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ABSTRACT 

This paper presents and develops a novel methodology to determine thermodynamic 

parameters of binary gas co-adsorption equilibria at given total pressure, based exclusively 

on binary gravimetric measurements at this same total pressure, together with single 

component isotherms. By “Incremental Gravimetry”, we designate a procedure in which 

the adsorbent sample is submitted to increments of composition of a flowing binary gas, 

and the corresponding increments of weight of the sample at equilibrium are measured. 

The experimental example is the co-adsorption of methane and carbon dioxide on Norit 

activated carbon near ambient temperature and pressure. 

 The approach relies on the thermodynamics of non-ideal adsorbed solutions. The 

experimental methodology is described, the underlying theory is then presented. Compact 

analytical expressions are established that relate the measured limiting slopes of the 

incremental gravimetric curves (at infinite dilution of one component in the other) to 

quantities that derive only from the pure component isotherms, and to the infinite dilution 

activity coefficients. The latter are then uniquely determined. Classical two-parameter 

models for the composition dependence of activity coefficients are then implemented to 

reconstruct the complete binary isotherms and the incremental gravimetric curves. The 

comparison of the latter with the measured curves permits to test the different models.  
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INTRODUCTION 

  

 The present work was motivated by the need for a predictive approach to multi-

component adsorptive equilibria (multi- meaning more than two) in the simulation of gas 

purification processes. The most classical approaches, for vapour-liquid equilibrium for 

example, rely on the multi-component extension of binary properties. In such a 

framework, it is in principle sufficient to measure single component properties and some 

characteristic binary quantities, and then to incorporate these data into a coherent and 

possibly general thermodynamic model suitable for multi-component extension. The 

present work was therefore oriented toward the building of the theoretical model directly 

and simultaneously with an experimentally simple measurement, and the use of a 

theoretical framework that allows extension to multicomponent systems from binaries. 

  

Microbalance weight measurement is a classical technique for the determination of 

single component gas phase adsorption isotherms. The weight change of the adsorbent 

sample gives directly the increment in adsorbed quantity corresponding to an applied 

change in partial pressure of the adsorbed species. The convenience and precision of the 

weight measurements motivate the extension of their principle to mixture adsorption. 

However, when more than one component is adsorbed, the weight variation alone does 

not a priori furnish enough information to discriminate between the different components. 

The most direct approach is then to desorb the adsorbed components into an evacuated 

container and to analyse the content, thus obtaining a direct information on the adsorbed 

phase composition. This procedure is heavy and not necessarily accurate. A classical 

alternative [Do, 1998] is to simultaneously measure the composition variation of the gas 

phase in a batch equilibration process, and to retrieve the adsorbed quantities of each 

component from a materiel balance over the equilibration process. However simple this 

procedure appears, it introduces imprecision due to the sampling and analysis of the gas 

phase and of course, it requires time and investment for the analytical device. Powerful 

alternatives have been developed by Keller and co-workers, based on measuring 

simultaneously the mass adsorbed and the density of the gas phase, or on simultaneous 

gravimetric and volumetric measurements [Keller et al., 1999; Dreisbach et al.,2001]. In 

these procedures, the chemical analysis of the gas phase is replaced by an additional 

physical measurement, which may be automated.  

 

All the preceding methods are direct measurements independent of any model, and 

even of any thermodynamic assumption. If modelling for simulation is the goal, some 

postulated models have to be fitted to the results thus obtained, and the choice of models 

and of fitting method is left open. A different philosophy of approach arises when one 

assumes that the adsorbed phase actually behaves like a macroscopic phase, and thus 

satisfies thermodynamic constraints, such as the Gibbs adsorption isotherm and the 

Gibbs-Duhem constraint. These constraints are in principle sufficient to render the 

measurement of the adsorbed phase composition unnecessary. 

