
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J. Heering, P. Klint, J.G. Rekers

Incremental generation of parsers

, Computer Science/Department of Software Technology Report CS-R8822 May

Biblk>tlleek
Centrum ypor Wisl~unde en lnformatk:a

Am~tel>dam

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

q\
'

Copyright (t:: Stichting Mathematisch Centrum, Amsterdam

Incremental Generation of Parsers

J. Heering

Department of Software Technology, Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AS Amsterdam, The Netherlands

P. Klint

Department of Software Technology, Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AS Amsterdam, The Netherlands

and

Programming Research Group, University of Amsterdam

P.O. BOX 41882, 1009 DB Amsterdam, The Netherlands

J. Rekers

Department of Software Technology, Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

A parser checks whether a text is a sentence in a language. Therefore, the parser is provided with

the grammar of the language, and it usually generates a structure (parse tree) that represents the text

according to that grammar. Most present-day parsers are not directly driven by the grammar but by a

'parse table', which is generated by a parse table generator. A table based parser wolks more efficiently

than a grammar based parser does, and provided that the parser is used often enough, the cost of gen

erating the parse table is outweighed by the gain in parsing efficiency.

However, we need a parsing system for an environment where language definitions are developed

~ (and modified) interactively; here we do not have enough time to entirely generate the parse table be

fore parsing starts, and because of the frequent modifications of the grammar, it is not obvious that the

extra efficiency of a table based parser makes up for the cost of generating the parse table.

We propose a lazy and incremental parser generation technique: (1) The parse table is generated

during parsing, but only those parts of it are generated that are really needed to parse the input sen

tences at hand. (2) If the grammar is modified, the existing parse table is modified incrementally, rather

than regenerated completely. Using this technique we have eliminated the disadvantages of a parse

table generator, while we retained the advantages of a table based parser. We use a parsing algorithm

based on parallel LA parsing which is capable of handling arbitrary context-free grammars.

We present all required algorithms and give measurements comparing their performance with that

of conventional techniques.

Keywords & Phrases: lazy and incremental parser generation, program generation, incomplete program,

LA parser generator, parallel LA parsing, parsing of context-free languages.

1987 CR Categories: 0.1.2, 0.3.1, 0.3.4, F.4.2.

1985 Mathematics Subject Classification: G8N20.

Note: Partial support received from the European Communities under ESPRIT project 348 (Generation

of Interactive Programming Environments - GIPE).

Report C$>-R8822
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

2

1. INTRODUCTION

The design of parser generators is usually based on the assumption that the generated parsers are used
many times. If this is indeed the case, a sophisticated, possibly inefficient, parser generator can be used to
generate efficient parsers. There are situations however, where this assumption does not apply:

• When a language is being designed, its grammar is not yet completely fixed After each change of the
grammar, a (completely) new parser must be generated, but there is no guarantee that it will be used
sufficiently often. Three observations can be made here:

- The time needed to parse the input is not only determined by the efficiency of the parser, but also by
that of the parser generator.

- It may happen that some parts of the grammar are not needed by any of the sentences actually given
to the parser; the effort spent on such parts by the parser generator is wasted.

- In general only a small part of the grammar is modified. One would like to exploit this fact by mak
ing a corresponding modification in the parser, rather than generating an entirely new one.

• There is a trend towards programming/specification languages that allow general user-defined syntax
(LITHE [San82], OBJ [FGJM85], Cigale [Voi86], ASF/SDF [Hen87,HK88]). In such languages each
module defines its own syntax, and each import of a module extends the syntax of the importing
module with the (visible) syntax of the imported module. For efficient parsing and syntax-directed
editing of these languages, it is of great importance to use a parser generator that can handle a large
class of context-free grammars, and that can incrementally incorporate modifications of the grammar in
the parser.

We describe a lazy and incremental parser generator IPG, which is specially tailored towards the highly
dynamic applications sketched above:

• The parser is generated in a lazy fashion from the grammar. There is no separate parser generation
phase, but the parser is generated by need while parsing input. When typical input sentences need only
a small part of the grammar, a smoother response is achieved than in the conventional case, since there
is no delay time due to the parser generation phase and parsing can start immediately. When the input
sentences do not use the whole grammar, work is saved on the generation process as a whole. It turns
out that in comparison with conventional techniques, the overllead introduced by this lazy technique is
small.

• The parser generator is incremental. A change in the grammar produces a corresponding change in the
already generated parser. Parts of the parser that are unaffected by the modification in the grammar are
re-used. Hence, the effort put in generating them is not thrown away. This clearly has advantages for
interactive language definition systems.

• The efficiency of the parsing process itself remains unaffected, in the sense that once all needed parts of
the parser have been generated, the parser will be as efficient as a conventionally generated parser.

• The parsing algorithm is capable of handling arbitrary context-free grammars.

For the general principles underlying our method, see [HKR87b]. In [HKR87a] a lazy/incremental lexical
scanner generator ISG is described. The combination ISG/IPG is used in an interactive development
environment for the ASF/SDF specification language mentioned above. The universal syntax-directed edi
tor [Log88] of this environment is parametrized with a syntax written in SDF, and uses ISG/IPG as its pars
ing component. The response time of the editor is acceptable, even though the lexical scanner and the
parser are generated on the fly from the SDF definition.

In section 2 we discuss related algorithms and show how our technique evolved from them. In sec
tion 3 we present the parsing algorithm used by us. Section 4 describes a conventional parser generation
algorithm. We extend this algorithm into a lazy parser generation algorithm in section 5. In section 6 we
extend it once again into an incremental parser generation algorithm. Finally, section 7 gives the results of
efficiency measurements, and section 8 contains some concluding remarks.

3

2. THE CHOICE OF A PARSING ALGORITHM

2.1. A comparison of algorithms

We compare some existing parsing algorithms with our own algorithm from the perspective of highly

dynamic applications like the ones discussed in the previous section:

• LR(k) and LALR(k) algorithms [ASU86, eh. 4.7]

These algorithms are controlled by a parse table that is constructed beforehand by a table genera

tor. The table is constructed top-down, while the parser itself wotks bottom-up. The parser wotks

in linear time. When the look-ahead k is increased, the class of recognizable languages becomes

larger (but will always be limited to non-ambiguous grammars), and the table generation time

increases exponentially. With conventional LR or LALR table generation algorithms it is impossi

ble to update an already generated parse table incrementally, if the grammar is modified.

• Recursive descent and LL(k) algorithms [ASU86, eh. 4.4]

A recursive descent parser generator constructs a parsing program, whereas an LL generator con

structs a parse table that is interpreted by a fixed parser. In both algorithms the parsers work top

down. The class of accepted languages depends on the look-ahead k, but is always limited to

non-left-recursive, non-ambiguous grammars.

• Earley's general context-free parsing algorithm [Ear70]

Earley's algorithm can handle all context-free grammars. It wotks by attaching to each symbol in

the input a set of 'dotted rules'. A dotted rule consists of a syntax rule with a cursor (dot) in it and

the position in the input where the recognition of the rule started. The set of dotted rules for sym

bol n+l is computed at parse time from the set for symbol n. Earley's algorithm does not have a

separate generation phase, so it adapts easily to modifications in the grammar. It is this same lack

of a generation phase that makes the algorithm too inefficient for interactive purposes.

• Cigale [V oi86]
Cigale uses a parsing algorithm that is specially tailored to expression parsing. It builds a trie for

the grammar in which production rules with the same prefix share a path. During parsing this trie

is recursively traversed. A trie can easily be extended with new syntax rules and tries for different

grammars can be combined just like modules. The class of grammars is only somewhat larger

, than LR(O) grammars, because the parser does not use look-ahead in a general manner and cannot

backtrack.

