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Instituto de Mateḿatica Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro,
RJ 22460-320, Brazil

Received December 10, 1996; Revised July 10, 1997; Accepted August 8, 1997

Abstract. We consider the class of incremental gradient methods for minimizing a sum of continuously differ-
entiable functions. An important novel feature of our analysis is that the stepsizes are kept bounded away from
zero. We derive the first convergence results of any kind for this computationally important case. In particular,
we show that a certainε-approximate solution can be obtained and establish the linear dependence ofε on the
stepsize limit. Incremental gradient methods are particularly well-suited for large neural network training prob-
lems where obtaining an approximate solution is typically sufficient and is often preferable to computing an exact
solution. Thus, in the context of neural networks, the approach presented here is related to the principle of tolerant
training. Our results justify numerous stepsize rules that were derived on the basis of extensive numerical ex-
perimentation but for which no theoretical analysis was previously available. In addition, convergence to (exact)
stationary points is established when the gradient satisfies a certain growth property.

Keywords: incremental gradient methods, perturbed gradient methods, approximate solutions, backpropagation,
neural network training

1. Introduction

We consider the problem

min
x∈<n

f (x) :=
K∑

j=1

f j (x) (1.1)

of minimizing a finite summation of continuously differentiable (partial) objective functions
f j : <n → <, j = 1, . . . , K , where the numberK is typically large. Our analysis is
primarily motivated by machine learning (in particular, neural network) applications, where
weights and thresholds of the network comprise the problem variablex ∈ <n, K is the
number of training samples, andf j (·) represents the error associated with thej th sample,
j = 1, . . . , K (see [11] for a detailed description).

In applications whereK is large, the followingincrementalgradient algorithm (IGA)
proved to be very useful (see also [2, Section 1.5.2]).
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Algorithm 1.1 (IGA). Choose any x0 ∈ <n. Having xi , check a stopping criterion. If
not satisfied, compute xi+1 = T(xi , ηi ), where T:<n ×<+ → <n is given by

T(x, η) := x − η
K∑

j=1

∇ f j (z
j ),

with

z1 = x, zj+1 = zj − η∇ f j (z
j ), j = 1, . . . , K − 1.

Algorithm 1.1 processes partial objective functions one at a time and immediately updates
the variables (hence the name “incremental”). On the domain of large neural network
training problems, this algorithm is known to be often superior to standard optimization
techniques which process all the partial objective functions before adjusting the variables
(see [5, 7] for a discussion of this issue). In particular, it is typically more effective than the
standard gradient descent method given by

T̃(x, η) := x − η∇ f (x) = x − η
K∑

j=1

∇ f j (x).

Moreover, in some applications, the cost of computing the full gradient∇ f (·) at every
iteration can be essentially cost prohibitive. Naturally, in that case more sophisticated tech-
niques, such as conjugate gradient and quasi-Newton methods, are also inapplicable. Un-
fortunately, this often seems to be the case in machine learning. For many practical neural
network systems, standard optimization methods require storage and/or computational cost
which can become unmanageable even for a moderate network size, provided the training
set (i.e., the numberK ) is large enough [17]. For problems of this class, incremental meth-
ods have to be used. In artificial intelligence literature IGA is usually referred to as on-line
backpropagation training [16]. In addition to being faster, IGA has some other advantages
over standard optimization methods when considered in the machine learning context. For
example, it can be used in real-time on-chip operation [5].

Despite the popularity of incremental methods within the artificial intelligence commu-
nity and their wide use in practice, until very recently there existed no rigorous convergence
analysis for this class of algorithms. It is clear that IGA generates a sequence of iterates
which need not be monotone with respect to the objective function values (this is easy to
see because−∇ f j need not be a direction of descent for the objective functionf (·)). This
fact makes it difficult to apply standard Lyapunov-type techniques [14, 15] to the analysis
of IGA. Thus a new approach had to be developed. This problem has recently attracted a
lot of interest. The first deterministic results were obtained in [10, 13] (see also [2, 4]),
where the stepsizes are chosen in order to satisfy the following condition

∞∑
i=0

ηi = ∞,
∞∑

i=0

η2
i <∞. (1.2)

In particular, it was shown that if (1.2) is satisfied then the sequence{ f (xi )} converges and
the sequence{∇ f (xi )} converges to zero (in [13], furthermore, the use of a momentum
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term and a parallel version of IGA were considered, while in [10] a constrained version
of IGA was studied). Stochastic analysis under conditions similar to (1.2) can be found
in [6, 22]. Error-stability properties of a very general class of algorithms, which includes
IGA, are analyzed in [19]. In [3] a related least-squares incremental method is considered.