  

 Such an approach was proposed by Van Ness [1969] to obtain the adsorbed phase 

composition, together with the spreading pressure, from information on the total 

adsorbed amount at different total pressures, using an iterative numerical calculation. 

Although this method is consistent and saves a considerable amount of time and 

equipment, it has been little used so far, may be because it is considered as a model 

dependent fitting method, that may lead to equivocal results. Actually, the only model 
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assumptions involved in this approach are that of the Gibbs isotherm, applying classical 

thermodynamics to the gas/adsorbed phase equilibrium. While this approach may be 

inappropriate when the adsorbate does not really form a "phase", or when steric effects 

arise, as in the cages of zeolites, it can be reasonably and widely used and is the 

background of all approaches based on the Adsorbed Solution Theory [Myers and 

Prausnitz, 1965]. Using the Van Ness method, Van der Vaart [Van der Vaart et al., 2000] 

determined binary co-adsorption isotherms of methane and carbon dioxide on activated 

carbon Norit RB1, and we shall use an almost identical system here (with Norit RB2 

instead). The same gas mixture was investigated using the same approach by [Buss, 

1995] with another carbon. A few other references are to be found [Friederich and 

Mullins, 1972; Myers et al., 1982] with different systems.  

 

A similar approach, also based on gravimetric measurements at different pressures but 

with a different numerical solution, was proposed by Myers [Myers, 1989]. He mentions 

that about 100 experimental points are required for a good precision, and subsequently 

proposes a method that requires less data, but involves an explicit model for the excess 

Gibbs energy as a function of composition and spreading pressure. The three parameters 

of this model are found by minimization of the deviation of the experimental and 

calculated total adsorbed mass. This method furnishes the parameters of a model together 

with the composition of the adsorbed phase, it is therefore not a direct measurement, but 

rather what we call a model-building approach. It showed excellent results for systems 

involving CO2, C3H8 and H2S on H-mordenite.  

 

The present paper proposes an alternative approach, based on the same 

experimental instrument (weight measurements), and the same thermodynamic premises 

(the Adsorbed Solution Theory) but with a different methodology. The difference with 

the above approaches is that it seeks to avoid parameter fitting and optimization, and to 

have instead univocal algebraic determinations of the thermodynamic parameters which 

are the infinite dilution activity coefficients. In addition, measurements at different 

pressures are not needed for a given isotherm. As in Myers' approach, the adsorbed phase 

composition are obtained indirectly. The method partly relies on a detailed 

thermodynamic analysis developed for chromatographic experiments and presented in a 

previous publication related to chromatography [Kabir et al., 1998]. In contrast to the 

Van Ness approach, the thermodynamic equations are treated analytically, and no 

iterative numerical resolution is needed.  

 

Let us first briefly summarize Van Ness’ method as presented by [Van der Vaart, 

2000]. It starts from a particular form of the Gibbs adsorption isotherm which is written 

at constant T: 

 

0lnln
1

=+ + − ∑ ii

t

ydx P ddψ
q

      (1) 

 

where  xi  and yi  are respectively the adsorbed phase and the gas phase mole fractions, qt  

is the total adsorbed concentration [moles adsorbed .kg
-1

 of adsorbent], P is total pressure, 

and ψ is a quantity called “loading” by Myers, because it has dimensions of [moles.kg
-1

], 

and called “compressibility factor” by Van Ness, because it is related to the spreading 

pressure Π by a relation analogous to a state equation for gases: 
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where A is  the specific surface of the adsorbent [m
2
kg

-1
]. At constant composition and T, 

Equation 1 yields a relation between loading and pressure:
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which is integrated into: 

 

dP
P

qP
t∫=

0
ψ          (4) 

 

We relate qt to the total adsorbed mass mt, equal to the mass w given experimentally by 

the balance minus the mass ma of the clean adsorbent sample. Using the average molar 

mass of the mixture M: 

 

∑= ii MxM           (5) 

 

the following relation holds between these quantities: 

 

a
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At constant P and T, Equation 1 yields a relation between loading and composition: 
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or for a binary case: 
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For a given gas phase composition y, Equations 4, 5, 6 and 8 are solved simultaneously 

by an iterative numerical method for the unknown variables ψ, M and x. Owing to 

Equation 4, the experimental adsorbed mass must be determined at different total 

pressures for given gas compositions, between which interpolation can be performed.  

