problems of non-

uniform sampling, e.g. weighted alpha-shapes [31], as well as the problem of topology, e.g. alpha

solids and the Ball Pivoting algorithm [9, 10]. However, weighted alpha-shapes involve assigning

20

a weight to each point, and choosing these weights is clumsy manual guesswork. Alpha solids,

which essentially carve via the spherical eraser only from outside the convex hull inward, as well as

the surface-growing Ball Pivoting algorithm, can guarantee a topological surface. But again, these

methods are limited as the samples are assumed noiseless.

In the pivotal paper “Surface Reconstruction by Voroni Filtering,” Amenta and Bern proposed

an algorithm that is provably correct given certain sampling conditions [2]. The method constructs

the 3D Voroni Diagram of the input point set, and defines the two maximally distant Voroni vertices

of each point’s cell as poles. If a Delaunay triangle contains no pole in its smallest bounding sphere,

it belongs to the “crust,” which is the reconstruction (after normal-filtering and trimming steps). The

sampling conditions, called r-sampling, are defined with respect to the medial axis of S, which is

the skeletal set of points in R3 with more than one closest point on S. The distance from S to

the medial axis is related to the curvature of S, and r-sampling essentially states that the samples

must be denser in areas of higher curvature or detail to capture all the details of the surface. This

is intuitively necessary, however there are drawbacks in the specific formulation: r-sampling does

not support discontinuities such as sharp corners in the surface, where the medial axis touches the

surface so that the curvature and thus sampling density is infinite.

Voroni filtering says something concrete and important about the 3D Delaunay triangulation

that the earlier methods hint at. If the points are an r-sample from a surface S, their 3D Delaunay

triangulation contains a subset of facets that form a surface which is point-wise and normal-wise

convergent to S as r → 0 (i.e., as the sampling density increases w.r.t. curvatures). That is, the 3D

Delaunay triangulation is a good adaptive discretization of space given a 3D point set sampled from

the surface to reconstruct.

Like Voroni filtering, the more recent Power Crust [3] comes with the same theoretical guaran-

tees and r-sampling conditions, but additionally it is robust to missing data and can fill holes like

the RBF and Poisson implicit-function approaches. The central observation is that the Voroni poles

form a discrete approximation of the medial axis. The poles are used to reconstruct the medial axis

with medial distance or curvature information, and the medial axis is used to compute the surface.

A common negative trend of all of these reviewed works is that they consider no noise model.

To my knowledge, the only works in combinatorial shape from points that explicitly consider noise

extend r-sampling and Power-Crust medial-axis estimation [29, 75]. They identify certain noise-

affected poles for exclusion from the discrete medial axis to robustify the estimate. The algorithms

are provably topologically correct and convergent given the extended noisy r-sampling conditions.

Note that this is still a “connect-the-dots” approach, and therefore the interpolant will appear bumpy,

but with correct connectivity. However, the noise model considered is restrictive and unrealistic; the

noise must be bounded in magnitude in proportion to the curvature of S (a curvature-adaptive hard

bound). Thus, noise models that include outliers, such as Gaussian noise, are excluded.

Outside of the Shape from Points problem, Labatut et al. developed a multi-view stereo algo-

21

rithm that produces excellent reconstruction results as a subset of the 3D Delaunay triangulation’s

facets, given a very noisy dense point cloud with a large number of outliers [68]. This empirically

hints that outliers and more general noise may not affect the quality of a Delaunay triangulation as a

discretization choice, and that proofs and algorithms may exist for noise models more general than

noisy r-sampling.

3.2 SLAM / Online Structure from Motion

Simultaneous Localization and Mapping (SLAM) describes the problem in robotics of estimating

the robot pose while creating a sparse map of the environment. While SLAM in the more general

sense can make use of arbitrary sensors such as sonar, laser, and stereo camera rigs, we consider

only the case of monocular visual SLAM, that is SLAM using a single camera as the only sensor

(not necessarily in the context of robotics). The SLAM problem then boils down to estimating the 6

degrees of freedom (DOF) camera pose and a representation of world structure consisting of a set of

landmarks, in real time. The landmarks generally represent the world sparsely: the SLAM problem

does not entail computing a dense 3D surface model of the observed world. While these landmarks

can include edge features as in [62] or other types of features, they most commonly represent a

simple sparse 3D point cloud. SLAM therefore is synonymous to online Structure from Motion. In

this thesis’s work on real-time 3D reconstruction, we use SLAM as a starting point and triangulate

the point cloud to produce a 3D mesh.

There exists two broad categories of approaches in the literature: recursive filtering methods,

and keyframe-optimization bundle-adjustment methods.

3.2.1 Recursive Filtering

In the recursive filtering approach, variants of the Kalman filter are popular [107]. The basic Kalman

filter represents and maintains the state of the system in a vector (comprised of the camera pose,

landmark positions, and often dynamical entities such as the camera’s translational and angular

velocity), as well as the uncertainty in the state in the form of a covariance matrix. The filter

statistically models the process that predicts the evolution of the state from one video frame to

the next using a linear function. This function maps the previous state, current control commands

(in the case of an actuated robot), and Gaussian process noise to the next state. The filter also

models the measurement process as a linear function mapping the state to observations of the state,

which in this case is the projection function on landmarks with a Gaussian image-noise term. A

set of update equations based on these two functions predict the current state given the previous

state, and update the estimate given the current image frame’s landmark measurements. Because the

projection or measurement function is nonlinear in monocular SLAM due to perspective division,

the Kalman filter is not directly suited to the problem. Therefore, monocular SLAM frequently

relies on variants designed to handle non-linearity, such as the widely used Extended Kalman Filter

22

(EKF) [107, 19, 24, 25, 20, 84], the Unscented Kalman Filter [18], or others.

The first successful implementation of a real-time end-to-end monocular SLAM system was

done by Davison et al. [24, 25]. It used an EKF as its base machinery, and included provisions

for adding and deleting landmarks to and from the state. The state representation included linear

and angular camera velocities, and a constant-velocity motion prior was assumed. Feature detec-

tion and matching were implemented with the aid of the EKF: the 3σ covariance ellipsoids of the

landmarks project into the image using the Kalman-predicted camera pose to restrict the search for

image matches or measurements. Experiments with this system demonstrate real-time tracking and

mapping in room-sized workspaces, with a map size on the order of 100 landmarks. Unfortunately,

a major limitation of this and other Kalman-based approaches is the computational complexity of

the filter. Full covariance information is stored and updated in an O(n2) size matrix, where n de-

notes the number of landmarks. Such filters quickly drop below real-time performance if too many

features are present. This computational restriction is a major drawback for our purpose, where we

are most interested in the structure of the environment, rather than in obtaining great accuracy in the

camera trajectory; we prefer a denser set of landmarks. We remark that our algorithms have similar

bounds on run-time complexity (Section 4.5), but these O(·) bounds hide unspecified multiplicative

speed constants. Additionally our computational budget is greater since our methods operate at an

event rate which is less than a 30 fps frame rate. We demonstrate that our algorithms are fast enough

for real time operation with a large number of landmarks in Section 5.2.

Other Kalman filtering implementations exist that attempt to improve tracking robustness in

the case that the motion model is severely violated, e.g. under high acceleration jerky camera mo-

tion. When the motion model is violated, complete tracking failure can result. Civera et al. devel-

oped a SLAM system that runs multiple EKF filters in parallel with different motion models, and a

Bayesian model selection mechanism determines which models should be active at any given point

in time [20]. The switch between filters is continuous in that each model has a probabilistic mixing

weight with respect to the others, but in practice the selection mechanism assigns sparse weights.

Chekhlov et al. use a constant position (plus noise) motion model to handle camera shake [18].

Particle filtering provides another statistical framework for recursive estimation. Instead of main-

taining full covariance information in a single matrix, part of the variability of the state is represented

by a discrete set of weighted samples or particles, which imply a probability distribution. Typically,

the particles each represent hypothesized camera poses plus dynamics and their relative probabili-

ties, and in this way represent the camera’s distribution at each iteration of the filter. While landmark

positions and uncertainties could also be modeled using their own particle distributions, this has been

noted to be computationally too expensive for online performance [30].

It is normal in particle filtering formulations for the update equations to be Kalman-like [30, 89].

E.g., in FastSLAM 2.0, a separate EKF filter is run on each particle, taking variance information

from the particle distribution into proper account, while updating and resampling the particles from

23

the distribution correctly based on the variance from every EKF.

Eade and Drummond’s use of FastSLAM 2.0 is geared toward improving the computational ef-

ficiency of monocular SLAM [30, 78]. FastSLAM 2.0 relies on the observation that if the camera

trajectory is known exactly (or hypothesized exactly) then the landmark features are conditionally

independent with respect to each other, because they are only related through the geometry of pro-

jection and back-projection. Therefore, this portion of the covariance can be dropped per particle,

and the footprint of the variance information becomes O(mn), where m is the constant number of

particles and n is the number of landmarks. Filter updates are more efficient as a result, and real-

time SLAM was demonstrated on sequences containing several hundred landmarks, surpassing pure

EKF filters in this regard.

Other particle filtering methods have focused on improving tracking robustness. Pupilli and

Calway attempt to improve robustness in comparison to a straight EKF by modeling the trajectory’s

probability distribution more generally than a Gaussian-assumed mean and covariance [88, 89]. The

particle filter supports a multi-modal probability distribution that can handle different competing

hypotheses of camera motion under ambiguous circumstances. The computational trade-off here

is between trajectory and map estimation. Pupilli and Calway demonstrate real-time performance

using 500 camera particles, but only approximately 10 landmarks.

Several works have sought to optimize SLAM via sub-mapping [21, 83, 84] and other techniques

such as postponement [63]. Sub-mapping techniques divide the environment into a set of slightly

overlapping size-bounded segments, and they construct local maps using their own separate filters

for each such sub-map. Because the size of sub-maps are bounded, the per-frame operating cost of

the active filter is constant-time. However, with most of these approaches some covariance infor-

mation is dropped. As a result, the overall map is subject to open-loop drift (and scale-drift [101])

over time. Explicit camera trajectory loop-detection via recognition of previously seen landmarks or

image appearance, plus an explicit loop-closure operation is necessary to remedy this problem. Ad-

ditionally, to represent the map in a single Euclidean coordinate frame, sub-maps must be registered

to each other via a set of map-to-map transformations. These transformations are often represented

as a graph with links the between sub-maps that overlap, and this graph of transformations is opti-

mized as a final post-processing step or as an online loop-closure step. Such optimization does not

have constant-time complexity, but on large-scale outdoor sequences with several-hundred-meter

trajectories, it has performed with time-cost on the order of a second, which is acceptable for real-

time operation in a background process. In contrast, loop closure is inherent in single-filter Kalman

systems, as measurements of one landmark correctly affect the entire state as prescribed by the

full covariance matrix. Sub-mapping however provides for impressive large-scale SLAM, mapping

hundreds to thousands of points over unprecedented trajectories.

24

3.2.2 Online Bundle Adjustment

As an alternative to the recursive filter approach, real-time SFM based on bundle-adjustment opti-

mization has seen recent success. Full global bundle adjustment is computationally expensive, and

cannot operate at frame-rate on every tracked frame’s correspondences in a real-time SLAM sce-

nario. However, as a compromise between accuracy and speed, implementations can make choices

on how many iterations to perform, as well as when and what to bundle adjust, be it a set of spatially

disparate keyframes as in [61, 62, 79, 101], or a sliding window on a constant number of recent

frames [34], or some combination of the two [93, 92].

A recent study by Strasdat et al. provides theory, monte-carlo experiments, and discussion

comparing recursive filtering methods to keyframe-based bundling in the context of monocular

SLAM [100]. The accuracy versus computational cost trade-off between the two approaches was

investigated. It was shown that generally, except in low-accuracy tight computation-budget situ-

ations, bundling methods have superior accuracy per cost. Additionally, bundling methods were

shown to be much more efficient at handling many landmarks (in contrast to many image frames),

and the benefit of optimizing more features versus more frames in terms of accuracy is shown to

be greater. The implication is that, from a state-of-the-art bundling-based SLAM system, we can

expect accurate real-time reconstruction with denser point clouds than from recursive filtering.

Klein and Murray present a system based on keyframe bundling, called Parallel Tracking and

Mapping (PTAM) [61, 62]. It performs all bundling and map-management (such as outlier dele-

tion) in a background thread, which prioritizes bundling the recently initialized structure and newer

keyframes over global bundle adjustments, which are only performed if there is processing time

available. This means that loop-closure is not guaranteed or explicit, but in practice the system

produces impressively accurate maps with up to approximately 10,000 landmarks in room-sized

spaces.