• OBJ [FGJM85]
OBJ uses a recursive descent parsing technique with backtracking. OBJ itself does not allow

ambiguous grammars, but the backtrack parser does detect all ambiguous parses. This makes the
parsing system suitable for finitely ambiguous grammars, but as mentioned in [FGJM85, p. 60]

''parsing can be expensive for complex expressions'', which makes the algorithm less suitable for

large input sentences.

• Tomita's pseudo-parallel parsing algorithm [Tom85,Rek87,Lan74]

This is an extended LR parsing algorithm, that requires a conventional (but possibly ambiguous)

LR(O) or LR(l) parse table. The parser starts as an LR parser, but when it hits a conflict in the

parse table, it splits up in several LR parsers that work in parallel. Grammars are restricted to the
class of finitely ambiguous context-free grammars. As it uses the same table generation phase as

conventional LR algorithms, modifying the grammar is an expensive operation with Tomita's

algorithm.

• Incremental parser generator IPG

We developed this method on the basis of Tomita's parsing algorithm, but provided the algorithm

with an incremental LR(O) parse table generator. Parsing starts with an empty parse table, which

is expanded by need during parsing. A change in the grammar is handled incrementally by remov

ing the parts of the parse table that are affected by the change; these parts are recomputed for the
piodifi.ed grammar when the parser needs them again. The parse table is constructed during pars

ing, so after a certain time, depending on the input given to it, the system will become as fast as a

conventionally controlled Tomita parser.

Fig. 2.1 gives an overview of the following characteristics of these algorithms: capable of handling

4

arbitrary context-free grammars (powerful), efficient on large input sentences (fast), efficient processing of
modifications of the grammar (flexible). and modular composition of parsers should be possible (modular).

requirement powerful fast flexible modular
algorithm

LR(k), LALR(k) ++
recursive descent, LL(k) ++
Earley ++ ++ ++
Cigale ++ ++
OBI + + +
Tomita ++ ++
IPG ++ ++ + +

Fig. 2.1: Comparison of various parsing algorithms.

2.2. Evolution of parsing algorithms

grammar

grammar
driven parser

grammar

specialised
parser

input

grammar

table generator

table driven
parser

specialised parser

Fig. 2.2: (a) Grammar driven parser, (b) specialised parser, (c) table driven parser.

tree

The simplest scheme for a (general) parser is given in Fig. 2.2(a), where the parser is controlled directly by
the grammar. An example of this technique is Earley's algorithm in its pure form. This kind of parser
adapts easily to modifications in the grammar, but is inefficient because for each parse step all parsing
information must be (re)computed from the grammar.

These general grammar driven parsing algorithms have evolved into the scheme of Fig. 2.2(b), where
a specialised parser is generated for a given grammar. An example of this scheme is the recursive descent
algorithm. These parsers are more efficient because the parsing information is computed only once in the
parser generation phase.

Another frequently used organisation is shown in Fig. 2.2(c), where the parser is split into a grammar
dependent part, the parse table, and a grammar independent part, the table driven parser. The parse table
and the table driven parser together form a specialised parser for the grammar, and the parse table is com
puted in a separate table generation phase. Examples of this technique are LL and LR parsing algorithms
and Tomita's parsing algorithm. The algorithms to be presented in section 3 and 4 all fall in this category.

In the system shown in Fig. 2.3(a) the table generation phase is made part of the parser. Here the
table driven parser is controlled by a parse table that is generated by need. The parser uses the same
efficient technique as that of Fig. 2.2(c). This is the lazy parse table generation technique that will be
explained in section 5.

Fig. 2.3(b) shows an incremental parse table generator for modifiable grammars. It consists of the
same lacy table generator and the same table driven parser, but these are extended with a table corrector.
The latter can remove parts of the generated parse table that have become incorrect due to a modification in
the grammar. This technique will be explained in section 6.

grammar

lazy table
generator

unknown

visible

finished

parser tree

grammar driven parser table driven ···················+--•
input parser

modifiable, grammar driven parser

Fig. 2.3: (a) Lazy parser generation, (b) incremental parser generation.

3. LR PARSING ALGORITHMS

tree

5

In this section we discuss a simplified version of Tomita's (pseudo-)parallel LR parsing algorithm
[Tom85, Rek87]. It basically consists of a (dynamically varying) number of conventional LR parsers run
ning in parallel. We therefore recall the details of ordinary LR parsing first.

In the algorithms which follow we need some low-level functions. For objects we use the functions
new(T) to create an object of type T, and copy(O) to make a copy of object 0. When an object 0 has a
field/, that field can be accessed by O.f For lists we use the functions head(L), tail(L), and length(L), and
for stacks we use push(e, S), pop(S), and top(S).

3.1. Conventional LR parsing

An LR parser is controlled by its parse table, which has an ACTION and a GOTO component. The
ACTION table determines, on the basis of the current state of the parser and the current input symbol, the
action for the parser to perform. An action can be either a 'shift', 'reduce', 'accept', or 'error'. After a
'reduce' action, the parser uses the GOTO table to determine what to do with the recognized non-terminal.

LR-PARSE: A simple LR parser.

Input: A start state start-state and a sentence sentence. Start-state is the state in which the parser starts, and
sentence is a list of terminals terminated by the end-marker $.

Output: 'true' if sentence is grammatically correct, 'false' otherwise.

Description: The LR parse algorithm uses a stack of states. The state on top of the stack is the current state
of the parser, and the head symbol of the input sentence is its current input symbol. The parser calls
ACTION(state, symbol) with the current state and current symbol. Basically, the action '(shift state')'

means that the parser has advanced one step in recognizing a syntax rule and must go to state state', the
action '(reduce rule)' means that the parser has recognized the syntax rule rule completely, the action
'accept' means that the whole input has been recognized, and the error action is denoted by an empty
action set and means that the input read so far can never become a sentence of the language any more.
We adapted the original LR parsing algorithm, as given for instance in [ASU86, section 4.7], a bit to
our needs later on: (1) ACTION returns a set of possible actions rather than a single action. LR-P ARSE

can only handle sets of at most one action correctly, but the parallel LR-parser discussed in the next
section can handle action sets of arbitrary length. (2) To keep things simple, we do not generate parse
trees and we do not keep symbols on the parse stack, but only states. (3) We use an object of type

'LRparser' with a single field stack as the parse stack of the algorithm. LR-PARSE uses only one stack:,
but ~parallel version requires a dynamically varying number of them.

Algorithm:

LR-P ARSE(start-state, sentence):

parser := new(LRparser)

6

push(start-state. parser.stack)

symbol, sentence := head(sentence), tail(sentence)

while true do

od

state := top(parser.stack)

if3action E ACTION(state, symbol) then

if action = (shift state') then

push(state', parser.stack)

symbol, sentence:= head(sentence), tail(sentence)

elseif action = (reduce A ::= j3) then

for 1 · · · length(j3) do pop(parser.stack) od

state':= top(parser.stack)

push(GOTO(state', A), parser.stack)

elseif action= (accept) then

return true

fi

else

return false

3.2. (Pseudo-)parallel LR parsing

The parallel LR parsing algorithm starts as a simple (conventional) LR parser, but splits up in multiple

parsers when ACTION(state, symbol) returns multiple actions. All simple LR parsers are synchronized on

their shift actions in such a way, that only when all parsers have shifted on the current input symbol, the

next symbol is processed

PAR-PARSE: Parse a sentence with (pseudo-)parallel running LR parsers.