The method can therefore be considered as a global and thermodynamically consistent 

fitting method rather than a direct measurement. Once the compositions of the two phases 

in equilibrium are determined, they can be used to adjust an explicit model, for example 

to fit the parameters of an explicit binary isotherm equation, or to calculate activity 

coefficients in a non-ideal adsorption solution model. Notice also that the input of the 

single component isotherms is required only when an explicit model is to be designed.    
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By contrast, the approach proposed here uses the single component isotherms as 

input data, and requires binary measurements only at the total pressure where the binary 

equilibrium is established,  

 

 

THE EXPERIMENTAL OPERATING MODE AND METHODOLOGY 

 

The experimental set-up, shown schematically on Figure 1, is basically a micro-

thermo-balance (Rubotherm, Bochum, Germany) associated to a system for generating 

and circulating continuously gas or vapour mixtures. The binary compositions are 

adjusted using mass-flow-meters. Classically, the adsorbent sample, contained in the 

measuring cell, is conditioned at high temperature under vacuum, and weighed after 

return to the working temperature, giving the mass of clean adsorbent ma.  The adsorbent 

is then submitted to a flow of a single component, labelled 1, until equilibrium is 

achieved (weight stabilised, temperature returned to the specified value). This will 

constitute the initial or background equilibrium state of the experiment and it is also a 

point of the adsorption isotherm of component 1. The mass then measured is the sum of 

the mass of the adsorbent ma and of the adsorbed component m°1. Here, the subscript 1 

designates the adsorbed component, and the superscript o indicates the initial state. 

 

 Next, the composition of the incoming gas flow is slightly changed ("perturbed", 

or incremented) by adding a small flow-rate of component 2, while keeping constant the 

total pressure in the measuring cell. This is equivalent to a small change in partial 

pressure of the components. After returning to equilibrium, the measured mass has 

undergone a small variation δm. From this unique information, and the knowledge of the 

single component isotherms, we shall show how to extract a value of the activity 

coefficient of component 2 at infinite dilution in component 1 in the adsorbed phase. 

 

This new equilibrium state, now entirely defined, is then the new initial state, and 

the procedure can be repeated with a new change in composition, that is of partial 

pressures, until the full range of the binary composition is covered. We thus obtain a 

curve of the total adsorbed mass mt  versus composition of the gas phase. At the other end 

of the composition interval, the initial experiment is repeated with components 1 and 2 

interchanged, so that the infinite dilution activity coefficient of component 1 in 

component 2 is obtained. It is recommended to run the whole experiment "backwards”, 

that is with increasing concentration of component 1, as a cross-check.  

 

 The experiment may be carried out in a continuous-flow mode, or in a 

discontinuous mode, in which the flow through the cell is interrupted while the weight 

measurement is taken. The latter procedure may also generate slight perturbations, and we 

found the continuous mode finally more reliable, providing it is operated slow enough (to 

avoid aerodynamic effects) and sufficient time is allowed for relaxation of the signal after 

each composition change. We considered the best overall test for attainment of equilibrium 

is the relative coincidence of the forward and backward curves. 