While accurate SLAM with many landmarks is not unique to PTAM [101], PTAM has the advan-

tages of being both open source and very robust, in the sense that it can reliably relocalize to recover

from tracking failure if pointed at familiar landmarks. For these reasons, we choose PTAM as our

base SFM system for online surface reconstruction; see Section 4.6. On the other hand, Kalman

filtering approaches explicitly model the uncertainty in landmark estimates in terms of covariance.

This uncertainty information could be used e.g. for soft or conservative probabilistic free-space carv-

ing, like in the work by Hilton et al. [49]. The disadvantage of PTAM is that it does not provide us

with a direct estimate of the noise in the system.

3.3 Tele-robotics

In tele-robotics, a human operator controls a remotely located robot. The operator sends control

commands to the robot to perform some task, and receives sensory feedback via a communication

25

channel.

Communication delays are a fundamental problem. When the operator sends commands to the

robot, he expects sensory feedback to reflect his inputs in a natural and transparent way. This is

essential for closing the master-slave control loop. However, in practice sensory feedback is delayed

by the round-trip latency of the communication channel. Therefore, simple streaming of video and

haptic information typically proves insufficient. Visual delays as small as 0.3 seconds negatively

impact operator performance and produce a sense of decoupling the human’s motions from the robot,

resulting in effectively open-loop “move and wait” control [96, 47, 33, 36, 50]. This magnitude of

delay is common across the internet, and e.g., ground-to-space tele-operation suffers unavoidably

larger delay due to the finite speed of light.

Computer vision can ameliorate the effects of visual delay via predictive display. Predictive

display refers to rendering a visualization of the robot site directly in response to the operator’s

control commands, without waiting for delayed video. This visualization predicts what the camera

would see, assuming no delay and given a model of the robot and/or its environment. The model can

either be specified offline, in the case of an a priori known environment, or acquired online using

computer vision techniques at the robot site. From video, a 3D model can be acquired and updated

in real time and sent back to the operator for immediate visualization.

We have applied our 3D reconstruction method to online modeling for predictive display. Addi-

tional detail can be found in Section 5.4, as well as in our paper on this topic [73].

3.3.1 Photo-Realistic Predictive Display

Traditionally, predictive display has been accomplished in highly pre-calibrated settings by superim-

posing hand-modeled wire frame and solid-model overlays of the robot manipulator and scene ob-

jects atop delayed video [96, 8, 59]. This approach supposes a known environment and non-moving

external camera. More recent work aims to produce photo-realistic predictive display in less cali-

brated scenarios via modeling of the robot’s environment using computer vision [14, 54, 108, 90].

Our work’s application to predictive display falls into this category; we do not require a 3D model a

priori. We therefore narrow this section’s review to this set of work.

Image-based rendering techniques have been applied to photo-realistic predictive display, in-

cluding pure image-based synthesis [54] and hybrid geometric approaches [22, 108]. To date how-

ever, these techniques require an offline reconstruction step or a lengthy online learning phase to get

a sufficiently dense image-sampling. In [54], a purely image-based technique synthesizes predic-

tive display for an external fixed camera observing a high-DOF robot arm. From control-command

history and delayed images, an image-appearance intensity basis is learned via Principal Compo-

nent Analysis (PCA), and this basis is modulated to predictively render new robot configurations.

The method has the advantage of being completely uncalibrated, and it requires no prior model of

the robot. Additionally, learning is performed online, but a long acquisition phase and dense image-

26

sampling is required to construct an adequate basis for rendering. Yerex et al. present an eye-in-hand

variant of this approach that reconstructs a coarse stabilizing geometry proxy for rendering using

Structure from Motion, and that computes a PCA basis in this model’s texture space [108]. The 3D

model is however extremely coarse, therefore a dense image-sampling is still required. Cobzas et

al. present a system that provides a high-fidelity realistic display [22]. They construct a panoramic

image-and-depth model of the robot site via a rotating camera and a laser scanner. However, the

model is acquired and constructed offline, thus limiting potential applications.

True online vision capture of a single coherent 3D model for predictive display is almost non-

existent in the literature. However, some works attempt this or something close. Burkert et al.

describe an online depth-fusion technique for predictive display that acquires a 3D model using a

stereo camera rig [14]. However, their system takes upwards of 30 s to integrate each new depth map,

and it exhausts computational resources, both CPU and GPU. Additionally, their implementation

lacks online localization of the camera rig. Recently, Kelly et al. and Huber et al. showed excellent

results for capture and display of the environment around a tele-operated mobile vehicle [58, 53].

However, their modeling technique is fairly specific. The reconstruction assumes that the model is

comprised primarily of a terrain height-map plus a far-depth billboard approximation for the sky

and distant horizon. This assumption is acceptable for the driving task, but is not a general solution.

Additionally, the technique uses a laser sensor instead of a passive camera for vision, as well as

an inertial navigation system for localization. Nevertheless, Kelly et al.’s approach provides very

impressive predictive display for driving.

Rachmielowski’s predictive display system is closely related to ours [90]; we build upon this

work. His system reconstructs a sparse camera set and 3D point structure using online SLAM.

It creates a coarse view-dependent geometry by connecting projected 3D points and then back-

projecting the 2D mesh into a 3D model. Predictive rendering is achieved by projective texturing

from keyframes. This method enjoys the benefits of online performance, support for a moving

camera without rigorous precalibration, no need for a 3D model a priori, and applicability to a

variety of unknown environments. However, the integration with a real robot was preliminary, and

thus experimental validation in [90] was performed primarily in simulation. In contrast, our 3D

modeling offers improvements. Instead of using a view-dependent rendering proxy, we infer a single

coherent view-consistent proxy that respects physical free-space constraints on the scene. Moreover,

we provide experimental evaluation on a real robot in Section 5.4.

In contrast to all these systems, our approach attains real-time tracking, localization, and co-

herent 3D scene reconstruction with online visualization using just a single camera and the low

processing requirements of a mobile laptop CPU. To the best of the author’s knowledge, this is a

unique combination.

27

Chapter 4

Method and Algorithms:

Incremental Free-Space Carving

As seen in Chapter 3, there exists a wide variety of ideas and techniques for 3D reconstruction, each

with their own benefits and weaknesses. A main contribution of this thesis is the development of a

set of algorithms that encompass an approach for fast approximate 3D reconstruction. The approach

is incremental and event-driven. Unlike most methods, this approach does not expect all of its inputs

prior to execution. Instead, it allows for incremental additions and modifications to its inputs, and it

reuses previous computations to efficiently update the results. In this way, the method achieves real-

time performance. The approach employs the principle of “free space” as the primary reconstruction

cue. That is, reasoning about visibility and occlusion yields geometric constraints on the scene that

the reconstruction is based on and therefore respects.

This chapter introduces the theory, algorithms, and related ideas. Additionally, it describes a

real-time software system that implements them for reconstructing 3D models from live video. The

chapter consists of the following primary sections:

• “Free Space” explains the geometric principle that the algorithms operate on.

• “Inputs and Representation” describes the inputs to the algorithms, the related restriction of

the reconstruction problem, and the volumetric representation chosen for the 3D model and

surrounding space.

• “Algorithms” presents the algorithms in detail, including the overarching event-based ap-

proach, as well as a “forgetting” heuristic that enables real-time performance.

• “Isosurface Extraction and Regularization” describes how to compute a conventional 3D mesh

from the volumetric representation.

• “Computational Complexity” proves important bounds on the run-time and space require-

ments of the algorithms.

• “Software System” describes the software architecture of the implementation.

28

O

B

A

C

D

(a)

O

P

(b)

Figure 4.1: Free-space constraints. (a) The general concept. A camera O observes a surface patch,

here the quadrilateral ABCD. The pyramidal volume ABCDO must be empty; otherwise, the

patch would be occluded. (b) Our chosen discrete representation of free-space constraints. The

carving method considers only points P instead of generalized patches. Therefore our free-space

constraints are infinitesimally thin volumes, the line segments, OP . These intersect a discretized

space of tetrahedra.

4.1 Free Space

The notion of free space is briefly described in Section 3.1.2. We elaborate further here and describe

its use. When a camera images a 3D scene surface patch, the volume comprised of the rays of

projection from the patch to the camera’s optic center must be vacant, and therefore consist of “free

space.” Otherwise, whatever occupies that space would occlude the patch, assuming surface opacity,

and the patch would not be imaged. Figure 4.1(a) illustrates this.

To avoid the computational cost of dense per-pixel depth reconstruction, as well as the difficulties

that come with, e.g. textureless areas in the scene, the idea is to restrict ourselves to a feature-based

approach where only the reliably estimated features in an image are tracked and reconstructed in 3D.

Then, construct the union of the 3D free-space volumes induced by these general feature patches,

and use this volume to define a dense interpolative mesh.

This approach is distinct from Shape from Silhouettes (see Section 3.1.1) and can be thought of

as an interior carving; instead of carving away space that projects outside an observed silhouette (or

patch feature), we carve away the known free-space that projects inside and in front of the feature.

While exact methods to compute Shape from Silhouettes exist [37, 38], it turns out that exact

methods for interior free-space carving in three dimensions are difficult to construct, because the

geometry is hard to reason about. The interpolation induced by the union of free-space volumes

from a discretely sampled camera track and patch set is not obviously defined. See Figure 4.2; what

are the correct interpolations, and how can we compute them?

Fortunately, if we forgo exactness and utilize discrete approximations, as described in the next

section, we still obtain useful interpolative meshes. We have chosen a practical approximation to

the free-space problem: we restrict the 3D patch features to infinitesimal point features, and we

discretize space based on this point set. In this case, free-space volumes reduce to infinitesimally

small line segments; see Figure 4.1(b). The exact union of these constraints is not useful, but we

use these line segments to heuristically carve away entire discretized volume elements that inter-

sect. Because of our particular choice of discretization, the boundary between carved and uncarved

29

P1 P2

O1 O2

(a)

P1 P2

P3

O O21

(b)

Figure 4.2: The exact discrete free-space problem. Cameras On observe patches Pn. (a) The 2D

problem. The union of free-space volumes is outlined. Even though the volume can be computed,

parts of the boundary (e.g. those connecting to the camera centers) project in front of the patches, and

are undesirable for rendering from any novel viewpoint that is situated outside of the volume. The

interpolative mesh we would ideally compute consists of the patches P1 and P2, plus the highlighted

part of the boundary in between them (drawn in green with segment endpoints marked). (b) The 3D

problem: A frontal view of 3 patches in front of two camera centers. A good interpolation for

visualization is not obviously defined. The shaded (blackened) areas contain uncarved space of

unknown occupancy, but they are “in between” the patches.

volumes induces an interpolation that is well defined.

4.2 Inputs and Representation

Given as input a set of reconstructed 3D point features {P}, camera estimates {O}, and visibility

lists {OP} describing which points P are visible in each view O, our method connects and interpo-

lates the point set to produce a triangulated mesh that approximates the scene. This restriction of the

3D reconstruction problem is not categorized as multi-view stereo (Section 3.1.1) because calibrated

images are not the input. The problem also does not align with Shape from Points (Section 3.1.4).

Rather, we tackle a Shape-from-Points-and-Visibility problem.

We assume the inputs are readily available from online SLAM [24, 30] or Structure from Mo-

tion [61]. Therefore, the estimates of {P}, {O}, and the visibility lists are continuously changing.

The method takes a volumetric approach: it discretizes space via the 3D Delaunay triangulation

of the input point set {P} which yields a set of tetrahedral volume elements that cover the space

spanned by {P}; see Section 2.3 for a description of Delaunay Triangulations. Each tetrahedral 3D

volume element has associated with it a labeling: either it is marked as free or occupied space. The

2D boundary surface between the labelings represents our interpolative reconstruction.

The choice of a Delaunay discretization, as opposed to a regular discretization such as voxels,

is motivated two-fold. First, it is adaptive. Because we use thin discretely sampled free-space

constraints, if every volume element were small like a voxel, we could only carve thin burrow holes

into the model. Such a carving would produce useless results with a sparse sampling of free space.

The Delaunay triangulation contains many small tetrahedra where denser clusters of surface points

are present, and it contains fewer but larger tetrahedra where there are no points in free space.

30

Therefore, a sparse sampling can carve very effectively.

Second, because the Delaunay discretization is geometrically adaptive, the space-complexity of

the triangulation (i.e. the number of simplices or volume elements) is also adaptive. The size is

worst-case quadratic in the number of points in {P} [60, 97], and unlike voxels, the size is not

so directly dependent on the desired output 3D model resolution. This relation offers speed to our

algorithms: we exploit it to attain worst-case real-time computational complexity. See Section 4.5

for complexity analysis.

Additionally, in Section 3.1.4 we discuss an interesting property of 3D Delaunay triangula-

tions of points sampled from surfaces. Assuming certain sampling conditions are satisfied, a good

piecewise-linear approximation of the surface is guaranteed to be contained within the triangular

facets of the discretization.