Input: A start state start-state and a sentence sentence. Start-state is the state in which the first simple LR

parser starts, and sentence is a list of tenninals terminated by the end-marker $.

Output: 'true' if sentence is grammatically correct, 'false' otherwise.

Description: The synchronization on shift actions is expressed in the algorithm by using two pools of

parsers, this-sweep and next-sweep. The parsers in this-sweep still have to shift on the current input

symbol, the parsers in next-sweep are waiting for the next symbol. Only when this-sweep is empty (and

if there are parsers left in next-sweep), the next symbol is read from the input sentence. When both

pools of parsers are empty, this means that all parsers died in an accepting or rejecting configuration.

PAR-PARSE accepts its input if at least one simple parser accepts it.

For each input symbol parsers are taken from this-sweep, until this-sweep is empty. The parser that is

taken from this-sweep is removed from it, because for each action a copy of the parser is made and the

action is perfonned on this copy. So, when there are no actions to be perfonned, the parser just disap

pears. Shift actions place the copy in the next-sweep pool, reduce actions put the copy back in this

sweep. Accept actions set the variable accepted to indicate that a simple parser has accepted the input.

It is important for the lazy parser generator that the implementation of the copy operation for parsers is

such that the parse stacks become different objects which share the states on them.

Algorithm:

PAR-PARSE(start-state, sentence):

accepted := false

start-parser := new(LRparser)

push (start-state, start-parser .stack)

next-sweep:= {start-parser}

while next-sweep :;:. 0 do

" symbol, sentence:= head(sentence), tail(sentence)

this-sweep, next-sweep:= next-sweep, 0
while 3parser E this-sweep do

this-sweep := this-sweep - {parser}

od

state := top(parser.stack)

actions := ACTION(state. symbol)

for 'V action e actions do

od

od

parser':= copy(parser)

if action = (shift state') then

push(state', parser'.stack)

next-sweep := next-sweep v {parser'}

elseif action = (reduce A ::= p) then

for 1 · · · length(p) do pop(parser'.stack) od

state':= top(parser'.stack)

push(GOTO(state', A), parser'.stack)

this-sweep:= this-sweep v {parser'}

elseif action =(accept) then

accepted := true

fi

return accepted

7

PAR-PARSE is controlled by start-state and the results of ACTION and GOTO. Start-state is part of a

larger parser control structure from which ACTION and GOTO receive their information too. The next sec

tion describes how this control structure can be generated by a parser generator.

4. CONVENTIONAL PARSER GENERATION

The parse table generation algorithm we describe in this section is the conventional LR(O) algorithm, of

which the lazy parse table generation algorithm discussed in section 5 will tum out to be a straightforward

extension. As far as the parsing algorithm itself is concerned, there is no difference between the two gen

erators.

We often speak of a parser generator, while in the LR case, we actually ought to speak of a parse

table generator. But, as one can argue that the generated parse tables are interpreted by a hard-wired LR

parsing algorithm, a parse table can be seen as a program running on an LR-parsing machine.

The table generated by an LR parse table generator is a tabular representation of an internal structure

built by the generator. This internal structure is a 'directed graph of item sets'. Each row in the parse table

represents a state of the parser, and each state is equivalent to a set of items. The graph of these item sets is

thus the notion underlying both the parse table and the parsing states. Fig. 4.1 gives an example of a gram

mar, its parse table and its graph of item sets.

Each box in the graph of Fig. 4.l(c) is a set of items. The arrows between sets of items are the

labeled edges of the graph. During parsing, the parser moves through the graph: a shift action causes a

move along an edge labeled with a tenninal symbol; a reduce action first causes a move back according to

the stacked path of states, and next a move forward along an edge labeled with a non-tenninal symbol. Fig

4.2 shows the moves of a parser when parsing the sentence 'true or false'.

A set of items is an object with the following fields:

• kernel

The kernel field of a set of items contains the rules that are potentially being recognized by the

parser in that state/set of items. The dots ' • ' indicate how far the parser has progressed in each

rule.

• transitions

Each transition in the transitions field of a set of items contains an edge to another set of items

•tabeled with a symbol. Transitions have the form (symbol itemset), with itemset a set of items. If

symbol is a terminal the transition is a shift action; if it is a non-terminal the transition is a GOTO

transition. The transition ($ accept) is a special case, the accept action.

8

no. rule

0 B ::=true
1 B ::=false
2 B ::= B orB
3 B ::= B andB
4 START::=B

ACTION GOTO

~
B true false

\n/=*· j~,?l.]
........ ~-=.-~----...~ true true false false

state
true false or and $ B

0
1
2
3
4
5
6
7

s2

rO
rl
s2
s2
r3
r2

s3 1 accept

s5 s4 ace
rO rO rO rO
rl rl rl rl
s3 6
s3 7
r3 s5/r3 s4/r3 r3
r2 s5/r2 s4/r2 r2

Fig. 4.1: (a) Grammar of the Booleans, (b) parse table, (c) graph of item sets.

B ::=B • andB
B ::= B • or B B ::= B • or B

Fig. 4.2: The parsing of 'true or false'.

• reductions

• type

The reductions field of a set of items contains the syntax rules that have been recognized com

pletely in this state/set of items. These rules may be reduced by the parser. In diagrams we indi

cate reductions by underlining a rule in the corresponding kernel field (reductions of rules which

are not also in the kernel field can not be represented in these diagrams).

The value of the type field of a set of items may be 'initial' or 'complete'. If it is 'initial', the

fields transitions and reductions have not yet been computed. In diagrams we indicate 'complete'

sets of items with a black circle and 'initial' sets of items with an open circle. The number in the

circle serves as a unique reference to each set of items.

The parse table in Fig 4.l(b) is a tabular representation of the graph of item sets of Fig 4.l(c). This

representation is normally used for an LR parse table. It contains the results of the functions

ACTION(state, symbol) and GOTO(state, symbol) with a row for each state and a column for each sym

bol. We shall not use these parse tables further, because the lazy parser generator also needs the kernel

field Qf each set of items during parsing. The correspondence between the behaviour of ACTION and

GOTO for a given state/set of items and the transitions and reductions fields is described by the following

algorithms.

ACTION:

Input: A state state and a tenninal symbol symbol.

Output: The actions the parser can perform in state.

9

Description: The argument state is a complete set of items, and the return value is deduced from its transi
tions and reductions fields.

Algorithm:

GOTO:

ACTION(state, symbol):

result := {(reduce A ::= jJ) I A ::= p e state.reductions} u
{(shift state') I (symbol state') e state.transitions} u
{(accept) I (symbol accept) e state.transitions}

return result

Input: A state state and a non-terminal symbol.

Output: The new state for the parser after reducing a rule that delivered symbol in state state.
Description: The argument state is a complete set of items, and the return value is deduced from its transi

tions field. Because we assume the graph of item sets to have been generated correctly, we can be sure
that there is exactly one transition for symbol in state.transitions.

Algorithm:

GOTO(state, symbol):

return state'[(symbol state') e state.transitions]

The graph of item sets from which ACTION and GOTO obtain their information is generated from
the grammar by the routine GENERATE-PARSER:

GENERATE-PARSER: Build a graph of item sets for a grammar.
Input: A grammar Grammar, which is a set of syntax rules A ::=a, with A a non-terminal and a a list of

zero or more terminals and/or non-terminals. The non-terminal START is the start symbol of the gram
mar. START may not be used in the right-hand side of a syntax rule.