 

 We emphasize that only total weight measurements are done, no further 

information on the gas phase is required, providing its composition defining each 

equilibrium state is established with good accuracy. As we shall see now, the use of this 

approach requires the use of a general thermodynamic model of the adsorbed phase. 
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THEORETICAL DEVELOPMENT 

 

 Information from the weight measurement 

  

 Let us first formalise the information obtained from the single incremental 

experiment described above, in the general case where the initial equilibrium state 

involves the two adsorbed components. This initial state is assumed to be known. Let mt° 

be the total mass adsorbed measured, in this initial state, with 

 

   mt° =  m°1 + m°2              (9) 

 

Let us introduce the concentrations q in the adsorbed phase, such that  

                (10)                                       
2
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where M1 and M2  are the molar masses of the adsorbed components [kg.mol
-1

], and the 

adsorbed concentrations qi are expressed in [mol kg
-1

 adsorbent]. The mole fractions in 

the adsorbed phase are  such that: 

 

    xi =  qi /qt                 (11) 

 

    x1 + x2 = 1                  (12) 

 

 The composition increment leads to changes in all these variables, and we designate 

by δz the variation between the new state z and the initial state z° of any variable z. For 

small changes the measured mass change δm is then :  

 

δmt = m – m° = δm1 + δm2 = ma [M1 δq1 + M2 δq2]          (13) 

 

together with  

 

δqi = δ (xi qt) = xi° δqt + qt° δxi                          (14) 

 

and 

δx1 + δx2 =  0                             (15) 

 

We shall now refer all the changes δz to one of them, selected as the partial pressure of 

component 1, that is, to δp1. Substituting  Eqn. 14 into Eqn. 13 and using Eqns. 5 and 15, 

we obtain  : 
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Keeping  in mind that δmt is a measured quantity and that the initial state (superscripts  0) 

is known, Eqn. 16 is a first relation between the two unknowns δqt/δp1 and δx1/δp1.We 

now need to establish a second relation between these two unknowns, independent of Eqn. 

16. For this purpose, thermodynamic modelling of the adsorbed phase is necessary. 

 

Existence of a thermodynamic relation between δqt/δp1 and  δx1/δp1 

A common binary adsorption equilibrium (without hysteresis) can be represented, 

at constant temperature and total pressure, as shown on the experimental examples of 

Figures 5 and 8 which will be presented later. 

 

The adsorbed concentrations q1 and q2 and thus the total concentration qt, depend only on 

the partial pressures p1 and p2 of the two components, and at constant P, one only of these 

partial pressures is independent. One can therefore define ordinary derivatives of these 

variables with respect to p1. Considering that the change in partial pressure of component 1 

is small, the variations can be assimilated to the first derivatives with respect to this partial 

pressure: 

 

 

For given adsorbent, P, T and species 1 and 2, there is a unique plot such as Figure 

5, where the independent variable has been taken as p1. Thus to any value of p1 

corresponds a unique set  of values of p2, x1, x2, q1, q2, qt, as well as their derivatives with 

respect to p1. Thus dqt/dp1 and dx1/dp1 are not independent, and there must exist a relation 

between these quantities which is determined only by equilibrium, and therefore 

independent of Eqn. 16. We now proceed to establish algebraically this relation, starting 

from rather general thermodynamic properties of the adsorbed phase.  

 

 

THERMODYNAMICS OF THE NON-IDEAL ADSORBED PHASE 

 

We start with the now classical Adsorbed Solution Theory, introduced initially by 

[Myers and Prausnitz, 1965]. This approach parallels liquid-vapour equilibrium, with the 

difference that the surface tension, or spreading pressure Π, of the adsorbed phase has to 

be introduced as state variable. The activity coefficients in the adsorbed phase then become 

a function of the spreading pressure. The constitutive equations of the equilibrium are then 

(Myers and Prausnitz 1965  ; Kabir et al., 1998 ; Do, 1998), the gas phase being assumed 

perfect :  

 

          pi = Pi
*
  xi  γi                                     (18)  

 

 

 