4.3 Algorithms

The fact that our algorithms’ inputs come from an online SFM process that continuously modifies

and appends to the input data implies two requirements for any real-time reconstruction method

that utilizes this information. First, the method itself must produce intermediate outputs. Specifi-

cally, the approach should be fully incremental and generate new meshes in real time. Second, the

method must support fine-grained event handling. Different types of updates to the input data trigger

different algorithms for tailored processing.

In this section, we present a set of algorithms that satisfy these requirements. They handle five

main events that are common to SLAM and SLAM-like systems:

1. New-keyframe events, where newly initialized features are also added to {P}

2. Data-association events, entailing the addition of new visibility information

3. Data-dissociation events, entailing the deletion of erroneous visibility information

4. Deletion events, where outliers are removed from {P}

5. Refinement events, where subsets of {P} and {O} are reestimated and moved

Figure 4.3 shows the high-level data flow of the whole method and our implemented system.

Because the algorithms all operate on the same data structures, we first discuss their commonalities.

What follows is a description of each event handler. Finally, we propose a heuristic that brings the

method to real time.

4.3.1 Commonalities

Each event handler’s goal is to maintain and update a carving of the Delaunay-discretized space. The

algorithms prune entire tetrahedra by marking them as empty if they intersect a free-space constraint,

as illustrated in Figure 4.1(b).

31

Figure 4.3: Reconstruction system.

When an event updates a subset of the point set {P}, the Delaunay discretization of a related

subset of space changes in turn. Some tetrahedra are deleted, holes are thus created, and new tetra-

hedra fill the holes and take their place. Therefore, our algorithms must efficiently determine which

of the newly created tetrahedra to mark as free space.

For this purpose, we associate with each tetrahedron a set of all the free-space constraints that

intersect it. The sets from the old tetrahedra that span the hole(s) determine the minimal constraint

set that we must test against. In contrast to a batch method that would redo the triangulation from

the beginning and then retest all constraints, our algorithms save time by minimally processing only

the new tetrahedra and relevant constraints.

However, this minimal processing is not enough to ensure real-time operation. As many frames

are processed, free-space constraints quickly accumulate in the tetrahedra’s constraint sets. The

size of these sets increase, and so does memory consumption and computation time. Thus, in Sec-

tion 4.3.6, we propose a heuristic for keeping the size bounded.

Additionally, we note that some of our algorithms require that all the optic centers {O} fall

within some tetrahedron in the triangulation. Therefore eight artificial vertices are initially inserted

before all events. These vertices represent a loose bounding cube on the features and optic centers.

4.3.2 Keyframe Insertion

Upon addition of a new keyframe, we must handle two changes. First, any 3D point features that are

initialized in this keyframe add to {P} and thus change the discretization. Second, this keyframe’s

visibility list carves the resulting discretization.

To preserve the empty circumsphere property, when a new point is inserted, the triangulation

algorithm deletes all tetrahedra that contain the point within their circumspheres and then retriangu-

lates the resulting hole. The hole is always a connected set of tetrahedra, and starring1 off the hole

1Starring of a hole with a point means connecting the boundary of the hole to that point. In 2D, each edge of the hole’s

polygonal boundary connects with the point to form a new triangle. In 3D, each triangular face of the hole’s polyhedral

boundary connects with the point to form a new tetrahedron.

32

(a) Initial (b) Conflicts (c) Retriangulation (d) Final Carving

Figure 4.4: A 2D illustration of Algorithm 1, Keyframe Insertion. (a) The initial triangulation. The

blue dashed lines are free-space constraints currently in the triangulation. Shaded aquamarine cells

have not yet been carved. (b) An incoming point (red cross). The highlighted striped cells are in

conflict with the point because it falls inside their circumcircles. (c) The highlighted cells were

deleted, and the hole stared off. The red free-space constraints (bolded) belonged to the deleted

tetrahedra; they are now used to carve away two of the four new tetrahedra. (d) Finally, the new

free-space constraint(s) from the current view are applied.

results in a valid retriangulation [102]; see Figure 4.4.

After retriangulating holes, our algorithm determines which of the new tetrahedra to mark as

free space. The minimal constraint set to test against is the union of the constraint sets from the old

tetrahedra that spanned the holes.

Finally, the free-space constraints induced by the current view are applied. The entire process is

summarized in Figure 4.4 and in Algorithm 1.

Algorithm 1 New-Keyframe Event Handler

U ← ∅, the empty constraint set

for all Q ∈ {P}.NewPoints do

C ← {Cells whose circumspheres conflict with Q}
for all T ∈ C do

U ← U ∪ T.ConstraintSet

Insert Q into the triangulation and star off the hole

Apply all constraints ∈ U as described in § 4.3.3

Apply constraints from the current visibility list

4.3.3 Data Association and Dissociation

Data association and dissociation events only change visibility information. Association events add

visibility rays, and dissociation events remove them. For example, if a point is initialized in some

keyframe and then later matched also in an earlier keyframe, this raises an association event. If, e.g.

after a refinement event, a point’s reprojection error in some keyframe is large, the corresponding

visibility ray is likely erroneous. This may raise a dissociation event: that ray’s carving must then

be undone.

To handle an association event, we only need to carve. To carve via a given free-space constraint

OP with optic center O and feature point P , we adopt Gargallo’s traversal algorithm [41]. (This is

our only event handler that is not novel.)

33

Figure 4.5: The traversal algorithm for processing a free-space constraint (dashed line). First, the

cells adjacent to the highlighted vertex are tested for intersection with the constraint. Then, the al-

gorithm hops from cell to adjacent cell via the red facets (bolded) until the camera center is reached.

The carved cells are shaded.

The algorithm is depicted in Figure 4.5. The line segment OP stabs a connected set of tetrahedra

through their shared facets (red and bolded in the figure). This makes traversal possible: begin

at vertex P , and perform a series of facet-segment intersection tests to determine which adjacent

tetrahedron to traverse to. To find the initial tetrahedron, iterate over all the tetrahedra incident to P ,

testing only the facet opposite to P for intersection with OP . If at any time the current tetrahedron

contains point O in its interior, the traversal is complete. We add OP to all the crossed tetrahedra’s

constraint sets.

To initially find vertex P , we maintain a vector of vertex pointers as we construct the trian-

gulation. We represent OP as a pair of indices, and index the vector to find the vertex (in O(1)

time).

For dissociation events, our event handler simply traverses all tetrahedra in the triangulation

to erase the selected constraint from their intersection sets. See Algorithm 2. We could apply

Gargallo’s traversal algorithm instead, but the entailed ray-triangle intersection test is expensive,

and Section 4.5 and Appendix A show that the worst case asymptotic run time is the same for both

approaches.

Algorithm 2 Dissociation Event Handler

OP ← The free-space constraint to remove

for all Tetrahedra T do

T.ConstraintSet ← T.ConstraintSet \ {OP}

4.3.4 Outlier Deletion

When a point Q is marked for deletion, we remove it from both {P} and the triangulation, but we

must also undo the carving of all visibility rays induced by it.

Therefore, Algorithm 3 first traverses all tetrahedra to remove any constraints incident to Q from

their intersection sets.

Deletion of Q from a Delaunay triangulation rediscretizes space: a hole is formed and retriangu-

lated. The hole is precisely the set of tetrahedra adjacent to Q [28]. This is because point removal is

34

the inverse operation of point addition; a starred off hole around Q forms the set of tetrahedra adja-

cent to Q (cf . Figure 4.4 and assume that Q was inserted last). A robust procedure for retriangulating

the hole is given in [28].

Algorithm 3 therefore collects a set of free-space constraints from incident cells before removing

Q, to apply this set afterwards.

Algorithm 3 Outlier-Deletion Event Handler

U ← ∅, the empty constraint set

Q← Point marked for deletion

// Remove all constraints that reference Q

for all Tetrahedra T do

T.ConstraintSet ← T.ConstraintSet \ {OP | P = Q}
// Collect constraints from incident cells

C ← {Cells incident to Q}
for all T ∈ C do

U ← U ∪ T.ConstraintSet

Delete Q from the triangulation (this retriangulates)

Apply all constraints ∈ U as described in § 4.3.3

4.3.5 Refinement

The refinement event handler is invoked whenever a set of points and cameras are moved. This

happens continuously in SLAM, and it corresponds to partial or full bundle adjustments in online

Structure-from-Motion.

Algorithm 4 summarizes. It is essentially a series of point deletions and insertions (akin to

Sections 4.3.2 and 4.3.4), with free-space constraints collected and applied only when necessary.

Algorithm 4 Refinement Event Handler

// Collect constraints from incident cells

U ← ∅, the empty constraint set

for all Q ∈ {P}.MovedPoints do

C ← {Cells incident to Q}
for all T ∈ C do

U ← U ∪ T.ConstraintSet

// Remove the vertices (this retriangulates)

for all Q ∈ {P}.MovedPoints do

Delete Q from the triangulation

// Insert moved vertices while collecting constraints

for all Q ∈ {P}.MovedPoints do

// Qmoved refers to Q’s new coordinates.

C ← {Cells Delaunay-conflicting with Qmoved}
for all T ∈ C do

U ← U ∪ T.ConstraintSet

Insert Qmoved into the triangulation

Remove all constraints from the triangulation that reference moved points, like in Algorithm 3

Apply all constraints ∈ U as described in § 4.3.3, using moved point and camera locations

For efficiency, we implement this handler with a slight approximation: we partially ignore the

35

Figure 4.6: The similarity of the left-hand segment w.r.t. the right-hand segment is equal to 1 over

the sum of areas spanned by the gray triangles.

movement of keyframes, and thus of some visibility constraints. This works due to two realistic

assumptions. First, we assume that keyframes are initialized accurately such that they only move

slightly. Second, we rely on future events to re-discretize the remainder of space; constraints then

will be reprocessed using the moved optic centers. This implementation choice allows for a better

run-time complexity that is independent of the number of keyframes in {O}; see Section 4.5.

4.3.6 Forgetting Heuristic

The heuristic is simple: retain the K least similar constraints in each tetrahedron’s constraint set.

As shown in Section 4.5 and Chapter 5, the efficiency greatly improves with insignificant impact on

reconstruction quality.

We define the similarity measure by (the inverse of) the sum of the areas spanned between the

two constraints; see Figure 4.6. By retaining the K most spatially distinct constraints that intersect

each tetrahedron, we hope to cover as much volume as possible so that, when a hole is retriangulated,

space is sampled well enough that the new tetrahedra can be carved.

This is not a true similarity measure as it is asymmetric, but it is only a heuristic. The asymmetry

arises because the areas depend on the base segment’s length ||OP ||. This weights longer segments

as more different, which usually is desirable.

When a set is full, an incoming constraint is inserted iff it is less similar to all the constraints than

their most similar constraint in the set. This knocks out the constraint with the highest (asymmetric)

similarity score.

In the case K = 1, we simply retain the first inserted constraint and reject all others. For

K =∞, the set is never full, so no similarity measures need to be computed.

4.4 Isosurface Extraction and Regularization

Given a current carving, it is straightforward to output the reconstruction as a conventional 3D

graphics mesh. Because tetrahedral facets are triangles, this can be computed as the set of facets that

border adjacent tetrahedra with differing labels (“carved” or “uncarved”). However, we adopt a more

sophisticated scheme for extracting a smoother regularized mesh that can serve as a better geometry

proxy for image-based rendering. We remark that surface extraction without regularization also has

36

Figure 4.7: A graph with two tetrahedra A and B. Edges between A and B carry the regularization

term; edges connecting to s and t represent the data term. (V denotes volume). The cut’s cost is the

sum of edge weights leading from s’s connected component to t’s (red edges).

its uses, e.g. for non-visual applications like robotic navigation where a more pure and conservative

estimate of free space is better.

Let x denote a 3D point (x, y, z)
T

, and let △ (x) be the tetrahedron containing x. Let u (x) ∈

{0, 1} be a binary labeling denoting whether x is carved or uncarved, and let v (△ (x)) be the label-

ing for tetrahedron△ (x) provided by our base algorithm. In essence, we minimize the following

(continuous) energy functional, but over a discrete carving u (△):

∫∫∫

|u (x)− v (△ (x))| dx+ λ

∫∫∫

H (‖∇u‖) dx. (4.1)

Here H is the Heaviside step function defined such that H(0) = 0, and λ is a scalar regularization

parameter.2 The left-hand integral is the data term, and the right-hand integral evaluates to the

surface area of the isosurface of u.

Put another way, we find the optimal carving u (△) that minimizes the volume that disagrees

with the original carving v (△) plus a surface-area penalty term. We then extract the isosurface of u.

To optimize, we cast the minimization as a discrete min-cut graph problem. We construct the

graph as follows. The vertices correspond one-to-one with each tetrahedron, except for an additional

source s and sink t. Node s is associated to the label 0 = carved, and t to 1 = uncarved. To encode

the data term, each node representing a tetrahedron△ with original label v (△) = 0 connects to s

by an edge with weight equal to △’s volume. Nodes with the opposite label connect similarly to

t. To encode the penalty term, nodes corresponding to adjacent tetrahedra connect to each other

by directed edges with weight λA, where A is the area of their shared facet. See Fig. 4.7 for an

illustration.