Output: The state in which parsing must start.
Description: This routine generates a graph of item sets for the given grammar. The set of items start

itemset it returns is the state in which parsing starts and is the root of the graph of item sets for Gram
mar. ACTION and GOTO can access other sets of items in this graph. The kernel field of start-itemset
is composed of all rules in Grammar with START as left-hand side, with the dot placed before the first
symbol of the right-hand side.

ltemsets contains all sets of items created during the generation process. It is used when sets of items
are expanded, as well as for searching for sets of items that are not yet complete. Routine EXPAND
transforms an initial set of items into a complete one. While expanding a set of items, EXPAND may
add initial sets of items to ltemsets.

Algorithm:

GENERATE-PARSER(Grammar):

start-itemset := new(itemset)

start-itemset.type := initial

start-itemset.kernel :={START::= .p I START::= p e Grammar}
ltemsets := {start-itemset} 1

while 3itemset e ltemsets[itemset.type =initial] do
EXP AND(itemset)

od

return start-itemset

EXP AND: Transform an initial set of items into a complete set of items.
Input: A set of items itemset with type 'initial'.
Description: This routine computes the transitions and reductions fields of itemset. It starts by using CW

SURE to generate an extension of the kernel containing all rules that may become applicable in state
itemset. This extended kernel is partitioned in subsets of rules having the same symbol S after the dot.
On shifting S (or reducing to S), the parser will have advanced one step recognizing a rule in the subset

10

associated with S. For each S the associated subset is transformed into a new kernel kernel' by moving

the dot over the S. When a set of items itemset' with kernel kernel' does not yet exist, it is generated as

an initial set of items. The transition (S itemset') is now added to itemset.transitions. A rule in the

extented kernel having its dot at the end has been recognized completely. It depends on the left-hand

side of the rule if this means an accept or a reduce action.

Algorithm:

CWSURE:

EXPAND(itemset):

cl-items := CWSURE(itemset.kernel)

itemset.transitions, itemset.reductions := 0, 0
for "i/S e {S I A ::= a.sp e cl-items} do

od

kernel':= {A ::=aS .~I A ::=a.S~ e cl-items}

if3itemset' e ltemsets[itemset'.kernel = kerne/1 then
itemset.transitions := itemset.transitions u { (S itemset')}

else
itemset' := new(itemset)

itemset'.type, itemset'.kernel :=initial, kernel'

ltemsets := ltemsets u { itemset'}

itemset.transitions := itemset.transitions u { (S itemset')}

for 'VA ::= p. e cl-items do

if A =START then

od

itemset.transitions := itemset.transitions u { ($ accept)}

else
itemset.reductions := itemset.reductions u {A ::= p}

itemset.type := complete

Input: A set of dotted rules kernel.

Output: The same set of dotted rules, extended with all rules that can also become applicable.

Description: CLOSURE extends a given kernel with all rules that may become applicable. If there is a rule

A ::= a.Bp in the kernel it means that non-terminal B may become applicable. Hence, the kernel can

be extended with all rules B ::= .y, because when a B can be recognized, all rules that derive B can also

be recognized.

Algorithm:

CWSURE(kernel):

closure := kernel

while 3 A, B, a, p, y

[A ::=a.BP e closure A

B ::= r E Grammar A

B ::= •Y ~closure] do

closure:= closure u {B ::= •"(}

od

return closure

5. LAZY PARSER GENERATION

The parser generation algorithm described in the previous section generates the parser completely before it

is use<L This method is based on the assumption that the parser is only generated once for a stable gram

mar after which it is used relatively often.

In applications where the grammar is subject to modification, this approach causes the parse time of

the first sentence to be effectively increased by the parser generation time. Clearly, it would be preferable

to spread the generation time over the parsing of many sentences to obtain a smoother response time. Lazy

11

parser generation has this property, and it has the further advantage that only those parts of the parser are

generated that are really needed to parse the sentences given to it. Both these arguments in favour of lazy

parser generation are only valid when typical input sentences need a relatively small part of the parser. See

[HKR87b] for an in-depth discussion of the advantages and disadvantages of lazy program generation. In

our specific application, we mainly use the lazy parser generation algorithm as a step towards incremental

parser generation (section 6).

S.1. An algorithm for lazy parser generation

We only have to adjust the LR(O) parser generator of the previous section a little to transform it to a lazy

parser generator. We move the parser generation phase into the parsing phase by moving the expansion of

initial sets of items from GENERATE-PARSER to ACTION. This means that the state with which ACTION

is called, cannot only be a complete set of items but also an initial one. When it is still initial, it is

expanded first by EXP AND. GENERATE-PARSER now only generates start-itemset as an initial set of

items, the rest of the parser generation will be taken care of by ACTION.

GENERATE-PARSER: Build the first part of a graph of item sets from a grammar.

Input: A grammar Grammar, which is a set of syntax rules A ::=ex.
Output: The state in which parsing must start.

Description: This routine constructs the set of items start-itemset: the root of the graph of item sets for the

given grammar. ACTION and GOTO can access other sets of items in this graph. The kernel field of

start-itemset is composed of all rules in Grammar with START as left-hand side, with the dot placed

before the first symbol of the right-hand side.

Algorithm:

ACTION:

GENERATE-PARSER(Grammar):

start-itemset := new(itemset)

start-itemset.type := initial

start-itemset.kernel := (START::= .13 I START::= 13 e Grammar}

Itemsets := (start-itemset}

return start-itemset

Input: A state state and a terminal symbol.

Output: The actions the parser can perform in state.

Description: When state is an initial set of items it must be expanded first. The complete set of items is

then used to deduce the return value from the transitions and reductions fields.

Algorithm:

ACTION(state, symbol):

if state .type = initial then

EXPAND(state)

result := {(reduce A ::= 13) I A ::= 13 e state.reductions} u
{(shift state') I (symbol state') E state.transitions} u

{(accept) I (symbol accept) e state.transitions}

return result

Like ACTION, GOTO uses information that is only available in complete sets of items, so one might

be inclined to think that the same test for initial sets of items has to be added to GOTO as well. However,

due to the the particular way in which the parsing algorithm works, GOTO will only be called with sets of

items that have already been completed. This is proved in Appendix A.

The implementation of the lazy parser generator has to treat variables Itemsets and Grammar of

GENERATE-PARSER as global variables, because they are needed during the expansion of sets of items.

Furthermore, several complete sets of items can point to the same initial set of items. When expanding an

initial set of items, the implementation has to take care that all sets of items that originally pointed to the
initial set of items now point to the completed one.

12

5.2. An example of lazy parser generation

Consider the grammar of the booleans of Fig. 4.l(a). The graph of item sets generated by the lazy parser
generator initially consists only of the start set of items (with type initial) shown in Fig. 5.l(a).

~ ~
1

STAR ::= B •
B ::=B • andB
B ::=B • orB

B true false

I """Cld. I [;,,ill,.1
Fig. 5.1: The graph of item sets after (a) generation, (b) the first call to ACTION.

When the parser is given its first sentence, its first step will be to ask what actions it has to perform in
start-state. Hence, ACTION is called with initial set of items start-state which is expanded first to the
graph shown in Fig. 5.l(b). Fig. 5.2 shows the graph of item sets after the sentence 'true and true' has been
oarsed.

~
B true false

I B,'=~· 1} ,,ill,.1
....,,._....._-=r--="-"'i.-' true false

accept

B ::=Band B •
B ::=B •and B
B ::= B • orB

Fig. 5.2: The graph of item sets after the sentence 'true and true' has been parsed.