In Equation 18, Pi* is a fictitious pressure, analogous to the vapour pressure of the 

pure component in vapour-liquid equilibrium: it is the pressure that species i adsorbed 

alone would exert, at the same P, T and the same spreading pressure Π as the mixture. Pi* 
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is determined from the single component isotherm of i, as a function of Π. Equation 19 

results from the definition of the excess surface a
ex

 = Σ ii xa  - Σ  of the adsorbed phase 

(two-dimensional analogue of the excess volume) as the derivative of the excess molar 

Gibbs energy g
ex

 with respect to spreading pressure ∏, and ψ is loading as defined in 

Equation 2. 

ii xa*

ia  is the partial molar surface area of species i, a mixture property. The 

superscript * refers to single component isotherms and will be explained in more detail 

below (see for example [Kabir et al, 1998], or the original paper of [Myers and 

Prausnitz,1965]). qi* is the adsorbed concentration of pure i corresponding to the partial 

pressure pi = Pi*, also obtained from the pure i isotherm.  

 

In the binary case, the required relation between the derivatives of qt and of x1 will 

be obtained by implicit differentiation of Eqns. 18 and 19, accounting for Eqns. 10, 11 and 

12. An essential special case of the present treatment is that of infinite dilution, for which 

compact, relatively simple, and rather general solutions are found. In the general case, this 

calculation requires to define a model of the excess Gibbs energy, or of the activity 

coefficients, not only as a function of the composition of the adsorbed phase (x1, x2), but 

also as a function of spreading pressure, or of loading Ψ. Before doing this in a general 

fashion, we shall consider some limiting cases, for which the calculations will serve as 

illustrations, and the result of which will also prove useful in the general cases.  

 

Calculation of dqt/dp1 in the ideal case (IAS framework) 
 

 When the adsorbed phase is considered ideal, the excess Gibbs energy is zero, and 

the second term in Eqn 19 disappears. The calculation of the derivative of qt then proceeds 

as follows: 

 

( ) ( )
     (20)                       

11

11

1

*

2
2

1

1
22

21

*

1
1

1

1
12

1

2

2

1

1

1

1

2

1

2

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

  
dp

dq
  - x

dp

dx
  - q  

q
 + 

dp

dq
   -  x

dp

dx
 q 

q
  - q

q

 - x
  + 

q

x
 

dp

d
   = - q

q
  

dp

d
   = - q

dp

dq

*

*

*

*
t

**t

t

t

t

 

 

The derivatives of qi
*
 appearing in Eqn. 20 are obtained from the single component 

isotherms, and can be considered as depending on Pi* alone. Thus one may write  

 

(21)                                                                                              
11 dp

dP
 

dP

dq
 =  

dp

dq *

i

*

i

*

i

*

i

 

 

(22)                                                               
1111

 
dp

 
x

 -   
dp

 
x

  =  
x

 
dp

 = 
dp iii

⎟
⎠

⎜
⎝

1 dxPdppddP i

*

iii

*

i ⎟
⎞

⎜
⎛

 

 

 - 8 - 



The derivatives of  Pi
*
 are obtained from Eqn. 18 with γi = 1. Substituting Eqn. 21 and 22 

into Eqn. 20, and after some rearrangements, one obtains: 

 

 

 

 where 

 

ξ*
i is a parameter depending only on the single component isotherm of which it measures 

the concavity (the isotherm is concave toward the p axis for ξi.< 1). Equation 23 is the 

sought relation between the derivatives of qt and of x1. 

 

 The infinite dilution limiting case (x°1   → 0) 

 

 This limiting case corresponds to the initial starting point of the experimental 

procedure. The limit values of the different variables are, when x1 →  0 : 

 

x°2  → 1 ; p2   → P  ;  P*2 → P  ;   qt  →  q2lim = q*2 (P) ;  M → M2 

 

The fictitious pressure P*1 tends toward a non-zero limit value, which we designate by   

P*1,1im. The corresponding value of q*1 is q*1,lim = q1 (P*1,lim). The concavity parameters 

ξ*
i then also tend toward some finite limit value; for example: 

 

 