Because the tetrahedra are four-connected, our graph has a topology common to many graph-cut

problems in computer vision. To compute the regularized carving u, we use an efficient algorithm

optimized for such graphs [12].

2Good values of λ were found to be between 0.3 and 0.75. We found these values by manually tuning λ across several

datasets, and visually inspecting the outputs.

37

4.5 Computational Complexity

The run-time bounds derived in this section are not intended to be tight. Instead, in conjunction with

the experiments in Chapter 5, they serve to illustrate the real-time quality of our algorithms.

First, we analyze the version that employs the forgetting heuristic (K < ∞). Let N be the

number of input points, and M the number of views.

Theorem 1. The worst-case run-time complexity of carving a free-space constraint OP (§ 4.3.3) is

O(N2), for K <∞.

Proof. Because segment OP can intersect at most O(N2) tetrahedra [97], and because the number

of tetrahedra incident to P is bounded by O(N2) [60], the traversal takes O(CN2) time. Here C

refers to the cost of inserting a free-space constraint into a tetrahedron’s constraint set. C depends

on K , and because K is a constant, O(C) = O(f(K)) = O(1). Thus a single traversal takes

O(N2) time.

Theorem 2. The worst-case run-time complexity of Algorithm 1 is O(N4), for K <∞.

Proof. First, we cite some relevant properties of the 3D Delaunay triangulation. In the worst case,

the number of tetrahedra in the triangulation, as well as the number of tetrahedra that a line can

intersect, is of order N2 [60, 97]. Because we have a structured point set, these bounds are loose.

Several papers suggest or prove tighter bounds for point sets sampled from smooth surfaces [4, 35].

The algorithm can be split into two phases: point insertions plus retriangulation with recarving,

and carving via the current view’s free-space constraints.

For the first phase, there are at most N vertices to insert. For each insertion, at worst all O(N2)

tetrahedra conflict, and thus are deleted and starred off in O(N2) time. Locating the conflicting cells

takes no more than O(N2) time, since even a naive enumeration of all O(N2) tetrahedra suffices.

Thus, inserting all the vertices takes O(N3) time.

To recarve the new tetrahedra, the constraints from the old tetrahedra are collected into a single

set and then applied. Since K < ∞ and since the number of deleted tetrahedra is O(N2), the

number of constraints to reprocess is O(N2). Therefore, inserting them into a set can be done in

O(N2 log(N2)) = O(N2 log(N)) time using a red-black tree. Theorem 1 shows that applying a

single constraint takes O(N2) time. Since there are O(N2) constraints, the total time for the first

phase of an iteration is O(N4).

For the second phase of an iteration, because at most N points can be observed in a single view,

there are at most N free-space constraints to apply. Therefore, the second phase takes O(N3) time.

Thus, the complete algorithm takes O(N4 +N3) = O(N4) time per iteration.

The worst-case complexities of Algorithms 2, 3, and 4 are O(N2), O(N4), and O(N4) respec-

tively, for K <∞. Proofs for these bounds are delegated to Appendix A.

38

Also, the computational complexity of the graph-cuts isosurface extraction in Section 4.4 is

clearly polynomial-time in the number of graph vertices [23], which is O(N2). Each vertex in the

graph has constant bounded degree by construction, and the size of the edge-set is related in this

way.

Now for a closed bounded scene, we can assume that the average number of features observed

in a given view, Navg, is proportional to N [49]. Therefore, the average case complexity of all our

event handlers is O(Navg
4). Because Navg depends on system properties such as the camera’s field

of view and the spatial density of the tracked point set, the per-event time complexity is practically

constant [49], which is desirable for an online algorithm.

Without the forgetting heuristic (K = ∞), the situation is worse. In this case, there are at most

N times M constraints in the triangulation. If, upon a point insertion, all tetrahedra are deleted and

retriangulated, then just collecting the constraints into a set takes O(NM log(NM)) time, which is

super linear in M .

We do not provide a complete analysis for K = ∞. It suffices to show that the complexity is

dependent on M , and thus not suitable for online use. Our experimental results support this.

4.6 Software System

By integrating our algorithms with PTAM [61], a real-time Structure-from-Motion system, we have

devised a complete system that reconstructs 3D meshes from video. Figure 4.3 shows the system’s

components and the flow of data. PTAM was chosen as our base tracking system because it is robust

and effective; it produces a dense and accurate point cloud, and it reliably relocalizes to recover from

tracking failures.

PTAM consists of two main threads: the tracker and the mapper. The mapper is responsible for

producing the information that our algorithms operate on. Our routines accept this information in

the form of events, and PTAM raises all five types of events.3 The current integration is far from

optimized; event handlers operate in the mapper thread, and they parse argument strings to extract

the event type and data. Ideally, the handlers should operate in their own thread to benefit from e.g.

quad-core processors. The string parsing is a relic from logging and offline testing. In spite of this,

we still attain real-time tracking, mapping, modeling, and rendering on a several year old laptop

(Intel Core2 Duo CPU T5550 @ 1.83GHz and 3 GB of RAM).

The online visualization is straightforward. This standalone system projects and blends tex-

tures from keyframes onto the model for rendering, using GLSL shaders. The texturing scheme

is a variant of the view-dependent texture mapping described in [26], where two keyframe images

are selected from poses similar to the desired visualization’s rendering pose. These keyframes are

projected onto the model and blended based on view-ray angle differences. Instead, for simplicity,

3PTAM adds new keyframes based on both spatial disparity and time elapsed. I.e., new keyframes are added only when

the tracked 3D camera pose is significantly different from all previously recorded keyframe poses and when a fixed number

of video frames have elapsed since the last keyframe at minimum.

39

we naively project and blend the four most recent keyframes with equal contributions to the final

result. For example reconstructions produced by this modeling system, see the results in Chapter 5.

The tele-robotics system described in Section 5.4.1 implements a different visualization mode for

experimentation, where only the most recent video frame is projected onto the model for texture.

Our implementation makes use of the CGAL software package for Delaunay triangulations and

geometric intersection queries [1]. CGAL is numerically robust and fast, and it provides all the nec-

essary operations, such as Delaunay point insertion and efficient traversals. We remark that naive

floating-point implementations of many geometric algorithms and predicates can produce catas-

trophically wrong results due to the approximate number type. The numerical robustness built into

CGAL is an important consideration in practice.

Typically, the full graph-cut regularization and isosurface extraction runs in approximately 0.25

seconds on a single core of the same Intel Core2 Duo CPU T5550 @ 1.83GHz. In practice, to allow

other threads and processes to run, we restrict the rate at which we refresh our isosurface model to 1

Hz.

40

Chapter 5

Experiments

This thesis presented a set of algorithms for real-time 3D reconstruction in Chapter 4. The current

chapter documents our experiments with the algorithms and the implemented system. We demon-

strate that the system works and that it works in real time, and we also evaluate and characterize

the results from the method on inputs with differing properties. Additionally, because the outputs

of the method are coarse and approximate, we attempt to show that the method is definitively useful

in some specific context. We experiment with the chosen real-time reconstruction application that

is improving visual feedback in remote-controlled robotics. In this chapter, we report a small user

study involving a tele-robotics system that uses our visual reconstruction method. The chapter has

the following major sections:

• “Reconstruction Results” presents several models captured with our real-time system running

on live video.

• “Timings and Heuristic Evaluation” validates the algorithms’ theoretical run-time complexity

results via real data. This section also justifies the use of the algorithms’ speed-up heuristic.

• “Synthetic Data Evaluation” explores the reconstruction quality as it relates to sampling and

noise. This section seeks more comprehensive insight into the accuracy and behaviour of the

proposed method.

• “Predictive Display for Tele-Robotics” details the robotics system and user study, and it shows

that this use of our algorithms can positively and uniquely enhance a robot operator’s task

performance.

5.1 Reconstruction Results

Our algorithms were tested on numerous datasets, and we obtained real-time models of multiple

environments. We present three different results in Figure 5.1 that were captured from live video

with the PTAM-integrated system of Section 4.6. Sample input images along with shaded and

textured output models are shown. We refer to the datasets in the figure, from top to bottom, as

41

Figure 5.1: Our algorithms’ results on three data sets with no smoothing. Top row: “Shelves”

dataset. Middle row: “Fireplace.” Bottom row: “House.” Left: A sample input image from the

dataset. Middle: Shaded final models. Right: Offline view-dependent texture rendering.

“Shelves”, “Fireplace”, and “House” respectively. These results were generated using the forgetting

heuristic K = 1 (Section 4.3.6) and without the regularization of Section 4.4. In fact, all results in

this chapter use K = 1, unless stated otherwise.

The results are promising. Even a complex cluttered scene like “Shelves” reconstructs well.

“Fireplace” contains specular surfaces to no detriment, e.g. the metal fireplace door and glass-framed

portraits. This demonstrates the robustness of the feature-based approach. Even though the method

carves the convex hull of the features using sparse visibility information, the recovered geometries

closely resemble the highly concave scenes, e.g. “House”.

The textured renderings in Figure 5.1 were generated using a variant of view-dependent texture

mapping [26]. This variant was implemented using GLSL shaders, and it is different from the online

system’s texturing described in Section 4.6. Here, each pixel is rendered by sampling texture from

only a single best keyframe, with different keyframes corresponding to each pixel. The keyframe

with the camera pose most similar to the desired rendering pose with respect to view-ray angles is

selected.

Reconstruction quality is however obviously not perfect. As our method employs no noise

model, the meshes are noisy and include some stray uncarved tetrahedra. However, the method

42

Figure 5.2: A model of the Robotics research laboratory constructed with our system, using smooth-

ing parameter λ = 0.3. Left: Geometry, shaded. Right: Textured rendering, from the same view-

points.

is intended for fast, approximate reconstruction. We accomplish this goal: the meshes are adequate

geometry proxies for image-based rendering. We explore and attempt to quantify the accuracy of

the method more rigorously on synthetic data in Section 5.3.

To combat the effects of noise, we employ the regularization of Section 4.4. Figure 5.2 shows a

capture of our lab using the PTAM-integrated system, but this time run with a regularization weight

λ = 0.3. From the shaded model, we can see that the reconstruction produced using regularization is

comparatively smooth. It also reprojects well: convincing renderings of the lab are shown using this

approximate model and just a single static texture derived from the input video using the technique

in [55]. View-dependent image-based rendering was not required for a coherent visualization in this

case. This reconstruction was in fact captured using the tele-robotic system that we experiment more

with in Section 5.4: the camera was not hand-held but mounted on a robot.

43

0 50 100 150 200
0

10

20

30

40

of Keyframes

T
im

e
(s

)

Cumulative−Mean Per−KF Processing Time

K = 1
K = 5
K = ∞

0 50 100 150 200
0

2

4

6

8
x 10

4

of Keyframes

T
o

ta
l

C
o

n
st

ra
in

ts

Constraint Growth

K = 1
K = 5
K = ∞

Figure 5.3: Efficiency for K = 1, 5, and∞ on a representative dataset. Left: Mean per-keyframe

processing time as a function of the number of views processed. Right: Number of free-space con-

straints in the triangulation (a function of the same). Our heuristic effectively bounds computation

time and memory usage.

5.2 Timings and Heuristic Evaluation

In Section 4.5, we showed that the computational complexity of the algorithms’ are effectively

constant per real-time event. Here we provide experimental evidence to reinforce that result and

show that our implementation is guaranteed real-time as well.

Figure 5.3 compares timings, and the number of free-space constraints retained, for K = 1,

5, and ∞ on a typical dataset from our system. For K = ∞, as the number of views increases,

the per-keyframe processing time and memory consumption grow. For finite K however (i.e. the

forgetting heuristic), they are tightly bounded and quickly level off, which supports our complexity

results. We conclude that with finite K , our algorithms do operate in real time on image sequences

of arbitrary length.

All timings were collected by running our algorithms offline on an event log. The per-keyframe

times count the time spent handling all events raised between adjacent keyframes. We average over

30 independent runs before computing the means, except K = ∞ was averaged over only 10 due

to lengthy run-time. The challenging dataset contained 2887 points in 178 keyframes. This is large

compared to typical output of SLAM-type systems [24, 30], and on par with PTAM [61]. The fact

that we have run the PTAM-integrated system many times without slowdown shows that the constant

per-keyframe run time reported is a small enough constant for online operation.

Finally, Figure 5.4 shows that the outputs for K = 1 and K = ∞ are almost identical (without

regularization). Thus the difference in carving-quality when using the forgetting heuristic is almost

negligible. Note that this result compares old datasets produced by offline Structure-from-Motion:

we artificially simulated a set of new-keyframe events to feed to our method. Online results, how-

ever, support the conclusion: carving is effective with K = 1 for all event-types, see Figures 5.1

and 5.2.