The results just cited, though significant, still left a certain gap between theoretical
convergence analysis of incremental algorithms and computational practice. In particular,
(1.2) implies that the stepsizes tend to zero in the limit, while many heuristic rules used
by practitioners keep them bounded away from zero. It is therefore important to study the
behavior of IGA when

lim
i→∞

ηi = η̄ > 0. (1.3)

An example in [9] shows that in general, under the condition of (1.3), one cannot expect
convergence to an exact solution even in the simple case whenf (·) is given by a sum of
two strongly convex quadratic (not identical) functions. Fortunately, in neural network
applications one is typicallynot interested in computing an exact solution of (1.1) (more on
this later). The results in this paper provide theoretical foundation for a number of heuristic
stepsize rules that satisfy (1.3) but not (1.2) (see [5]).

We finally mention some interesting recent work on incremental algorithms. In [21] new
adaptive stepsize rules are proposed and analyzed. These rules are much in the spirit of
heuristics that are used in practice. However, the rules in [21] are designed in order to find
an exact solution (stationary point) of the problem. This requirement usually drives the
stepsizes to zero, unless some additional assumptions are satisfied (we emphasize that we
do not make these assumptions for the main result of this paper). In [1] a hybrid algorithm
is proposed which is aimed at accelerating (local) convergence of IGA-type methods. This
new algorithm essentially works just like IGA when far from the eventual limit, and it
gradually transforms into the steepest descent as the iterates approach a stationary point
of the problem. Because asymptotically this algorithm behaves as the standard steepest
descent method, it admits the use of a fixed stepsize.

While in some applications convergence to an exact solution (and fastlocal rate of
convergence) may be important, it should be noted that in typical neural network problems
it is not. In fact, it can be argued that training a neural network till an exact minimum of
the error function is achieved leads to “memorizing” the training data and deterioration of
the network generalization ability (incidentally, generalization on unseen data is the ultimate
goal of training). This phenomenon is known asovertrainingor overfitting. Fitting the data
very accurately can be particularly harmful in the presence of noise. It is a widely accepted
heuristic in machine learning thattolerant trainingshould be employed to avoid overfitting
[20]. Thus state-of-the-art neural network training systems almost always use some kind of
early stoppingcriteria that terminate trainingbeforean exact solution to (1.1) is attained.
For example, the use of tuning sets is popular [8]. We refer the reader to artificial intelligence
literature for a discussion of overfitting and other related issues (see [20] and references
therein).

Motivated by the above considerations, we adopt a slightly different point of view on
the issues related to convergence of IGA-type techniques than that in [1, 10, 13, 21]. We



P1: GRN

Computational Optimization and Applications KL608-02-SOLODOV August 4, 1998 12:14

26 SOLODOV

note that tolerant training permits certain errors in fitting the training data which, in the
context of this paper, can be viewed as solving the problem (1.1) inexactly. Having this in
mind, we are not concerned here with convergence of IGA iterates to an exact solution (or
exact stationary point) of the minimization problem or with fast local convergence to such
a point. The questions we ask are the following. (1) What are the properties of IGA when
the stepsizes are bounded away from zero ? (2) Is it possible to compute a reasonably good
approximate solution under this condition ? If so, how it can be characterized ?

In Section 2 we show that we can indeed compute a certainε-approximate solution
while keeping the stepsizes bounded away from zero. We say that a pointx̄ ∈ <n is an
ε- approximate solution of (1.1) if

‖∇ f (x̄)‖ ≤ ε.

Of course, the above estimate is useful only if we can predict and control the value of
ε as a function of algorithm parameters. In this paper, we establish thatε depends on
the stepsize limitη̄ at least linearly. Thus, by decreasing the stepsize to a sufficiently
small (but bounded away from zero) value, it is possible to achieve any desired accuracy
(Theorem 2.2). We point out that Theorem 2.2 is the first convergence result of any kind
for incremental algorithms with stepsizes bounded away from zero. Our analysis is by
virtue of characterizing IGA as a special perturbed gradient method (Proposition 2.1), and
it makes use of some of the ideas employed in [18] where general perturbed feasible descent
algorithms are studied. It is worth to point out that the main results of this paper cannot be
obtained using the approach of [13]. As an aside, we show that under a certain additional
assumption on the growth property on the gradients (similar to the one used in [21]), IGA
converges to (exact) stationary points.