All sentences that only contain 'and' and 'true', will now be parsed without further expansion of the
graph of item sets. Only for sentences containing 'false' or 'or', the graph of item sets has to be expanded
again. The advantage of the lazy technique is rather small for the grammar of the booleans, but for a larger
grammar like that of SDF (given in appendix B) only 60 percent of the parse table had to be generated to
parse the SDF definition of SDF itself (see section 7 for all measurements). In this case the lazy parser
generation technique clearly has advantages.

5.3. The cost of lazy parser generation

The overhead in time introduced by this lazy technique is small. The total generation time, which is now
distributed over parsing, will not increase, since even in the worst case exactly the same amount of work
has to be done as before. Only the test in ACTION which determines the type of a given set of items takes
some extra time.

In contrast to the conventional technique, where only the ACTION and GOTO information was
needed during parsing, the lazy parser generator also needs the kernel fields of the sets of items. So the
lazy parser generator uses more memory than a comparable conventional one. One could decide to remove
the kernels when all sets of items have been expanded, but the incremental parser generator will need them
again when the grammar is modified.

We considered making the lazy parser generator even more lazy than it already is: it is unnecessary

13

to expand an entire set of items at once, since only that part has to be expanded that is needed to deduce the

actions for the specific symbol with which ACTION was called. However, the additional administrative

overhead incurred (For what symbols has the set of items already been exp.~ed? What was the closure of

the kernel?) turned out to be so large that no net gain in efficiency was to be expected.

6. INCREMENTAL PARSER GENERATION

The lazy parser generator can only react to modifications of the grammar by throwing away the parser it

has already generated and by restarting from scratch. Although the lazy technique is an improvement over

the conventional method, it is still rather wasteful. We would like to exploit the fact that when a grammar

is modified, it is likely that a relatively large part of it stays the same, and that the graphs of item sets for

both grammars will have large parts in common.

In this section we describe an incremental parser generator that retains those parts of the old graph of

item sets that can still be used in the graph for the modified grammar. How much has to be thrown away

depends on the 'size' of the modification, but also on how much of the graph had already been generated

for the old grammar. When the graph of item sets is already highly specialized towards the old grammar,

chances are that large parts of it have to be removed.

We first show that extension of a grammar does not correspond in a straightforward way to extension

of its graph of item sets. Suppose a rule is added to a grammar. Oearly, the old grammar is a subgrammar

of the new one. Is the old graph of item sets in some sense a subgraph of the new one as well? There are

reasons to believe so. Consider, for instance, the grammar of the booleans of Fig. 4.l(a), and extend this

grammar with the rule 'B ::=unknown'. The graph of item sets for the booleans has now to be updated, as

is shown in Fig 6.1.

IFA~--~1
B true false

~
unknown

In,,.$. 1~3L I
true true false false

unknown

accept ef

Fig. 6.1: (a) The original graph, (b) the update of the graph.

Transitions have been added to some sets of items, but existing transitions or kernels did not have to be

changed. Unfortunately, this is not always the case.

Consider, for instance, the grammar of Fig. 6.2(a) for which the graph of item sets of Fig. 6.2(b) has

already been generated. This grammar is a complicated way to describe a language with only ~ sen

tences 'a b' and 'c b', but it is the smallest grammar we could think of for which an update has more

severe implications than in the previous case. We show in Fig 6.3 the modifications of the graph after an

addition of the rule A ::= b to the grammar. This example shows that even if rules are only added to the

grammar, there is no guarantee that the original graph is a subgraph of the graph for the modified grammar.

14

Grammar

START::=E
E::=cC
C::=B

START::=D
D::= aA
A::=B

B::=b

Fig. 6.2: (a)A grammar, (b) its graph of item sets.

Add syntax rule

A::=b
b

fn~- J

Fig. 6.3: The modification of the graph of Fig. 6.2(b).

6.1. An algorithm for incremental parser generation

The incremental parser generator retains only that part of the (possibly incomplete) graph that can still be

used in the graph of item sets for the new grammar. It does this by making all sets of items in the graph

initial, that were (from the viewpoint of the new grammar) expanded incorrectly. The lazy parser generator

will then, when needed, re-expand these sets of items according to the new grammar.

Suppose a rule A ::=~is added to the grammar. We then have to find the states (sets of items) in

which recognition of the new rule should start. In the new graph the closure of the kernel of these sets of

items would contain A : := • ~· How can we find these sets of items in the existing graph without recomput

ing the closure of every kernel? Initial sets of items can easily be dealt with because they do not have to be

re-expanded, but complete ones present a problem. Fortunately, we can be sure that A ::= .~will only be

added to the closure when that closure contains at least one dotted rule with its dot before an A. But when

there was a rule with its dot before an A in the closure, EXP AND must already have added a transition for A

to the transitions field of the set of items in question. So we can recognize all complete sets of items that

should have A ::= .~in the closure of their kernel by the presence of a transition (A itemse() in their tran

sitions field.

Similarly when we delete a rule A ::= ~ from the grammar, we have to find the states (sets of items)

in the exisisting graph in which recognition of this rule started. These are the sets of items that had

A ::= .~ in the closure of their kernel. These are, similar to addition, the complete sets of items with a

transition (A itemset') in their transitions field.

These sets of items, which are the first ones affected by the modification of the grammar, have to be

re-expanded. This can be achieved simply by making them initial and let the lazy parser generator re

expand them when needed. Because addition and deletion of a rule are so similar, ADD-RULE and

DELETE-RULE use the same routine MODIFY to update the graph of item sets.

ADD-RULE: Add a rule to the grammar and update the corresponding graph of item sets.

Input: The rule rule that has to be added.

Des'iription: MODIFY is called with operator 'v' to perform the actual update.

Algorithm:

ADD-RULE(rule):

MODIFY(rule, v)

DELETE-RULE: Delete a rule from the grammar and update the corresponding graph of item sets.

Input: 1be rule rule that has to be deleted.

Description: MODIFY is called with operator'-' to perform the actual update.

DELETE-RULE(rule):

MODIFY(rule. -)

Algorithm:

MODIFY: Modify a grammar and update the corresponding graph of item sets.

Input: A rule A ::=~and a modification operator D (which may be 'u' or'-').

15

Description: MODIFY uses global variables Grammar, Itemsets, and start-itemset. Grammar is updated

according to the modification and the graph of item sets is reduced to a graph that is correct for the

modified grammar. This is done by making all incorrectly expanded sets of items in Itemsets initial

again.

When A is the start-symbol START of the grammar, we know that only start-itemset can contain

A ::= -~in its kernel. When it is not, we search Itemsets for all complete sets of items with a transition

(A items et) in their transitions field. These sets of items are made initial to let the lazy parser generator

re-expand them when needed by the parser.

Algorithm:

MODIFY(A ::= ~. D):

Grammar :=Grammar D {A ::= ~}

if A = START then
start-itemset.kernel := start-itemset.kernel D {A ::= .~}

start-itemset.type := initial

else

fi

for Vitemset E Itemsets

od

[itemset.type = complete A

(A itemsef) E itemset.transitions] do

itemset.type := initial

When, for example, the rule 'B ::=unknown' is added to the grammar of the booleans, and the graph of

item sets for the grammar of Fig. 6.l(a) is updated by MODIFY, the sets of items 0, 4, and 5 are made ini

tial, because they had a transition for 'B' in their transitions field. The graph of item sets is thus

transformed into the unconnected graph of Fig. 6.4.

accept

an 6

B ::= B andB •
B ::= B • andB

~

B ::= B • or B B ::= B • or B

Fig. 6.4: Graph of item sets for the boo leans after addition of 'B : := unknown'.