44

Figure 5.4: Results for K = ∞ (left) and K = 1 (right) on different data sets. The meshes are

similar for extremely different K .

5.3 Synthetic Data Evaluation

To exploratively investigate how Chapter 4’s algorithms behave on input data of varying quality,

we have created a framework for generating synthetic test data with ground truth. Synthetic data

allows us to control the quality in terms of sampling and noise, while ground truth allows us to

evaluate performance more concretely and quantitatively than possible with just inspection of the

reconstructions from our PTAM-integrated system.

We generate the test data as follows. Given an input ground-truth surface in the form of a tri-

angular mesh, and given a set of user-specified camera viewpoints, we sample a point cloud and

compute its visibility information. We perform point sampling by first selecting a random set of

triangles from the ground truth mesh and then generating random barycentric coordinates in each

selected triangle. To compute visibility, we render the ground truth mesh from each camera’s view-

point and use the OpenGL depth buffer for occlusion queries. The point cloud’s sampling density is

tunable from sparse to dense. We control this density by specifying parameters for the probability

of a triangle being selected, as well as the upper and lower bounds on the random number of points

drawn from any selected triangle.

To experiment with varying data quality, after a point cloud is sampled, we perturb it. Each

point’s x, y, and z coordinate is noised with a Gaussian if the point is not selected to be an outlier.

We experiment by varying the probability of outlier selection as well as the standard deviation of

the Gaussian noise. Our outlier model is also Gaussian, but with a mean at the center of the ground

truth model’s bounding box and a standard deviation equal to the bounding box’s scale or radius,

defined as the distance from the center to a corner. The outlier distribution was chosen to be fairly

arbitrary but with a spread matching the bounds of the mesh to reconstruct. Figure 5.5 depicts point

samples drawn with different parameters. We remark that the isotropic noise model chosen does

not match the noise we expect from visual SLAM or Structure from Motion; see for example the

anisotropic covariance ellipsoids in any monocular SLAM paper’s results, like in [24]. We assume

that the results we present with this noise model can generalize.

We ran experiments using data derived from three ground truth surface models, which we refer to

as “Cup,” “House2” (not to be confused with “House” from Section 5.1) and “Dog;” see Figure 5.6.

45

Figure 5.5: Synthetic-data point cloud generation. Far left: A ground truth mesh. Middle left: A

noiseless dense point cloud with 50% of ground truth triangles selected for 1 to 3 point samples

each. Middle right: A noiseless sparser point cloud with 10% of ground truth triangles selected for

1 point sample each. Far right: A point cloud noised with a standard deviation equal to 2% of the

bounding box size and a 1% outlier ratio.

Figure 5.6: Ground truth meshes. Left: Cup. Middle: House2. Right: Dog.

All of our experiments were run with identical view-sampling conditions: fourteen views with optic

centers approximately distributed over two rings around the object, one ring in the horizontal x-y

plane, and one in the vertical y-z plane, as in Figure 5.7. This view sampling is very sparse, yet all

parts of the object are visible from at least one viewpoint, and we have found this to be adequate.

Future work includes investigating how view-sampling conditions in relation to point cloud density

impacts the quality of our algorithms’ reconstructions. This is important since view sampling affects

the observation of free-space directly.

First, the algorithms were run without the smoothing regularization of Section 4.4 on noiseless

dense and sparse samples drawn from our three datasets. For this experiment and all the subsequent

experiments in this section, dense sampling parameters refer to 1 to 3 points sampled per ground

truth triangle from approximately 50% of triangles. Sparse sampling corresponds to 1 point sam-

pled from about 10% of triangles. The reconstructions are shown in Figure 5.8. They demonstrate

the correctness of our algorithms as well as the ability, given noiseless inputs, to reconstruct isolated

objects. (In Section 5.1 we have only demonstrated reconstruction on open scenes). However, while

the reconstructions are close to the ground truth, we observe that while our method does essentially

produce volume-correct carvings, it does not guarantee topologically well-behaved surfaces as out-

46

Figure 5.7: View sampling conditions for all the synthetic data experiments. Fourteen camera views

are arranged approximately over two rings around our object, one horizontal and one vertical.

put. For the sparser samples, especially as shown on the cup data set which is our sparsest sample

and our coarsest ground truth model, the results convey the method’s interpolative power and show

generally smooth good approximate reconstructions. This observation is consistent with our expe-

rience on the comparatively sparse data that we obtain with the PTAM-integrated system: sparse

samples reconstruct well.

Next, we evaluate the accuracy of the method as a function of the noise variance, and also as a

function of the outlier ratio. To quantify accuracy, we use a measure borrowed from the Middlebury

multi-view stereo benchmark [95]. First, project points from the reconstruction onto the ground

truth mesh and determine the points’ distances to the ground truth. Then compute the histogram

of distances and define the accuracy measure to be the threshold distance that exactly 90% of this

sample falls within. We sample the reconstructions randomly just as for point cloud generation.

Unlike the Middlebury benchmark, which uses the vertices of the reconstruction for the distance

sample, we draw points from the interior of triangles, because otherwise the accuracy measure would

be meaningless; in our case the free-space carving algorithms take the vertices as input and do not

modify them for the output. The method essentially “connects the dots.”

For the Cup dataset, we vary the noise’s standard deviation between zero and ten percent of the

ground truth’s bounding box scale (ten percent being very large) and plot the resulting accuracy.

Again, we do not use regularization for this experiment. The outlier ratio is fixed at a realistic 1%.

To check that the results are not specific to this ground truth geometry, we run the same experiment

on another dataset, House2, and obtain effectively identical results. Ten trials per noise level are

performed, and the mean observed accuracy threshold is reported in Figure 5.10 for both Cup and

House2 under sparse and dense sampling conditions. Examples of reconstructions from highly noisy

data (std. dev. 2% of bounding box scale) are shown in Figure 5.9

The accuracy error is roughly a linear function of the noise magnitude. Notice that for dense

47

Figure 5.8: Noiseless reconstructions. From left to right: Cup, House2, Dog. From top to bottom:

Dense point-cloud sampling; sparse point-cloud sampling.

Figure 5.9: Noisy reconstructions. The point-cloud sampling standard deviation is 2% of the bound-

ing box scale, with a 1% outlier rate. Sampling was dense. From left to right: Cup, House2, Dog.

48

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Accuracy vs. Noise

Relative Noise Ratio

D
is

ta
nc

e
90

%
 T

hr
es

ho
ld

 (
%

 o
f B

ou
nd

in
g

B
ox

)

0 0.02 0.04 0.06 0.08 0.1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Accuracy vs. Noise

Relative Noise Ratio

D
is

ta
nc

e
90

%
 T

hr
es

ho
ld

 (
%

 o
f B

ou
nd

in
g

B
ox

)

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Accuracy vs. Noise

Relative Noise Ratio

D
is

ta
nc

e
90

%
 T

hr
es

ho
ld

 (
%

 o
f B

ou
nd

in
g

B
ox

)

0 0.02 0.04 0.06 0.08 0.1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Accuracy vs. Noise

Relative Noise Ratio

D
is

ta
nc

e
90

%
 T

hr
es

ho
ld

 (
%

 o
f B

ou
nd

in
g

B
ox

)

Figure 5.10: Accuracy error as a function of sampling noise. From left to right: Dense point-cloud

sampling, Sparse point-cloud sampling. From top to bottom: Cup, House2.

sampling, the slope of these graphs is almost 2, while the slope is about 20% less than that for

sparse sampling. Recall that for a Gaussian distribution, generally 90% of samples will fall within

1.645 standard deviations of the mean. This means that the accuracy error of our algorithms is

roughly equal to the signal noise in sparser samples, and barely worse than that for dense samples.

Intuitively, one should not be able to do better than this (without a biased algorithm that assumes

smoothness or regularization, for instance).

We ran a very similar experiment to measure the accuracy as a function of the outlier ratio, this

time keeping the noise level fixed to a standard deviation of 0.01% of the bounding box scale. The

findings are reported in Figure 5.11. We see that for both the Cup and House2 models under sparse

and dense sampling, the accuracy appears practically constant independent of the noise level, up to

a breaking point of about 35% to 45% outliers. This breaking point is however not a meaningful

number for assessing the accuracy of the method, because it is directly related to the choice of

accuracy measure and the completeness of the reconstruction, as we discuss next. By inspecting the

reconstructions, we observe no special change at this breaking point, but rather a gradual decline in

completeness up to this point where the accuracy measure is finally influenced.

The accuracy measure, while it does reflect the general closeness of the result to the ground

truth mesh, is forgiving of up to 10% outlying extraneous triangles. Additionally, it does not re-

flect the notion of completeness in the reconstruction. The Middlebury benchmark uses a separate

completeness score, computed by projecting a point sample from the ground truth mesh onto the

reconstruction, and determining the proportion of samples that have their nearest point on the topo-

49

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Accuracy vs. Outlier Ratio

Outlier Ratio

D
is

ta
nc

e
90

%
 T

hr
es

ho
ld

 (
%

 o
f B

ou
nd

in
g

B
ox

)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Accuracy vs. Outlier Ratio

Outlier Ratio

D
is

ta
nc

e
90

%
 T

hr
es

ho
ld

 (
%

 o
f B

ou
nd

in
g

B
ox

)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Accuracy vs. Outlier Ratio

Outlier Ratio

D
is

ta
nc

e
90

%
 T

hr
es

ho
ld

 (
%

 o
f B

ou
nd

in
g

B
ox

)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Accuracy vs. Outlier Ratio

Outlier Ratio

D
is

ta
nc

e
90

%
 T

hr
es

ho
ld

 (
%

 o
f B

ou
nd

in
g

B
ox

)

Figure 5.11: Accuracy error as a function of outlier ratio. From left to right: Dense point-cloud

sampling, Sparse point-cloud sampling. From top to bottom: Cup, House2.

logical boundary of the reconstruction (e.g. at holes). Because our method can produce topologically

misbehaved meshes with stray tetrahedra and other non-manifold elements, the boundary of our re-

construction is not well defined, and computation of this completeness score is infeasible. Therefore

we assess completeness and accuracy qualitatively by inspecting the results. Figure 5.12 shows sev-

eral reconstructions of the cup model for various outlier ratios. We observe that while the accuracy

of the reconstruction where it is near the ground truth appears constant w.r.t. the outlier ratio like the

accuracy plots suggest, the completeness dwindles as the outlier count increases. This is no surprise,

since outliers induce arbitrary free-space constraints that can drill holes through the model. We also

observe extraneous uncarved structure consisting of large triangles that connect some outliers around

the mesh. While this structure has substantial surface area, because there are few outlier vertices at

low outlier ratios, there are few outlier triangles, and therefore the barycentric sampling used in the

computation of the accuracy score effectively down-weights this error and hides it beneath the 90%

threshold.

If the algorithms are used for applications involving visualization, such uncarved outlying struc-

ture can detrimentally project in front of the reconstruction. Mesh incompleteness obviously de-

grades visual quality as well. We identify outliers as a significant problem for our algorithms, which

is consistent with our experience from the PTAM-integrated system. We conclude that the method

would benefit from some form of outlier filtering and removal, or from integration with a SLAM

system that provides robust inputs in this sense.

For the previous experiments, no regularization was ever employed so that the accuracy of the

50

Figure 5.12: Dense Cup reconstruction for several outlier ratios. Left: 5% outliers. Middle: 25%
outliers. Right: 45% outliers.

raw carving was assessed. This avoids polluting the results with the minimal surface bias induced by

the surface area penalty term. Results with regularization hinge on the raw carving’s quality, since

the regularization computes the closest-to-raw carving that simultaneously optimizes closeness with

the penalty term. If the base carving is significantly wrong, the regularized result will be as well.

We have experimented with regularization by manually finding the optimal weight for the penalty

term on each data set with zero noise, and then running the algorithm with that smoothing parameter

on samples noised with a standard deviation of 1% of the bounding box scale and a 1% outlier ratio.

We present the results in Figure 5.13. Visual inspection indicates that the quality gain from regular-

ization on this data is marginal at best: while some stray tetrahedra are removed, the reconstructions

are not much smoother, and sometimes the minimal surface bias can delete structure, e.g. the cup’s

handle. However, in practice we have found that the regularization scheme is often beneficial for the

data from the PTAM-integrated system. (See Section 5.1). A more thorough investigation of how

the sampling properties impact the difference that this regularization makes is left as future work.