We briefly describe our notation. The usual inner product of two vectorsx ∈ <n, y ∈ <n

is denoted by〈x, y〉. The Euclidean 2-norm ofx ∈ <n is given by‖x‖2 = 〈x, x〉. For
a differentiable functionψ :<n → <, ∇ψ will denote then-dimensional vector of partial
derivatives with respect tox. If a functionψ(·) has Lipschitz continuous partial derivatives
on a setD ⊂ <n with some constantL > 0, that is

‖∇ψ(y)−∇ψ(x)‖ ≤ L‖y− x‖, ∀x, y ∈ D,

we writeψ(·) ∈ C1
L(D).

We finally state a well-known result that will be used later.

Lemma 1.1 ([15, p. 6]). Letψ(·) ∈ C1
L(D), then

|ψ(y)− ψ(x)− 〈∇ψ(x), y− x〉| ≤ L

2
‖y− x‖2 ∀x, y ∈ D.

2. Convergence analysis

In this section we establish the properties of incremental gradient algorithms when the
stepsizes are bounded away from zero. In particular, we show that at least one accumulation



P1: GRN

Computational Optimization and Applications KL608-02-SOLODOV August 4, 1998 12:14

INCREMENTAL GRADIENT ALGORITHMS 27

point of the sequence of iterates generated by IGA is anε-approximate solution of the
problem. Furthermore, we establish at least linear dependence ofε on the limiting value
η̄ of the sequence of stepsizes. It can be argued that computing an approximate solution
falls within the tolerant training principle [20] of machine learning and, consequently, that
having stepsizes bounded away from zero is, in some sense, sufficient for solving a neural
network training problem.

We first show that IGA can be regarded as a perturbed gradient algorithm with a certain
special structure.

Proposition 2.1. The mapping T defined in Algorithm1.1satisfies the following properties

T(x, η) = x − η∇ f (x)+ η2δ(x, η),

where

‖δ(x, η)‖ ≤ B

for some constant B> 0 (independent ofη), provided fj (·) ∈ C1
L , and‖∇ f j (x)‖ ≤ M,

j = 1, . . . , K for all x and some M> 0.

Proof: By the construction of Algorithm 1.1, we have

T(x, η) = x − η
K∑

j=1

∇ f j (z
j )

= x − η
(

K∑
j=1

(∇ f j (z
j )−∇ f j (x)+∇ f j (x))

)

= x − η
(

K∑
j=1

∇ f j (x)+
K∑

j=1

(∇ f j (z
j )−∇ f j (x))

)
= x − η∇ f (x)+ η2δ(x, η), (2.1)

where

δ(x, η) := η−1
K∑

j=1

(∇ f j (x)−∇ f j (z
j )). (2.2)

It is easy to see thatδ is a function of bothx andη because so arezj , j = 2, . . . , K .
Furthermore,δ(·, ·) is continuous in both variables.

Define

δ j := ‖∇ f j (z
j )−∇ f j (x)‖, j = 1, . . . , K . (2.3)
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First, note thatδ1 = 0 becausez1 = x. We next show, by induction, that

δ j ≤ ηL
j−1∑
t=1

(1+ Lη) j−1−t‖∇ ft (x)‖, j = 2, . . . , K . (2.4)

For j = 2, we have

δ2 = ‖∇ f2(z
2)−∇ f2(x)‖

≤ L‖z2− z1‖
= ηL‖∇ f1(x)‖,

where the inequality follows fromx = z1 and the Lipschitz continuity of∇ f2(·). Hence,
(2.4) is valid for j = 2. Suppose that (2.4) holds forj = 2, . . . ,m wherem < K . By the
triangle inequality, from (2.3) it follows that

‖∇ f j (z
j )‖ ≤ ‖∇ f j (x)‖ + δ j .