Equation 23 thus remains valid, with all quantities taking up their limit value. Equation 1
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tion Theory, dx1/dp1 can be calculated analytically [Kabir et al. 1998, 

Appendix] as: 

may be rewritten in terms of derivatives with respect to p1 instead of variations: 
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Finally, the complete explicit expression for dmt/dp1, in the IAS framework, is: 
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Practical use and validation 

We are now in possession of two values of (dmt/dp1) at x1  = 0 : a measured value on 

one hand, and on the other hand a theoretical value calculated using Eqn.28 and the single 

component isotherms, in the IAS framework. A similar procedure may then be followed to 

obtain such values at the other end of the composition interval, that is, for x2  → 0. One 

question is how small the increment of composition should be to allow assimilation with 

the derivative. A way to circumvent this question is to extrapolate the curve obtained with 

successive increments. 

 

The coincidence of measured and IAS values at each end of the composition 

interval furnishes a good test of validity of the IAS model. Of course, this validity may be 

tested more fully by using measurements all along the composition interval. We shall see 

later on an example how this is handled. But the interest of the IAS approach is not 

uniquely as a test. When deviations occur between calculated and measured values, they 

are a measure of non-ideality, and it is of interest to determine whether some "non-

ideality" coefficients, such as activity coefficients, may be retrieved from these deviations. 

 

This non-ideal approach can only be developed in a somewhat broader 

thermodynamic framework. The Regular Solution Theory is such a framework. We 

illustrate this first with the so-called Real Adsorbed Solution (RAS) model. 

 

 

THE REGULAR-ADSORBED-SOLUTION MODEL 

 

The Regular Solution Theory relies on two basic assumptions, namely that the 

excess entropy of mixing S
ex

 is zero, and that the volume of mixing V
ex

 is zero. But the 

excess Gibbs energy G
ex

 is non-zero, implying that the activity coefficients differ from 1: 

 

S
ex  

= - (∂G
ex

/∂T)P,x =  0              (30) 

 

V
ex

 = V
mix

  = 0                (31) 

 

G
ex

 = n RT Σ xi lnγi  ≠  0               (32) 
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The condition on entropy Eqn.30, implies that the model used for the excess Gibbs 

energy is temperature independent, and we shall be referring to this situation in some 

models used below. Note also that the transposition from solution theory to adsorbed 

solution theory implies that the derivative in the first equation above be taken at constant 

spreading pressure Π instead of constant pressure P. 

 

In the so-called Real Adsorbed Solution (RAS) model [Costa et al., 1981] the 

adsorbed phase is non-ideal, in the sense that it obeys Eqn. 18 with  γi ≠ 1. However, the 

activity coefficients are considered independent of the spreading pressure, and dependent 

only on composition (x1, x2). This is equivalent to saying that the excess surface is zero, 

i.e. that the surface area of the adsorbed phase is the sum of the surface areas of the 

separate components at the same temperature and spreading pressure. The second term in 

Eqn. 19 therefore cancels. This assumption is analogous to assuming a zero excess mixing 

volume V
ex

 in a three-dimensional phase, i.e. one of the assumption underlying the Regular 

Solution Theory, Eqn.31. The other assumption (S
ex

 = 0) will not be used here, and is 

therefore not necessary. From now on, we shall refer to the RAS model, designating both 

the Real Adsorbed Solution model and the Regular Adsorbed Solution model. 

 

The implicit differentiation of Eqns. 18 and 19 follows the same lines as in the ideal 

case, and has been developed in [Kabir et al., 1998]. Thus only the end result is given 

here : 
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(35)                                                
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The equality of

 

t us again consider 

e starting point of the procedure, the limiting case of infinite dilution. 

imiting case of infinite dilution  (x°

 the two terms in Eqn. 35 results from the Gibbs-Duhem constraint. 