When the lazy parser generator now expands 0 again, its former connections with I, 2, and 3 are re

established, and the initial set of items 8 is generated with kernel 'B ::=unknown • '. The resulting graph is

16

shown in Fig. 6.5.

accept

an 6

B ::=B andB •
B ::=B • andB

~
B true false unknown

lb@. I ~,,~,,~~~j

B ::= B • or B B ::= B • or B
Fig. 6.5: The graph of Fig. 6.4 after re-expansion of set of items 0.

The example of Fig. 6.2 and 6.3 is processed correctly by MODIFY. When the rule A ::=bis added
to the grammar of Fig. 6.l(a), set of items 3 is made initial, because it has a transition for A. When 3 is re
expanded, the transitions to 8 and 9 will be reinstated, but the transition to 7 on b is replaced by a transition
to an initial set of items with kernel { B ::=b •. A ::=b. } . Set of items 7 and the transition of 2 to 7 are not
affected by this modification.

MODIFY is not the best possible algorithm in the sense that it does not always retain the largest pos
sible part of the graph of item sets. In particular, partial re-expansion of sets of items is avoided, because
it takes time, while there is no guarantee that the re-expanded sets of items will ever be used again by the
parser. This would be in contradiction with the lazy philosophy. Also, in MODIFY the functions for gen
erating and correcting a graph of item sets are clearly separated. This makes the algorithm easier to under
stand and more robust.

6.2. Garbage collection

There is yet another problem to be solved in the incremental parser generator, namely grubage collection
When MODIFY makes a set of items initial, the transitions of that set of items to others disappear (because,
by definition, initial sets of items do not have a transitions field). When the set of items is re-expanded for
the modified grammar, new references to these sets may (but need not) be created. On the one hand,
retaining unused sets of items in ltemsets is essential, otherwise major parts of the graph of item sets would
have to be regenerated (this would occur in the example of Fig. 6.4). On the other hand, there are also sets
of items that will almost certainly never be used again. For example, when the rule 'B ::= B xor B' is
added to the grammar of the booleans, sets of items l, 6, and 7 will never be re-used (unless, of course, the
new rule is discarded again). Frequent modification of a grammar can cause many useless sets of items to
stay forever in Itemsets.

The dilemma is thus: when all unreachable sets of items are removed immediately, it is likely that
too much is thrown away, but when everything is retained, we end up with too much grubage in ltemsets.

A compromise solution is to attach to each set of items a ref count field, telling how many sets of items refer
to it. Routine EXPAND sets and increments the ref ount fields of the sets of items it creates transitions to.
Furthermore, MODIFY should make sets of items 'dirty' rather than initial. A dirty set of items is an initial
set of items with a history (its old transitions field). It is expanded in the same way as an initial set After
it has been expanded the ref count field will have been decreased of those sets of items to which it no longer
refers. }Vhen the reference count of a set of items becomes zero, it is removed from ltemsets. In other
words, the removal of unused sets of items is postponed until the chance is better that they will never be
used again.

18

We measured the times used by the three parser generators and the generated parsers to:

• construct a parse table for SDF;

• parse an input sentence (SDF definition) twice;

• modify the grammar and reconstruct the parse table;

• parse the same sentence twice.

The measurements have been repeated on input texts of different length and complexity, namely four SDF
definitions of which the smallest has 15 lines and the largest 142 lines. The syntax of SDF was modified in
each case by adding the grammar rule

<CF-ELEM> ::="("<CF-ELEM>+")?"

(orinSDF: "(" CF-ELEM+ ") ?" -> CF-ELEM),

which adds an element in priority and function declarations. We added rather than deleted a rule in order
to be able to use the same input sentences again after the modification. Other experiments showed that
addition or deletion of a rule roughly takes the same time.

To prevent the lexical scanner and the file system from influencing the measurements, the input of all
parsers was a stream of lexical tokens already in memory, and the parsers constructed a parse tree but did
not print it. All measurements have been carried out on a SUN 3/60 under low workload (no swapping).
Yacc generates C-code, which was compiled in 68020 machine code by the C-compiler. PG and IPG ran
in the LeLisp environment and were compiled by the LeLisp compiler 'Complice' [Cha86]. LeLisp gar
bage collections were only allowed between measurements.

The results of the measurements are given in Fig. 7 .1. They show the following:

• Yacc:

•PG:

• IPG:

Yacc generates parsers that are about twice as fast as the parsers generated by PG and IPG, but the
generation time for a Yacc parser is unacceptably high for an interactive language definition
environment This generation time consists of

1.3 sec for Y ace to generate the parser in C;
7.6 sec for the C compiler to compile the parser;
0. 7 sec for the C compiler to link the compiled parser to the rest of the code.

The fact that PG generates parsers in the same (Lisp) environment in which the parsers are used
has great advantages, as is shown by the relatively small construction and modification times of
PG. The second reason that PG uses less generation time than Yacc, is that PG generates LR(O)
tables, whereas Yacc generates LALR(l) tables. The parse times of both PG and IPG are larger
than that of Yacc. There are to reasons for this difference: Yacc uses LALR(l) tables and gen
erates parsers in C, while PG and IPG use LR(O) tables and generate parsers in Lisp.

In this case the time needed for constructing the parse table is almost zero. The lazy parser gen
erator generates the needed parts of the parse table while parsing the input, which explains why
the second parse always takes less time than the first one. This difference is not as large as the
generation time taken by PG, indicating that only a part of the parse table had to be generated for
parsing the input. The modification time used by IPG is negligible. Only the first parse of
'Exam.self' after the modification of the SDF grammar shows that some time was used for regen
erating affected parts of the parse table.

In our opinion, the measurements convincingly show the benefits of lazy and incremental parser genera
tion. IPG uses twice as much parse time as Yacc, but since we expect grammars that are much larger than
the grammar of SDF and input sentences to be quite small (the parser will mainly be used from within a
syntax-directed editor), we consider IPG to be an excellent choice for interactive language definition sys
tems and other highly dynamic applications.

8. CONCLUSIONS AND FUTURE WORK

Although incremental generation of LR parse tables may seem a difficult problem, we were able to present
all algorithms for incremental parser generation in this paper. We kept the complexity of the algorithms
low by building the incremental generator on top of the lazy one, which in tum is an easy derivative of a

RE-EXPAND: Expand a dirty set of items

Input: A set of items itemset with type 'dirty'.

17

Description: itemset is expanded in the same way as an initial set of items, only the reference count of each
itemset' to which itemset referred is decreased by one after the expansion.

Algorithm:

RE-EXPAND(itemset):

old-transitions := itemset.transitions

EXPAND(itemset)

for Vitemset' [(symbol itemsel) e old-transitions] do
DECR-REFCOUNI'(itemset')

od

DECR-REFCOUNI':

Input: A set of items itemset whose ref count field has to be decreased by one.

Description: The reference count of itemset is decreased. When it becomes zero, itemset is removed from
ltemsets. All reference counts of the set of items it refers to, have to be decreased as well.