Combining the latter inequality with (2.4) (forj ≤ m) we obtain

‖∇ f j (z
j )‖ ≤ ‖∇ f j (x)‖ + ηL

j−1∑
t=1

(1+ Lη) j−1−t‖∇ ft (x)‖, j = 2, . . . ,m. (2.5)

Now considerj = m+ 1. We have

δm+1 = ‖∇ fm+1(z
m+1)−∇ fm+1(x)‖

≤ L‖zm+1− x‖

= L

∥∥∥∥∥ m∑
t=1

(zt+1− zt )

∥∥∥∥∥
≤ L

m∑
t=1

‖zt+1− zt‖

= ηL
m∑

t=1

‖∇ ft (z
t )‖,

where the first inequality follows from the Lipschitz continuity of∇ fm+1(·) and the second
from the triangle inequality. Combining the latter relation with (2.5), we further obtain

δm+1 ≤ ηL
m∑

t=1

(
‖∇ ft (x)‖ + ηL

t−1∑
s=1

(1+ Lη)t−1−s‖∇ fs(x)‖
)
.

Combining the corresponding terms gives

δm+1 ≤ ηL
m∑

t=1

(1+ Lη)m−t‖∇ ft (x)‖.
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The latter inequality is precisely (2.4) withj = m+ 1. The induction step is complete and
(2.4) is proven.

By (2.2)–(2.4) and the triangle inequality, it follows that

‖δ(x, η)‖ ≤ η−1
K∑

j=2

δ j

≤ L
K∑

j=2

j−1∑
t=1

(1+ Lη) j−1−t‖∇ ft (x)‖

≤ c1

K∑
j=1

‖∇ f j (x)‖

≤ c1K M =: B, (2.6)

for some constantc1 > 0 (c1 can be taken independent ofη). 2

We next prove a convergence result for a class of perturbed gradient algorithms with
a special structure given in Proposition 2.1. The principal application of this result is to
establish convergence properties of IGA with stepsize bounded away from zero.

Theorem 2.1. Let f(·) ∈ C1
L(D), where D is a bounded set in<n. Let {xi } ⊂ D be a

sequence generated by xi+1 = T(xi , ηi ) where

T(x, η) = x − η∇ f (x)+ η2δ(x, η).

Suppose

lim
i→∞

ηi = η̄ > 0 and ‖δ(xi , ηi )‖ ≤ B,

whereηi ∈ (θ, 2/L − θ) with θ ∈ (0, 1/L], and B> 0. Then there exist a constant C> 0
(independent of̄η) and an accumulation point̄x of the sequence{xi } such that

‖∇ f (x̄)‖ ≤ Cη̄. (2.7)

Furthermore, if the sequence{ f (xi )} converges then every accumulation pointx̄ of the
sequence{xi } satisfies(2.7).

Proof: By Lemma 1.1, we have

f (x)− f (T(x, η)) ≥ −〈∇ f (x), T(x, η)− x〉 − L

2
‖T(x, η)− x‖2

= η〈∇ f (x),∇ f (x)− ηδ(x, η)〉 − L

2
η2‖∇ f (x)+ ηδ(x, η)‖2

≥ η
(

1− L

2
η

)
‖∇ f (x)‖2− η2(1+ Lη)B‖∇ f (x)‖ − L

2
η4B2,
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where the last relation follows from the Cauchy-Schwarz inequality and the fact that
‖δ(xi , ηi )‖ ≤ B. Define

ϕ(x, η) :=
(

1− L

2
η

)
‖∇ f (x)‖2− η(1+ Lη)B‖∇ f (x)‖ − L

2
η3B2. (2.8)

Note thatϕ(·, ·) is continuous in both variables. With definition (2.8), we have

f (x)− f (T(x, η)) ≥ η ϕ(x, η). (2.9)

Let {xi } be any sequence generated by the process under consideration. Suppose

lim inf
i→∞

ϕ(xi , ηi ) > 0.

Then there exist an indexi1 and a numberε > 0 such thatϕ(xi , ηi ) ≥ ε for all i ≥ i1. Since
ηi → η̄, it follows that for somei sufficiently large, sayi ≥ i2, we also haveηi ≥ η̄/2.
Then for alli ≥ i3 := max{i1, i2} it follows from (2.9) that

f (xi )− f (xi+1) ≥ η̄ε/2.

Hence, for anyi > i3, we have

f
(
xi3
)− f (xi ) =

i−1∑
t=i3

( f (xt )− f (xt+1))

≥
i−1∑
t=i3

η̄ε/2

= (i − i3)η̄ε/2.