5.4 Application: Predictive Display for Tele-Robotics

In remote-controlled or tele-robotics, a human operator commands a robot that exists at some dif-

ferent and potentially distant location. Because the robot can be far away, perhaps in space or at the

opposite end of the earth, transmission delays of both operator commands to the robot and sensory

feedback from the robot become an important consideration. Delayed video for visual feedback can

be detrimental to operator task-performance, but studies have shown that the situation can improve

when augmenting or replacing delayed video with a predictive rendering, or so-called “predictive

display” of the robot and/or its environment [96, 50, 90]. While a real-time reconstructed 3D en-

vironment model can obviously be used for “display,” the “prediction” refers to computing what

the pose of the robot and its camera would be with respect to its environment, directly from the

operator’s control commands under the assumption that no communication delay is present. This

predicted pose is used for rendering, and facilitates responsive undelayed visual feedback. We re-

view visual modeling for predictive display in Chapter 3.

51

Figure 5.13: Reconstructions with regularization versus without. Top row: with regularization.

Bottom row: without regularization.

In this section we present two task-based experiments performed with a prototype tele-robotics

system that uses our free-space carving for model acquisition and predictive display. The system is

described in more detail in our conference paper on this topic [73]. It consists of a video camera

mounted on a robotic arm that is controlled with a joystick-like device, and we inject simulated

delays into the system for controlled experimentation. One experiment’s task is centred around

visual alignment of the arm with a physical target in the environment, and the other focuses on

visual inspection. The purpose is to test whether the free-space carving technique is viable and

helpful for predictive display in a real robotics set-up.

5.4.1 System

The physical system consists of a Barrett WAM robotic arm mounted on a Segway RMP mobile

base. A camera is attached to the forearm of the WAM. We use a PHANTOM Omni haptic device

as the operator’s joystick, and it controls the WAM via a direct joint angle mapping; see Fig. 5.14.

Currently, the Segway is not actuated; the operator has only direct control of the kinematic arm. The

communication channel between the master Omni and slave WAM is encapsulated using the PVM

software framework [42] for message passing over a wired LAN.

For the vision module, we run incremental free-space carving and PTAM at the robot site. They

interface together as in Section 4.6, and they operate on the video from the robot’s camera feed.

The 3D models that we obtain, the video frames, as well as PTAM’s camera pose track defining the

52

Figure 5.14: Top: the operator tele-operates the robot from the local site; the model is computed at

the remote site and transferred to the operator for predictive display. Bottom: system components

and data flow.

Figure 5.15: Left: Predictive display needs input images, a geometry proxy model, and a predicted

camera pose to render from. Right: An example of an input view being back-projected onto a proxy

geometry and rendered from a distant predicted pose.

projective texture mapping function between the model and the video frames, are all sent back to

the operator and used for predictive display.

To predict what the robot camera will see when the operator moves the Omni, the display module

requires: images with known camera pose for texture, a 3D environment model, and a predicted

camera pose to render from. See Figure 5.15. We have two of the three requirements sent to us from

the vision process. For the third requirement, the correct rendering pose can be determined locally

at the operator site with forward-prediction of the robot’s motion based on the operator’s control

commands.

Although more elaborate schemes are possible, we have used only the most recent image and its

camera pose to texture the most recent geometric model.

Because the Omni does not have an identical joint configuration to the WAM, the robot control

53

scheme as well as the predictive display’s pose prediction is defined by the specific mapping between

the Omni’s joints and the WAM’s. For a fixed base, pose prediction can be achieved easily through

a simple forward-kinematic mapping on the robot’s joints. However, because the prototype system

only actuates the WAM while the Segway base can still be moved by external forces, the relative base

motion must be determined online and used in the prediction. We achieve this via visual registration

of the robot-centric coordinate frame and the world or model-centric coordinate frame by making

use of PTAM’s visual tracking. Details on this visual registration and the joint mapping between the

input device and the WAM can be found in the conference paper [73].

5.4.2 Alignment Experiment

Alignment tasks are common in manipulation, e.g. in operations like putting a wrench on a bolt. For

this experiment, we used visual targets in the scene (the letters A, B, C, and D) that the user had to

align with a rendered reference in the video display. When the rendered target matches the real one

then the alignment is satisfied. This experiment evaluates and tests alignment performance under our

predictive display. We compare three modes of visual feedback: non-delayed video, 0.3 s delayed

video, and predictive display using the free-space carved model with a 0.3 s delay for video-derived

texture information to render with. (This texture information consists of only the latest available

video frame.)

This experiment is largely inspired by and similar to the one presented by Rachmielowski [90],

yet ours is conducted on a real-world robot instead of a simulated graphics environment. To be able

to compare the timings of several subjects, in this experiment the 3D model was acquired once by

the vision system, and the same model was used for all subjects. As just mentioned, texturing used

video from the robot camera, and this varied for each trial.

The experiment was conducted first by running a warm-up where the user familiarizes himself

with the input device and kinematics of the robot, as well as the three visual modes. After the

warm-up session, the timed experiment starts. Each user performs a total of three trials in each

of the three modes. For each trial, the display mode and scene configuration are drawn randomly

without replacement. The scene configuration is comprised of four targets each placed in one out of

six possible calibrated positions. The user has to first align target A, then B, then C and finally D.

An alignment is satisfied when the user places the robot in a position which is close enough1 to the

desired position.

The user is only allowed to look at the display and not at the scene where the robot is operating.

Fig. 5.16 shows an alignment task where the user is controlling the robot to align the rendered A

with the actual A in the scene.

Due to the time needed to arrange the physical scene configuration, the experiments involved

1A threshold is set on the distance from the exact alignment to the actual alignment, as well as a 500 ms dwelling time.

The threshold was tuned to be reasonably challenging: satisfiable, but near the limit of human precision using the operator’s

control input device and the 640 × 480 video / texture feed resolution.

54

Figure 5.16: Alignment task. Left: image of the setup. Right: the camera view illustrating the

overlay (white A) which should be aligned to the real A.

Figure 5.17: Mean normalized times to perform the tele-robotic tasks. Left: Alignment task for each

target. Right: Inspection task.

only 36 alignments by each of five lab colleagues for a total of 180 alignments. Despite the small

number of test subjects, the results were consistent with Rachmielowski’s user study where 1200

alignments were performed on a simulated graphics scene with a virtual robot [90]. This experiment

shows that predictive display with our free-space model is beneficial to the operator. The completion

time for the alignment task was improved by the use of this predictive display. It helped the users

cope with both the transmission delays and the velocity and acceleration limits of the robot (which

were more strict than the kinematic limits of the control input device). Fig. 5.17 reports the mean

normalized times to perform each of the alignments. Our statistics are normalized the same as in [90]

so that each subject contributes to the results equally.

It is important to note that even though the model is rough and the overlaid texture does not

match in detail with the scene’s geometry, this did not seem to handicap the user. The users were

oblivious to the model not being perfect.

5.4.3 Inspection Experiment

Inspection is useful when evaluating systems’ functionality in remote environments (e.g., determin-

ing if an electronic board is burnt or evaluating a mechanism’s operability after some damage). This

last experiment’s purpose is to test the predictive display in a different task where the user does

not perform an action on the environment but instead assesses the situation from information in the

scene.

In this experiment, the robot’s environment contained two panels with a 3x3 LED matrix on each.

In most cases, the panel would have one “damaged” unlit LED whose location is to be identified by

55

Figure 5.18: An operator performing inspection. Left: Target locations are seen from far away.

Right: But identification of the burnt LED requires a close view.

the user (e.g. “top left,” “center,” etc.); in other cases there was no damage, and all the LEDs were

lit. These panels were placed in two randomly selected positions out of five possible locations for

each trial. Two users were asked to do two trials of the inspection task for each visual mode (i.e.,

six trials per user in total). Again, the mode order was selected at random. The unlit LED in each

panel was also random in each trial. In this experiment, the user was allowed to read the panels in

any order. Fig. 5.18 shows how the task looks from the operator’s point of view.

The experiment started with the robot in a pre-specified home position. The task was to move

the camera close enough in front of each panel to identify the unlit LED, if any. From afar, one can

locate the lit panels, but it is practically impossible to make an assessment of which LED is unlit.

Fig. 5.17 shows the mean normalized times for the inspection task. The results indicate that

predictive display improved the ability of the operator to cope with delay. Although our user study

was limited by its small scale and rudimentary robotic system’s capabilities (and thus task domain),

we can conclude from these experiments that our algorithms and 3D reconstructions, while approx-

imate, have merit and are very likely useful for this real-world application.

56

Chapter 6

Conclusions

This thesis addressed the difficult open problem of recovering 3D geometric shape from 2D video

images in real time. While much work has been done on shape recovery from images, most re-

search has focused on algorithms that compute the best 3D structure possible using image-texture

information as the primary reconstruction cue. Because there is a great deal of texture information

to process, the literature almost invariably consists of slow methods that are incapable of real-time

operation. In contrast to this trend, we have presented an alternative approach centred on the less

explored reconstruction cue that is free space, which states that visibility rays impose constraints on

the recovered geometry. The approach begins with performing SLAM or real-time Structure from

Motion, then discretizes space using the 3D Delaunay triangulation of the obtained point cloud re-

construction, and finally interpolates this sparse reconstruction by carving a surface in a free-space

consistent manner. The end result is a lightweight method for real-time 3D reconstruction from

video. The method is completely incremental and well suited for online operation; we proved it is

real-time efficient, and this was experimentally verified.

We implemented the method and tested it on both real and synthetic data to obtain 3D recon-

structions of several scenes and objects. The results show that the method is capable of producing

geometries that facilitate convincing renderings and visualizations. We have applied the method to

the specific goal of improving visualization in remote-operated or tele-robotics, where transmission

delays in visual sensory feedback can degrade the operator’s performance, and a virtualized [56, 58]

visualization can help to cope with delay. Our experiments show that the 3D models our method

computes provide for renderings that serve the operator better in completing his tasks than the alter-

native of delayed video. We conclude that the method is useful for applications that can benefit from

online modeling of general environments, and it is online modeling that the reconstruction literature

sorely lacks.

57

6.1 Limitations and Future Work

While we have developed and implemented a useful set of algorithms that reconstructs 3D geometry

from video, several points remain for future work. They include:

• Improving the reconstructed geometry

• Improving SLAM’s tracking by making use of the geometry

• Extending the method to dynamic environments

• Investigating the impact of view-sampling

• Applying the method in new contexts

The reconstructed geometries from our PTAM-integrated system are not of the same quality as

from dense offline stereo or the real-time approach of Newcombe [80]. In Chapter 5, we have shown

that our reconstructions suffer primarily from the presence of outliers in the SFM point cloud, and

to a lesser degree noise. The algorithms ignore noise, and this is a violated assumption in practice.

We can improve model quality and robustness by integrating our algorithms with a SLAM system

that keeps an explicit covariance representation of landmark uncertainty while incorporating this

covariance information in the algorithms. Faithful and promising geometric reconstructions have

been previously obtained from Delaunay-discretized free-space carving using slower algorithms [82,

68]. The system in [82] handles noise by probabilistic carving via a model of SLAM’s landmark

variance, and both of these methods filter outliers by aggregating free-space rays as soft votes on

whether tetrahedra should be carved rather than as hard constraints [82, 68]. Our algorithms achieve

their real-time speed in part due to the forgetting heuristic of Section 4.3.6 which discards redundant

visibility rays. Therefore, retaining real-time speed while implementing voting or some voting-like

solution remains a challenge. The regularization in Section 4.4 attempts to mitigate the effects of

noise via explicit smoothing using a surface area penalty term, but it was not thoroughly effective.

For improving surface geometry, an orthogonal approach to incorporating noise models or voting

would be to impose more sophisticated regularization.

The PTAM-integrated system was shown to be capable of modeling open scenes, and in Sec-

tion 5.3, our algorithms were shown to be capable of modeling isolated objects on inputs inde-

pendent of PTAM. We found that PTAM could not track landmarks on objects when the camera

underwent a full 360◦ trajectory around them. This is because landmarks on one side of an object

are occluded by the reverse side from approximately half of the camera viewpoints. This problem

results in failed landmark measurements which classify the points as outliers and mark them for

removal from the point cloud. We identify that our real-time 3D models can be used within PTAM

or other feature-based SLAM systems to predict occlusions and inform whether or not failed land-

mark measurements should indicate an outlier, especially if future work results in more accurate

geometries.

58

We note that a limitation of the modeling system is that it only works for static environments.

PTAM is robust to some moving objects in the scene. It classifies their features as outliers and

removes them, but ideally we would like to track the motions over time and construct a time-evolving

3D model. Fundamentally, our method supports moving structure via the Refinement event handler,

presented in Section 4.3.5. The static-environment restriction is inherited from SLAM, but SLAM-

style systems that track moving scenes are under research [106].

Additionally, sufficient-sampling theory exists for Delaunay-based methods that approach the

Shape from Points problem, discussed in Section 3.1.4. The theory speaks on requirements from

the input points in terms of sampling density to guarantee correct surface reconstruction. Simi-

larly, formalizing the requirements on point density and noise, camera trajectory density and route,

and particularly the relationship between the implied free-space and the Delaunay discretization is

important and remains undone. We have found from experience that very sparse keyframes from

intuitive camera trajectories can effectively carve models using our method, e.g. see the view sam-

pling depicted in Section 5.3, and we owe this probable fact to the adaptiveness of the Delaunay

triangulation, but this result is not concrete.