Algorithm:

DECR-REFCOUNI'(itemset):

itemset.refcount := itemset.refcount - l

if itemset.refcount = 0 then

ltemsets := ltemsets - { itemset}

if itemset.type * initial then
for Vitemset' [(symbol itemsel) e itemset.transitions] do

DECR-REFCOUNI'(itemset')

od

The introduction of dirty sets of items and reference counting more or less affects all routines of the
parser generator, but as the modifications in the routines are quite small, we will not show them. Our
implementation of garbage collection cannot yet handle circular references properly. A straightforward
solution for this problem would be to use a conventional mark-and-sweep garbage collector when the per
centage of dirty sets of items becomes to high.

7. PERFORMANCE AND EFFICIENCY

We have compared the efficiency of the lazy and incremental parser generator IPG with that of the non
incremental version described in section 4 (which we will call 'PG'). We also compared IPG and PG with
the LALR(l) parser generator Yacc [Joh79]. A comparison of IPG with Earley's parsing algorithm would
have been appropriate here, because both systems recognize the same class of context-free grammars. As
we did not have access to a good implementation of the algorithm, and a quick and mediocre implementa
tion made by us would not be a fair match, we have not included such a comparison. From a theoretical
viewpoint, we expect Earley's algorithm to have better generation performance, but a much inferior pars
ing performance.

Both PG and IPG generate parse tables (or graphs of itemsets) that are inteipreted by Tomita's
context-free parsing algorithm*. As we wanted to test all algorithms on the same grammar and input, the
test grammar had to be LR(l), since these are the only grammars accepted by Yacc. The test grammar we

used is an LR(l) version of the grammar of the syntax definition formalism SDF. The reason for choosing
SDF is its reasonably sized grammar. The fact that it also happens to be the language in which grammars

for PG and IPG have to be expressed is purely coincidental. It only means that the grammar of SDF has to
be expressed in SDF itself to be acceptable to PG and IPG. The SDF definition of SDF is given in appen
dix B, to give both an example of an SDF definition and an idea of the size of the test grammar.

*We used a more efficient style of Lisp programming than Tomita did in his book [fom85], and, after a suggestion of B.
Lang, we improved the sharing of parse trees.

YACC:

CPU time
(in seconds)

PG:

CPU time
(in seconds)

IPG:

CPU time
(in seconds)

:::t1 ll ll ll
: : ~ ~

exp.sdf Exam.sdf SDF.sdf ASF.sdf
(37 tokens) (166 tokens) (342 tokens) (475 tokens)

Fig. 7.1: Results of efficiency measurements on Yacc, PG and IPG.

19

conventional LR(O) parser generator. As is shown by the measurements in section 7, IPG is an efficient

parser generator suitable for use in interactive language definition systems.

Future work: related to IPG will include:

• Simultaneous editing of language definitions and programs

As has been explained in the introduction, we currently have an operational prototype of a univer

sal syntax-directed editor parametrized with a syntax definition written in SDF. It is our aim to

allow simultaneous editing of both this syntax definition as well as the program/specification writ

ten in the language defined by it.

• Syntax-directed editing of programs/specifications defining their own syntax.

An extreme case of simultaneously editing and using syntax definitions occurs when a language

can modify its own syntax. In this case, modification and use of the syntax occur in the same tex

tual object to be edited. Limited forms of user-defined syntax appear in various disguises such as

operator declarations, macro's and user-defined function notation. Oearly, the modification capa

bility of IPG can be used to implement these changes in syntax.

• MO<hilar composition of parsers.

IPG does not yet support composition of parsers that are generated for different modules.

Although it would be possible to use the incremental modification capability of IPG by adding the

grammar of one module to the grammar of the other, this is an asymmetrical operation, which, we

20

believe, is not satisfactory.

POSTSCRIPT

While we were finishing this paper, R.N. Horspool sent us his recent report on incremental generation of
LR parsers [Hor88]. As his overall goals are very similar to ours, we briefly summarize his approach.

Horspool's point of departure is a conventional LR parser rather than a parallel one and he considers
incremental generation of LALR(l) parse tables. This is more difficult than incremental generation of
LR(O) tables as look-ahead sets have to be taken into account, whose incremental generation and
modification turns out to be problematic.

As a consequence, his system has a less efficient incremental table generation phase, but generates
more efficient LALR(l) parsers. We opted for a more efficient LR(O) table generation phase at the expense
of some loss in parsing efficiency for non-LR(O) languages (but without restricting the class of acceptable
grammars in any way).

REFERENCES

[San82] D. Sandberg, "LITHE: A language combining a flexible syntax and classes," pp. 142-145 in
Conference Record of the Ninth Annual ACM Symposium on Principles of Programming
Languages, ACM, Albuquerque, New Mexico (1982).

[FGJM85] K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, and J. Meseguer, "Principles of OBJ2," pp. 52-
66 in Conference Record of the Twelfth Annual ACM Symposium on Principles of Program
ming Languages, ACM, New Orleans (1985).

[Voi86] F. Voisin, ''CIGALE: a tool for interactive grammar construction and expression parsing,''
Science of Computer Programming 1, pp. 61-86, North-Holland (1986).

[Hen87] P.R.H. Hendriks, ''Type-checking mini-ML: an experience with user-defined syntax in an
algebraic specification," pp. 21-38 in Conference Proceedings of Computing Science in the
Netherlands, SION, Amsterdam (1987).

[HK88]

[HKR87b]

[HKR87a]

[Log88]

[ASU86]

[Ear70]

[Tom85]

[Rek87]

[Lan74]

[Joh79]

[Cha86] ''

[Hor88]

J. Heering and P. Klint, "Towards shorter algebraic specifications: a simple language
definition and its compilation to Prolog," Report CS-R88 l 4, Centre for Mathematics and
Computer Science, Amsterdam (1988).

J. Heering, P. Klint, and J. Rekers, "Principles oflazy and incremental program generation,"
Report CS-R8749, Centre for Mathematics and Computer Science, Amsterdam (1987).

J. Heering, P. Klint, and J. Rekers, "Incremental generation of lexical scanners," Report
CS-R8761, Centre for Mathematics and Computer Science, Amsterdam (1987).

M.H. Logger, "An integrated text arid syntax-directed editor," Report CS-R8820, Centre for
Mathematics and Computer Science, Amsterdam (1988).

A.V. Aho, R. Sethi, and J.D. lillman, Compilers. Principles, Techniques and Tools ,
Addison-Wesley (1986).

J. Earley, "An efficient context-free parsing algorithm," Communications of the ACM 13(2),
pp. 94-102 (1970).

M. Tomita, Efficient parsing for natural languages , Kluwer Academic Publishers (1985).

J. Rekers, ''A parser generator for finitely ambiguous context-free grammars,'' pp. 69-86 in
Conference Proceedings of Computing Science in the Netherlands, SION, Amsterdam
(1987).

B. Lang, "Deterministic techniques for efficient non-detenninistic parsers," pp. 255-269 in
Proceedings of the Second Colloquium on Automata, Languages and Programming, ed. J.
Loeckx, Lecture Notes in Computer Science 14, Springer-Verlag, Saarbriicken (1974).

S.C. Johnson, "YACC: yet another compiler-compiler," in UNIX Programmer's Manual
2B, Bell Laboratories (1979).

J. Chailloux, et al., Le_Lisp, Version 15.2, le manuel de reference , INRIA, Rocquencourt
(1986).

R.N. Horspool, "Incremental generation of LR parsers," Report DCS-79-IR, University of
Victoria, Victoria, B.C., Canada (1988).

21

APPENDIX A. GOTO is always called with a complete set of items

LR-PARSE calls GOTO for a certain set of items which we will prove to be complete. We do this for LR

p ARSE as given below, which is just another representation of the algorithm given in section 3.1.