Letting i → ∞ in the above relation we have that{ f (xi )} → −∞ which contradicts the
fact that f (·) is continuous andD is bounded. It follows that

lim inf
i→∞

ϕ(xi , ηi ) ≤ 0.

Thus, by boundedness of the sequence{xi } and continuity ofϕ(·, ·), there exists an accu-
mulation pointx̄ of {xi } such that

ϕ(x̄, η̄) ≤ 0. (2.10)

Denoteu := ‖∇ f (x̄)‖. Then (2.10) gives the following quadratic inequality inu (via (2.8))(
1− L

2
η̄

)
u2− η̄(1+ Lη̄)Bu− L

2
η̄3B2 ≤ 0.
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Note that 1− Lη̄/2> 0. Resolving this inequality yields

u ≤ η̄

2− L η̄

(
(1+ Lη̄)B+

√
(1+ Lη̄)2B2+ 2Lη̄B2(1− L η̄/2)

)
.

Therefore,

‖∇ f (x̄)‖ ≤ Cη̄,

for some constantC > 0 (C can be taken independent ofη̄).
The last assertion of the theorem follows from the observation that if the sequence{ f (xi )}

converges, the left-hand side of (2.9) tends to zero. This, in turn, implies that

lim sup
i→∞

ϕ(xi , ηi ) ≤ 0.

Hence, (2.10) and the subsequent analysis hold foreveryaccumulation point̄x of the
sequence{xi }. The proof is complete. 2

Remark 2.1. Instead of‖δ(xi , ηi )‖ ≤ B we can more generally consider the assumption
‖δ(xi , ηi )‖≤ B1+B2‖ ∇ f (xi )‖with much of the above analysis still applying (a quadratic
inequality will have to be replaced by a higher order one). However, we prefer to keep focus
on IGA, so we will not pursue this extension.

We are now ready to state our convergence results for IGA. A remark about the as-
sumptions of Theorem 2.2 below is in order. In this theorem, we explicitly assume that the
sequence{xi }generated by IGA is bounded. We note that this is not restrictive since it can be
shown (see [21]) that the iterates are contained in some set{x | f (x) ≤ ρ1}+ {x | ‖x‖ ≤ ρ2}
which is bounded if the level set{x | f (x) ≤ ρ1} is bounded for someρ1 > f (x0), as is
the typical case with neural network training (see [10, Section 3]). It is also easy to see that
the gradient of the neural network training function is Lipschitz continuous and bounded
on any bounded set.

Theorem 2.2. Let{xi } be any sequence generated by IGA such that all iterates, including
“minor” iterates zj ’s, belong to some bounded set D in<n. Supposeηi ∈ (θ, 2/L − θ),
whereθ ∈ (0, 1/L], and

lim
i→∞

ηi = η̄ > 0.

Let f(·) ∈ C1
L(D), f j (·) ∈ C1

L(D), j = 1, . . . , K , and‖∇ f j (x)‖ ≤ M, j = 1, . . . , K
for all x ∈ D and some M> 0. Then there exist a constant C> 0 (independent of̄η) and
an accumulation point̄x of the sequence{xi } such that

‖∇ f (x̄)‖ ≤ Cη̄.
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Furthermore, if the sequence{ f (xi )} converges then every accumulation pointx̄ of the
sequence{xi } has the above property.

Proof: The result follows from combining Proposition 2.1 and Theorem 2.1. 2

The analysis presented here can be applied to a variety of modifications and extensions
of Algorithm 1.1. For example, using the approach of [18], we could treat the projection
version of IGA described in [10, 21]. At the expense of introducing considerably more
notation and some technical details, we could also consider the parallel and momentum
term modifications given in [13, 21], as well as algorithms with noisy data along the lines
of [19].

Although specific stepsize rules are not a subject of this paper, we shall make a few
remarks concerning this issue. In practice, one usually starts with a fixed intuitively reason-
able stepsize value and uses it as long as the algorithm makes sufficient progress according
to some chosen criterion. When sufficient progress is not being made, and if the current
approximate solution is not satisfactory, the stepsize is decreased. From (2.7) we can see
that decreasing the stepsize will, indeed, yield a better approximate solution (in some sense).
As a practical matter, we would suggest using a stepsize rule similar to that proposed in
[21] with a slight modification consisting of imposing a lower bound on the stepsize. On
one hand, this modification will prevent the stepsize from becoming too small and, on the
other hand, it may also help to avoid overfitting by computing an approximate rather than
an exact solution. This approach would be very close to heuristics used in practice.