Finally, what’s left for future work is to apply this method. We have used it for predictive display,

and performed a small user study to show its merit. Extending the manipulation capabilities of the

tele-robotic system is important to test its merit in more interesting tasks. Expanding the study to

a much greater sample of users also should be done to obtain stronger results. However, predictive

display is only one possibility. It remains to be seen what the method can offer for augmented

reality, robotic obstacle avoidance and path planning, online view-sampling feedback for offline

visual model acquisition (as in [91, 93]), and any other settings that might benefit from real-time 3D

modeling and free-space estimation.

59

Bibliography

[1] CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.

[2] N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete and Compu-
tational Geometry, 22(4):481–504, 1999.

[3] N. Amenta, S. Choi, and R.K. Kolluri. The power crust. In Proceedings of the sixth ACM
symposium on Solid modeling and applications, pages 249–266, 2001.

[4] D. Attali, J.D. Boissonnat, and A. Lieutier. Complexity of the delaunay triangulation of
points on surfaces the smooth case. In ACM Symposium on Computational Geometry, pages
201–210, 2003.

[5] A. Auclair, N. Vincent, and L.D. Cohen. Using point correspondences without projective
deformation for multi-view stereo reconstruction. In ICIP, pages 193–196, 2008.

[6] R.T. Azuma. A survey of augmented reality. Presence-Teleoperators and Virtual Environ-
ments, 6(4):355–385, 1997.

[7] S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying framework. International
Journal of Computer Vision, 56(3):221–255, 2004.

[8] A.K. Bejczy, W.S. Kim, and S.C. Venema. The Phantom Robot: Predictive Displays for
Teleoperation with Time Delay. In ICRA, volume 1, pages 546–551, 1990.

[9] F. Bernardini, C.L. Bajaj, J. Chen, and D. Schikore. Automatic reconstruction of 3D CAD
models from digital scans. International Journal of Computational Geometry and Applica-
tions, 9(4/5):327–369, 1999.

[10] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-pivoting algo-
rithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graph-
ics, 5(4):349–359, 1999.

[11] J.D. Boissonnat. Geometric structures for three-dimensional shape representation. ACM
Transactions on Graphics, 3(4):266–286, 1984.

[12] Y. Boykov and V. Kolmogorov. An Experimental Comparison of Min-Cut/Max-Flow Algo-
rithms for Energy Minimization in Vision. PAMI, 26(9):1124–1137, 2004.

[13] D. Bradley, T. Boubekeur, and W. Heidrich. Accurate multi-view reconstruction using robust
binocular stereo and surface meshing. In CVPR, pages 1–8, 2008.

[14] T. Burkert, J. Leupold, and G. Passig. A Photorealistic Predictive Display. Presence: Teleop-
erators & Virtual Environments, 13(1):22–43, 2004.

[15] N. Campbell, G. Vogiatzis, C. Hernández, and R. Cipolla. Using multiple hypotheses to
improve depth-maps for multiview stereo. In ECCV, pages 766–779, 2008.

[16] J.C. Carr, R.K. Beatson, J.B. Cherrie, T.J. Mitchell, W.R. Fright, B.C. McCallum, and T.R.
Evans. Reconstruction and representation of 3D objects with radial basis functions. In Pro-
ceedings of the 28th annual conference on Computer graphics and interactive techniques,
pages 67–76, 2001.

[17] J.Y. Chang, H. Park, I.K. Park, K.M. Lee, and S.U. Lee. GPU-friendly multi-view stereo
reconstruction using surfel representation and graph cuts. Computer Vision and Image Un-
derstanding, 2010.

60

[18] D. Chekhlov, M. Pupilli, W. Mayol-Cuevas, and A. Calway. Real-time and robust monocular
SLAM using predictive multi-resolution descriptors. Advances in Visual Computing, pages
276–285, 2006.

[19] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. 3-d motion and structure from 2-d motion causally
integrated over time: Implementation. In ECCV, pages 734–750, 2000.

[20] J. Civera, A.J. Davison, and J.M.M. Montiel. Interacting multiple model monocular SLAM.
In ICRA, pages 3704–3709, 2008.

[21] L.A. Clemente, A.J. Davison, I. Reid, J. Neira, and J.D. Tardós. Mapping large loops with a
single hand-held camera. In Robotics: Science and Systems, 2007.

[22] D. Cobzas, M. Jägersand, and H. Zhang. A Panoramic Model for Remote Robot Environ-
ment Mapping and Predictive Display. International Journal of Robotics and Automation,
20(1):25–34, 2005.

[23] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. MIT
press and McGraw-Hill, second edition, 2001.

[24] A.J. Davison. Real-time simultaneous localisation and mapping with a single camera. In
ICCV, pages 1403–1410, 2003.

[25] A.J. Davison, I.D. Reid, N.D. Molton, and O. Stasse. MonoSLAM: Real-time single camera
SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1052–1067,
2007.

[26] P.E. Debevec, C.J. Taylor, and Malik J. Modeling and Rendering Architecture from Pho-
tographs: A Hybrid Geometry- and Image-Based Approach. In SIGGRAPH, pages 11–20,
1996.

[27] A. Delaunoy, E. Prados, G.I. Piracés, J.P. Pons, and P. Sturm. Minimizing the multi-view
stereo reprojection error for triangular surface meshes. In BMVC, 2008.

[28] O. Devillers and M. Teillaud. Perturbations and vertex removal in a 3D Delaunay triangula-
tion. In ACM-SIAM Symposium on Discrete algorithms, pages 313–319, 2003.

[29] T.K. Dey and S. Goswami. Provable surface reconstruction from noisy samples. In Pro-
ceedings of the twentieth annual symposium on Computational Geometry, pages 330–339,
2004.

[30] E. Eade and T. Drummond. Scalable Monocular SLAM. In CVPR, volume 1, pages 469–476,
2006.

[31] H. Edelsbrunner. Weighted alpha shapes. University of Illinois at Urbana-Champaign, Dept.
of Computer Science, 1992.

[32] H. Edelsbrunner and E.P. Mücke. Three-dimensional alpha shapes. In Proceedings of the
1992 workshop on Volume visualization, pages 75–82, 1992.

[33] S.R. Ellis, M.J. Young, B.D. Adelstein, and S.M. Ehrlich. Discrimination of changes in la-
tency during head movement. In International Conference on Human-Computer Interaction,
pages 1129–1133, 1999.

[34] C. Engels, H. Stewénius, and D. Nistér. Bundle adjustment rules. Photogrammetric Computer
Vision, 2, 2006.

[35] O.D. Faugeras, E. Le Bras-Mehlman, and J.D. Boissonnat. Representing Stereo Data with
the Delaunay Triangulation. Artificial Intelligence, 44(1-2):41–87, July 1990.

[36] W.R. Ferrell. Remote manipulation with transmission delay. IEEE Transactions on Human
Factors in Electronics, 6:24–32, 1965.

[37] Jean-Sébastien Franco and Edmond Boyer. Exact polyhedral visual hulls. In BMVC, vol-
ume 1, pages 329–338, 2003.

[38] Jean-Sébastien Franco and Edmond Boyer. Efficient Polyhedral Modeling from Silhouettes.
PAMI, 31(3):414–427, 2009.

61

[39] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-view stereopsis. In PAMI, 2010.

[40] P. Gargallo, E. Prados, and P. Sturm. Minimizing the reprojection error in surface reconstruc-
tion from images. In ICCV, pages 1–8, 2007.

[41] Pau Gargallo. Modélisation de Surfaces en Vision 3D. Master’s thesis, INRIA Grenoble
Rhône-Alpes, 2003.

[42] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel
virtual machine: a users’ guide and tutorial for networked parallel computing. MIT Press,
1995.

[43] M. Goesele, B. Curless, and S.M. Seitz. Multi-view stereo revisited. In CVPR, volume 2,
pages 2402–2409, 2006.

[44] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S.M. Seitz. Multi-view stereo for com-
munity photo collections. In ICCV, pages 1–8, 2007.

[45] M. Habbecke and L. Kobbelt. A surface-growing approach to multi-view stereo reconstruc-
tion. In CVPR, pages 1–8, 2007.

[46] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge Uni-
versity Press, 2003.

[47] R. Held, A. Efstathiou, and M. Greene. Adaptation to Displaced and Delayed Visual Feedback
From the Hand. Journal of Experimental Psychology, 72(6):887–891, 1966.

[48] C. Hernández Esteban and F. Schmitt. Silhouette and stereo fusion for 3D object modeling.
Computer Vision and Image Understanding, 96(3):367–392, 2004.

[49] A. Hilton. Scene modelling from sparse 3D data. Image and Vision Computing, 23(10):900–
920, 2005.

[50] P.F. Hokayem and M.W. Spong. Bilateral teleoperation: An historical survey. Automatica,
42(12):2035–2057, 2006.

[51] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface reconstruc-
tion from unorganized points. COMPUTER GRAPHICS-NEW YORK-ASSOCIATION FOR
COMPUTING MACHINERY, 26:71–71, 1992.

[52] A. Hornung and L. Kobbelt. Hierarchical volumetric multi-view stereo reconstruction of
manifold surfaces based on dual graph embedding. In CVPR, 2006.

[53] D. Huber, H. Herman, A. Kelly, P. Rander, and J. Ziglar. Real-time photo-realistic visu-
alization of 3D environments for enhanced tele-operation of vehicles. In Computer Vision
Workshops (ICCV Workshops), pages 1518–1525, 2009.

[54] M. Jägersand. Image based predictive display for tele-manipulation. In ICRA, pages 550–556,
1999.

[55] Z. Jankó and J.P. Pons. Spatio-temporal image-based texture atlases for dynamic 3-D models.
In 3DIM, pages 1646–1653, 2009.

[56] T. Kanade, P. Rander, and P.J. Narayanan. Virtualized reality: Constructing virtual worlds
from real scenes. IEEE Multimedia, 4(1):34–47, 1997.

[57] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In Proceedings of
the fourth Eurographics symposium on Geometry processing, pages 61–70, 2006.

[58] A. Kelly, E. Capstick, D. Huber, H. Herman, P. Rander, and R. Warner. Real-time photoreal-
istic virtualized reality interface for remote mobile robot control. Robotics Research, pages
211–226, 2011.

[59] W.S. Kim and A.K. Bejczy. Demonstration of A High-Fidelity Predictive/Preview Display
Technique for Telerobotic Servicing in Space. IEEE Transactions on Robotics and Automa-
tion, 9(5):698–708, 1993.

[60] V. Klee. On the complexity of d-dimensional Voronoi diagrams. Archiv der Mathematik,
34(1):75–80, 1980.

62

[61] G. Klein and D. Murray. Parallel Tracking and Mapping for Small AR Workspaces. In
ISMAR, pages 1–10, 2007.

[62] G. Klein and D. Murray. Improving the agility of keyframe-based SLAM. In ECCV, pages
802–815, 2008.

[63] J. Knight, A. Davison, and I. Reid. Towards constant time SLAM using postponement. In
IROS, volume 1, pages 405–413, 2001.

[64] K. Kolev, M. Klodt, T. Brox, S. Esedoglu, and D. Cremers. Continuous global optimization
in multiview 3d reconstruction. In Energy Minimization Methods in Computer Vision and
Pattern Recognition, pages 441–452, 2007.

[65] V. Kolmogorov and Zabih R. What energy functions can be minimized via graph cuts? PAMI,
26(2):147–159, 2004.

[66] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph cuts. ECCV,
pages 8–40, 2002.

[67] K.N. Kutulakos and S.M. Seitz. A theory of shape by space carving. IJCV, 38(3):199–218,
2000.

[68] P. Labatut, J.P. Pons, and R. Keriven. Efficient Multi-View Reconstruction of Large-Scale
Scenes using Interest Points, Delaunay Triangulation and Graph Cuts. In ICCV, 2007.

[69] A. Laurentini. The visual hull concept for silhouette-based image understanding. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, pages 150–162, 1994.

[70] J.P. Lewis. Fast normalized cross-correlation. In Vision Interface, volume 10, pages 120–123,
1995.

[71] J. Li, E. Li, Y. Chen, L. Xu, and Y. Zhang. Bundled depth-map merging for multi-view stereo.
In CVPR, 2010.

[72] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3D surface construction
algorithm. SIGGRAPH, 21(4):163–169, 1987.

[73] D. Lovi, N. Birkbeck, Hernandez-Herdocia A., A. Rachmielowski, M. Jägersand, and
D. Cobzas. Predictive Display for Mobile Manipulators in Unknown Environments Using
Online Vision-Based Monocular Modeling and Localization. In IROS, 2010.