(1) LR-PARSE(start-state, sentence):

(2) parser := new(LRparser)

(3) push(start-state, parser.stack)

(4) symbol, sentence:= head(sentence), tail(sentence)

(5) while true do

(6) actions :=ACTION(top(parser.stack), symbol)

(7) if 3action e actions then

(8) if action =(shift state') then

(9) push(state', parser.stack)

(10) symbol, sentence:= head(sentence), tail(sentence)

(11) elseif action= (reduce A ::= fi) then

(12) for 1 · · · length((i) do pop(parser.stack) od

(13) state" := GOTO(top(parser.stack), A)

(14) push(state", parser.stack)

(15) elseif action =(accept) then

(16) return true

(17) fi
(18) else
(19) return false

(20) fi
(21) od

We first need to prove a loop invariant for the algorithm that states that only the set of items on top of the

stack can be initial, all others must be complete:

INV: "ifi[l ~i ~ length(parser.stack)- l ~ parser.stack [i].type =complete]

INV is true before entering the main loop of the algorithm, because the stack then only consists of one ele

ment. The execution of the loop itself does not alter INV. After executing line (6), where ACTION was

called for the state on top of the stack, an even stronger condition holds: if ACTION is called on an initial

set of items, it expands it to a complete set of items. So after the call of ACTION we have:

S-INV: "ifi[l ~i ~length(parser.stack) ~ parser.stack[i].type =complete]

ACTION returns zero or more actions, of which one is chosen. The following cases are possible:

• actions =0
The execution of line (19) does not alter the stack. We bad S-INV, so we certainly have INV.

• action = (shift state')

In line (9) state' is pushed on the stack. The length of the stack is thus increased by one, but

because we had S-INV, we still have INV.

• action =(reduce A ::= fi)
In line (12) the stack is reduced by length((i) elements. Because we bad S-INV and the length of

the stack gets smaller or remains equal by this operation, S-INV still holds after line (12). In line

(14) state" is pushed on the stack, which increases the length of the stack by one. Because we bad

S-INV, we still have INV.

• action =(accept)

The execution of line (16) does not alter the stack We had S-INV, so we certainly have INV.

INV is indeed a loop invariant of LR-PARSE. GOTO is called for the state on top of the parse stack in line

(13); after line (12) we had S-INV, so we have also top(parser.stack).type =complete.
"

This proof can be extended to the case of PAR-PARSE in a straightforward way. Here, the invariant

to prove would be that INV holds for all parsers in this-sweep u next-sweep at each moment during the

parsing. We will not elaborate this proof.

22

APPENDIX B. The SDF definition of SDF

SDF is the language in which grammar definitions for IPG are written. SDF stands for 'Syntax Definition
Formalism' and is described in [HK.86]. An SDF definition consists of two parts, the lexical syntax and the
context-free syntax. For the measurements described in section 7 the lexical syntax part is of no impor
tance, because we did not use the lexical scanner in the measurements.

In the context-free syntax section the non-terminals used are declared first in the 'sorts' declaration
part, followed by the declaration of the syntax rules in the 'functions' declaration part. An SDF function
13 ~A is equivalent to a BNF syntax rule A ::= 13.
module SDF
begin

The SDF definition of SDF

lexical syntax
sorts

LETTER, ID-TAIL, ID, ITERATOR,
ORD-CHAR, C-CHAR, CHAR-RANGE, CHAR-CLASS,
L-CHAR, LITERAL, COM-CHAR, COM-END

layout
WHITE-SPACE, COMMENT

functions

[a-zA-Z]
[a-zA-Z0-9\-_]
LETTER ID-TAIL*

"+"
"*"

-> LETTER
-> ID-TAIL
-> ID
-> ITERATOR
-> ITERATOR

[0-9A-Za-z !J$%&' ()*+,./:;<=>?@\~ '{I}-] ->ORD-CHAR
-- all chars except control characters, ", -, [,] and\

"\ \" - [] -> ORD-CHAR

ORD-CHAR

"\""
C-CHAR
C-CHAR "-" C-CHAR
"[" CHAR-RANGE* "]"

ORD-CHAR
[\-\[\]]

"\"" L-CHAR* "\""

[\t\n\r\f]
- [\n\-]

"-" - [\n\-]

"--"
"-\n"
"\n"
"--" COM-CHAR* COM-END

context-free syntax
sorts

-> C-CHAR
-> C-CHAR
-> CHAR-RANGE
-> CHAR-RANGE
-> CHAR-CLASS

-> L-CHAR
-> L-CHAR
-> LITERAL

-> WHITE-SPACE
-> COM-CHAR
-> COM-CHAR
-> COM-END
-> COM-END
-> COM-END
-> COMMENT

SDF-DEFINITION, LEXICAL-SYNTAX, SORTS-DECL, SORT, LAYOUT,
LEXICAL-FUNCTIONS, LEXICAL-FUNCTION-DEF, LEX-ELEM,
CONTEXT-FREE-SYNTAX, PRIORITIES, PRIO-DEF, ABBREV-F-LIST, ABBREV-F-DEF,
FUNCTIONS, FUNCTION-DEF, CF-ELEM, ATTRIBUTES, ATTRIBUTE

functions

"module" ID
"begin"

LEXICAL-SYNTAX
CONTEXT-FREE-SYNTAX

"end" ID -> SDF-DEFINITION

end SDF

"lexical" "syntax"
SORTS-DECL
LAYOUT
LEXICAL-FUNCTIONS

empty --

"sorts" {SORT","}+
empty --

ID

"layout" {SORT","}+

-- empty

"functions" LEXICAL-FUNCTION-DEF+

LEX-ELEM+ "->" SORT

SORT
SORT ITERATOR
LITERAL
CHAR-CLASS
11

-
11 CHAR-CLASS

"context-free" "syntax"
SORTS-DECL
PRIORITIES
FUNCTIONS

"priorities" {PRIO-DEF ","}+

-- empty --
{ABBREV-F-LIST ">"}+
{ABBREV-F-LIST "<"}+
ABBREV-F-DEF
"(" {ABBREV-F-DEF ","}+ ")"
CF-ELEM+
CF-ELEM* "->" SORT

"functions" FUNCTION-DEF+

CF-ELEM* "->" SORT ATTRIBUTES

SORT
LITERAL
SORT ITERATOR
"{" SORT LITERAL "}" ITERATOR

"{"{ATTRIBUTE","}+"}"
-- empty
"par"
"assoc"

"left-assoc"
"right-assoc"

23

-> LEXICAL-SYNTAX
-> LEXICAL-SYNTAX

-> SORTS-DECL
-> SORTS-DECL
-> SORT

-> LAYOUT
-> LAYOUT

-> LEXICAL-FUNCTIONS

-> LEXICAL-FUNCTION-DEF

-> LEX-ELEM
-> LEX-ELEM
-> LEX-ELEM
-> LEX-ELEM
-> LEX-ELEM

-> CONTEXT-FREE-SYNTAX

-> PRIORITIES
-> PRIORITIES
-> PRIO-DEF
-> PRIO-DEF
-> ABBREV-F-LIST
-> ABBREV-F-LIST
-> ABBREV-F-DEF
-> ABBREV-F-DEF

-> FUNCTIONS

-> FUNCTION-DEF

-> CF-ELEM
-> CF-ELEM
-> CF-ELEM
-> CF-ELEM

-> ATTRIBUTES
-> ATTRIBUTES
-> ATTRIBUTE
-> ATTRIBUTE
-> ATTRIBUTE
-> ATTRIBUTE