As an alternative to decreasing the stepsize, one could dynamically aggregate partial
objective functions into (larger) groups (as mentioned in [12]) which is also likely to reduce
the right-hand side of (2.7).

As a side result, we now establish convergence of IGA to exact stationary points of (1.1)
under a growth condition on the gradients very similar to that used in [21]. We repeat,
however, that convergence to exact solutions is not among primary concerns of this paper.

Theorem 2.3. Let f(·) ∈ C1
L(<n) and let{xi } be any sequence generated by IGA such

that for some index i0 the level set{x ∈ <n | f (x) ≤ f (xi0)} is contained in the set

P :=
{

x ∈ <n

∣∣∣∣∣ K∑
j=1

‖∇ f j (x)‖ ≤ c2‖∇ f (x)‖
}

for some c2 > 0.

Letηi satisfy(1.3) and, in addition,

ηi ≤ min{1/(3L), 1/(2c1c2)}, ∀i ≥ i0,

where c1 is the constant from(2.6).
Then the sequence{ f (xi )} converges, the sequence{∇ f (xi )} converges to zero, and

every accumulation point of the sequence{xi } is a stationary point of(1.1).
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Proof: Wheneverx ∈ P, it follows from (2.6) that

‖δ(x, η)‖ ≤ c1

K∑
j=1

‖∇ f j (x)‖

≤ c1c2‖∇ f (x)‖. (2.11)

We further obtain

f (x)− f (T(x, η)) ≥ −〈∇ f (x), T(x, η)− x〉 − L

2
‖T(x, η)− x‖2

= η〈∇ f (x),∇ f (x)− ηδ(x, η)〉 − L

2
η2‖∇ f (x)+ ηδ(x, η)‖2

≥ η
(

1− L

2
η

)
‖∇ f (x)‖2− η2(1+ Lη)c1c2‖∇ f (x)‖2

− L

2
(η2c1c2)

2‖∇ f (x)‖2

= η(1− Lη/2− η(1+ Lη)c1c2− η(ηc1c2)
2L/2)‖∇ f (x)‖2.

For i = i0, by the choice ofηi , it follows that Lηi /2 ≤ 1/6, 1 + Lηi ≤ 4/3 and
ηi c1c3 ≤ 1/2. Hence,

f (xi0)− f (xi0+1) ≥ ηi0

(
1− 1/6− 4/6− 1/24

)‖∇ f (xi0)‖2

= ηi0

8
‖∇ f (xi0)‖2 ≥ 0.

Since f (xi0+1) ≤ f (xi0), it follows that xi0+1 ∈ {x ∈ <n | f (x) ≤ f (xi0)}. Then, by
assumption, we also have thatxi0+1 ∈ P. Using (2.11) and repeating the preceding argument
for i = i0 + 1, i0 + 2, . . . , we havexi ∈ {x ∈ <n | f (x) ≤ f (xi0)} ⊂ P for all i ≥ i0.
Therefore, for alli ≥ i0,

f (xi )− f (xi+1) ≥ ηi

8
‖∇ f (xi )‖2.

By (1.3), for all i sufficiently large, sayi ≥ i1, we haveηi ≥ η̄/2. Then fori ≥ i2 :=
max{i0, i2} we obtain

f (xi )− f (xi+1) ≥ η̄

16
‖∇ f (xi )‖2.

Hence, the sequence{ f (xi )} is nonincreasing (at least starting with some indexi2). Since
it is bounded, it converges. Then the last relation also implies that the sequence{∇ f (xi )}
converges to zero. Therefore, by continuity of∇ f (·), for every accumulation point̄x of
the sequence{xi } it follows that∇ f (x̄) = 0. 2
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3. Concluding remarks

The first convergence results for the class of incremental gradient algorithms with step-
sizes bounded away from zero were presented. In particular, it was shown that a certain
ε-approximate solution can be obtained. Furthermore, the linear dependence ofε on the
stepsize values was established. Applications on neural network training were also dis-
cussed. For example, solving the original problem inexactly conforms to the widely ac-
cepted tolerant training principle in machine learning.
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