[74] D.G. Lowe. Distinctive image features from scale-invariant keypoints. International journal
of computer vision, 60(2):91–110, 2004.

[75] B. Mederos, N. Amenta, L. Velho, and L.H. de Figueiredo. Surface reconstruction from noisy
point clouds. In Proceedings of the third Eurographics symposium on Geometry processing,
2005.

[76] R. Mencl and H. Müller. Interpolation and Approximation of Surfaces from Three-
dimensional Scattered Data Points. In Dagstuhl’97, Scientific Visualization, pages 223–232,
1997.

[77] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.M. Frahm, R. Yang, D. Nistér, and
M. Pollefeys. Real-Time Visibility-Based Fusion of Depth Maps. In ICCV, 2007.

[78] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0: An improved particle
filtering algorithm for simultaneous localization and mapping that provably converges. In
IJCAI, volume 18, pages 1151–1156, 2003.

[79] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd. Real Time Localization
and 3D Reconstruction. In CVPR, volume 1, pages 363–370, 2006.

[80] R.A. Newcombe and A.J. Davison. Live dense reconstruction with a single moving camera.
In CVPR, pages 1498–1505, 2010.

[81] Y. Ohtake, A. Belyaev, and H.P. Seidel. A multi-scale approach to 3D scattered data interpo-
lation with compactly supported basis functions. In Shape Modeling International, 2003.

[82] Q. Pan, G. Reitmayr, and T. Drummond. ProFORMA: Probabilistic Feature-based On-line
Rapid Model Acquisition. In BMVC, London, September 2009.

63

[83] L.M. Paz, P. Jensfelt, J.D. Tardós, and J. Neira. EKF SLAM updates in O(n) with Divide and
Conquer SLAM. In ICRA, pages 1657–1663, 2007.

[84] P. Piniés and J.D. Tardós. Large-scale slam building conditionally independent local maps:
Application to monocular vision. IEEE Transactions on Robotics, 24(5):1094–1106, 2008.

[85] M. Pollefeys, D. Nistér, J.M. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp, C. Engels,
D. Gallup, S.J. Kim, P. Merrell, et al. Detailed real-time urban 3d reconstruction from video.
IJCV, 78(2):143–167, 2008.

[86] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and R. Koch.
Visual modeling with a hand-held camera. IJCV, 59(3):207–232, 2004.

[87] J.P. Pons and J.D. Boissonnat. Delaunay deformable models: Topology-adaptive meshes
based on the restricted Delaunay triangulation. In CVPR, pages 1–8, 2007.

[88] M. Pupilli and A. Calway. Real-time camera tracking using a particle filter. In BMVC, pages
519–528, 2005.

[89] M. Pupilli and A. Calway. Real-time visual slam with resilience to erratic motion. In CVPR,
volume 1, pages 1244–1249, 2006.

[90] A. Rachmielowski, N. Birkbeck, and M. Jägersand. Performance Evaluation of Monocular
Predictive Display. In ICRA, pages 5309–5314, 2010.

[91] A. Rachmielowski, N. Birkbeck, M. Jagersand, and D. Cobzas. Realtime visualization of
monocular data for 3D reconstruction. In CRV, pages 196–202, 2008.

[92] A. Rachmielowski, D. Cobzas, and M. Jägersand. Robust SSD tracking with incremental 3D
structure estimation. In CRV, pages 1–8, 2006.

[93] Adam Rachmielowski. Concurrent acquisition, reconstruction, and visualization with monoc-
ular video. Master’s thesis, University of Alberta, 2009.

[94] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense Two-Frame Stereo
Correspondence Algorithms. IJCV, 47(1/2/3):7–42, 2002.

[95] S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A Comparison and Evalua-
tion of Multi-View Stereo Reconstruction Algorithms. In CVPR, volume 1, pages 519–526,
2006.

[96] T.B. Sheridan. Space teleoperation through time delay: Review and prognosis. IEEE Trans-
actions on Robotics and Automation, 9(5):592–606, 1993.

[97] J.R. Shewchuk. Stabbing Delaunay Tetrahedralizations. Discrete and Computational Geom-
etry, 32(3):339–343, 2004.

[98] S.N. Sinha, P. Mordohai, and M. Pollefeys. Multi-view stereo via graph cuts on the dual of
an adaptive tetrahedral mesh. In ICCV, pages 1–8, 2007.

[99] J.E. Solem, F. Kahl, and A. Heyden. Visibility Constrained Surface Evolution. In CVPR,
volume 2, pages 892–899, 2005.

[100] H. Strasdat, J.M.M. Montiel, and A.J. Davison. Real-time monocular SLAM: Why filter? In
ICRA, pages 2657–2664, 2010.

[101] H. Strasdat, J.M.M. Montiel, and A.J. Davison. Scale drift-aware large scale monocular
SLAM. In RSS, 2010.

[102] K. Sugihara and H. Inagaki. Why is the 3D Delaunay triangulation difficult to construct?
Information Processing Letters, 54(5):275–280, 1995.

[103] C.J. Taylor. Surface Reconstruction from Feature Based Stereo. In ICCV, pages 184–190,
2003.

[104] Maarten Vergauwen and Luc Van Gool. Web-based 3D Reconstruction Service. Machine
Vision and Applications, 17(6):411–426, 2006.

[105] H. Vu, R. Keriven, P. Labatut, and J.-P Pons. Towards high-resolution large-scale multi-view
stereo. In CVPR, 2009.

64

[106] C.C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte. Simultaneous localiza-
tion, mapping and moving object tracking. The International Journal of Robotics Research,
26(9):889–916, 2007.

[107] G. Welch and G. Bishop. An introduction to the Kalman filter. University of North Carolina
at Chapel Hill, Chapel Hill, NC, 7(1), 1995.

[108] K. Yerex, D. Cobzas, and M. Jägersand. Predictive Display Models for Tele-Manipulation
from Uncalibrated Camera-capture of Scene Geometry and Appearance. In ICRA, volume 2,
pages 2812–2817, 2003.

[109] C. Zach. Fast and High Quality Fusion of Depth Maps. In 3DPVT, 2008.

[110] C. Zach, M. Sormann, and K. Karner. High-Performance Multi-View Reconstruction. In
3DPVT, pages 113–120, 2006.

65

Appendix A

Complexity Proofs

This appendix completes the set of proofs of our algorithms’ complexity claims made in Section 4.5.

As in that section, the bounds are sufficient in that they say enough about the speed of the algorithms,

but the bounds are not intended to be tight. Let K be the value of the forgetting heuristic, i.e. the

maximum number of free-space constraints retained in each tetrahedron. Let N be the number of

input points, and M the number of views.

Theorem 3. The worst-case run-time complexity of Algorithm 2 is O(N2), for K <∞.

Proof. Because there are at most O(N2) tetrahedra in the triangulation [60], looping over all the

tetrahedra and removing the constraint OP from their constraint sets takes O(CN2) time. Here C

refers to the cost of deleting a free-space constraint from a tetrahedron’s constraint set. C depends on

K , and because K is a constant, O(C) = O(f(K)) = O(1). Thus Algorithm 2 takes O(CN2) =

O(N2) time.

Theorem 4. The worst-case run-time complexity of Algorithm 3 is O(N4), for K <∞.

Proof. Let Q be the outlier point marked for removal. Algorithm 3 can be split into four steps:

1. Iterate over all cells, and remove all the constraints that reference Q.

2. Collect free-space constraints from cells incident to Q into a unioned set U .

3. Delete Q from the triangulation (and retriangulate the hole left by the cells that were incident

to Q.)

4. Apply the free-space constraints in U (i.e. use them to carve, just as in an association event;

see § 4.3.3).

For step 1, to simply loop over all the cells takes O(N2) time, because there are at most O(N2)

tetrahedra in the triangulation [60]. Because K < ∞, the number of constraints in each cell’s

constraint set is bounded by K = O(1), and therefore there are a total of O(N2) constraints in

the triangulation to iterate over, determine if removal is necessary, and potentially remove. Testing a

66

constraint for removal is an O(1) operation, since it entails checking if the constraint (represented by

a pair of indices) references Q. Removing a constraint from a constraint set is an O(f(K)) = O(1)

operation, because K <∞ is constant. Therefore the total cost of step 1 is O(N2).

For step 2, determining the set of cells incident to Q from adjacency information takes O(N2)

time, since the number of cells in the triangulation, and therefore potentially incident to Q, is

bounded by O(N2) [60]. Using this fact, and because K < ∞, the number of constraints to

collect from these cells and insert into U is O(N2). Using red-black trees to implement sets,

this bound on the number of constraints to insert into U implies that inserting them all takes

O(N2log(N2)) = O(N2log(N)) time. Therefore step 2 takes O(N2log(N)) time.

For step 3, deleting vertexQ from a 3D Delaunay triangulation and retriangulating the hole takes

O(fd) time, where f is the number of tetrahedra that retriangulate the hole, and d is the degree of

Q [28]. In practice, for most point sets, f and d are typically small and roughly constant numbers.

However, as loose bounds, we can consider O(f) to be O(N2), since there are not more than O(N2)

tetrahedra in the triangulation [60], and O(d) to be O(N), since there are at most N − 1 vertices

that Q can be incident to. Step 3 then takes O(N3) time.

For step 4, as mentioned in the discussion above regarding step 1, there are at most O(N2)

constraints in U . By Theorem 1, applying a single constraint takes O(N2) time. Therefore, step 4

takes O(N4) time to apply all the constraints.

The total time complexity for Algorithm 3 is thenO(N2+N2log(N)+N3+N4) = O(N4).

Theorem 5. The worst-case run-time complexity of Algorithm 4 is O(N4), for K <∞.

Proof. Algorithm 4 can be split into five steps:

1. Collect free-space constraints from cells incident to each point that is to be moved, Qi, into a

unioned set U .

2. Successively delete the to-be-moved vertices Qi from the triangulation while retriangulating

the holes.

3. Add the moved vertices Q′
i to the triangulation (this retriangulates) while collecting the con-

straints from Delaunay-conflicting cells into U .

4. Iterate over all cells, and remove all the constraints that reference any of the Qi.

5. Apply the free-space constraints in U (i.e. use them to carve, just as in an association event;

see § 4.3.3).

Because of the similarity between Algorithms 3 and 4, proving the complexity of these steps is,

in places, similar to the proof in Theorem 4

For step 1, determining the set of cells incident to at least one vertex Qi from adjacency infor-

mation takes no more than O(N3) time. This is because the number of cells in the triangulation, and

67

therefore potentially incident to each Qi, where i can range from 1 to N , is bounded by O(N2) [60].

Using this fact, and the fact that K <∞, the number of constraints (potentially with repetition from

repeated cells) to collect from these cells and insert into U is O(N3). Using red-black trees to im-

plement sets, this bound on the number of constraints to insert into U implies that inserting them all

takes O(N3 log(N3)) = O(N3 log(N)) time. Therefore step 1 takes O(N3 log(N)) time.

For step 2, deleting each vertex Qi from a 3D Delaunay triangulation and retriangulating the

hole takes O(fd) time, where f is the number of tetrahedra that retriangulate the hole, and d is the

degree of Q [28]. This equates to the loose bound O(N3) time per vertex Qi, as in the proof of

Theorem 4. Because there may be up to N such vertices, Qi, step 2 takes O(N4) time.

For step 3, there are at most N vertices Q′
i to insert. For each insertion, at worst all O(N2)

tetrahedra conflict, and thus are deleted and stared off in O(N2) time. Locating the conflicting cells

takes no more than O(N2) time, since even a naive enumeration of all O(N2) tetrahedra suffices.

Thus, inserting all the vertices takes O(N3) time. To recarve the new tetrahedra, the constraints from

the old tetrahedra are collected into U . Since K <∞, and since the number of deleted tetrahedra is

O(N2), the number of constraints to reprocess is O(N2). Therefore, inserting them into U , which

will never contain more than the original O(N2) constraints from the triangulation at the start of

this algorithm, can be done in O(N2 log(N2)) = O(N2 log(N)) time.

For step 4, to simply loop over all the cells and their O(1)-bounded constraint sets takes O(N2)

time, because there are at most O(N2) tetrahedra in the triangulation [60]. Testing a constraint for

removal is an O(N) operation, since it entails checking if the constraint (represented by a pair of

indices) references any of the up to N Qi. Removing a constraint from a tetrahedron’s constraint set

is an O(f(K)) = O(1) operation, because K <∞ is constant. Therefore the total cost of step 4 is

O(N2N) = O(N3).

For step 5, Theorem 1 shows that applying a single constraint takes O(N2) time. Since there are

O(N2) constraints in U , the total time for applying them all in step 5 is O(N4).

The total time complexity for Algorithm 4 is then O(N3 log(N) + N4 + N2 log(N) + N3 +

N4) = O(N4).

68