These equations involve quantities calculable from the single component isotherms 

(bearing the superscript *), but also involve the activity coefficients and their dependence 

on composition.  Before introducing the appropriate models for this, le

th

 

L 1 → 0) 
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When x1 → 0, the quantities involved tend toward the following limits, some of 

which have already been mentioned in the IAS case: 

 

∂lnγ1/∂x1 in 

 

Lim Δ (x  → 0) =  0     (36) 

  

 

Because of the Equality in Eqn. 35, this relation implies that: 

poses that the pure component activity 

coefficient approaches ope, as the trace component vanishes. With 

these values, Eqn 33 becomes: 

 is Eqn.34 where Δ is made 

qual to cated above. It is interesting to 

 

 

 
∞γ 1 is the so-called infinite dilution activity coefficient.  In addition, because 

principle does not become infinite when x1 → 0, we have 

1

     

 

In other words, the Gibbs–Duhem constraint im

 the value 1 with zero sl

 

which is to be com

e

pared to Eqn. 27. The expression for dqt/dp1

 zero, and the variables take the limiting values indi

e expression for dm/dp1 in a form similar to Eqn.28:  write th

 

 [ ]   1
21

lim11

2

0
1

1
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*
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 Pγ
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dp
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m
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O tions for the Real Adsorbed Solution can be derived from the 

ideal case b
* ∝

ne may observe that the rela

y simply multiplying P 1 lim  by  γ1  wherever it occurs. 

 

Practical use and validation 

 

The practical use of these equations aims at determining the infinite dilution 

coefficients from the experiments at x1 → 0 and x2 → 0. This is done simply by rearranging 

Eqn.38 which is a linear form in γi
∝
 

0.  n x       whe0    
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∂
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nd R clude nly in ormation on the pure component isotherms. 

                                      

There is one special case when γi
∝ may be calculated more simply: this is when qt 

is constant, implying in particular that the adsorbed quantity of the single components at the 

ressure P is the same. Then dm/dp1 is simply related to dx1/dp1. In Eqns.38 and 39, 
RASM 2

~
 red

total p

uces to M2 and we find a relation somewhat similar to Eqn 35 of [Kabir et al, 

1998].  : 

                    constant)q(for           t

lim1

12

11

1 =∞
*

 

*

a

measured

IAS

i
) (dm/dpP

 - M (P) [M qm
 = 

)(dm/dp

)(dm/dp
 = γ           2

measured

] 
 

 

Once the two infinite dilution coefficients ∞
1

γ  and ∞
2

γ  have been determined, 

using an experiment at each end of the composition interval, the equilibrium may be 

completely described using Eqn.18, Eqn. 19 without the spreading pressure term, and a 

classical two-parameter model for the dependence of activity coefficients on binary 

omposition, such as Wc ilson, Margules, Van Laar... We shall illustrate this later with an 

experim

 equilibrium 

lated by:  

1 2 l (Eqns.18 and 19 without the 

econd t

the activity coefficients as well as the RAS approach itself. The possible deviations are due 

ental example. 

 

The validation of the RAS model could be done by using measurements of dmt/dp1 

in the full composition range, and comparison with the calculated values, using the full 

equations 33 and 34. But instead of using the derivatives, thus the slopes of the

urves, a simpler and possibly more useful validation may be done by comparing directly c

the value of the total mass w measured by the balance to a value calcu

 

           w = Mass  of  sample = ma (1 + q1 M1 + q2 M2)                      (42) 

 

here q  and q  are values calculated using the full modew

s erm and the model  chosen for activity coefficients). 

 

It should be kept in mind that in such a procedure, one tests the model chosen for 
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to the combination of these models, of which the contributions may not be identified 

separately. Any important deviation between model and measurements may be used to 

develop a more complete thermodynamic model. 

HE S

 

om the Regular Solution Theory, 

in the se e that the excess mixing area is no longer zero.  

eated here. The resulting formulae resemble Eqns. 33, 

34, 35 but contain additional factors: 

 

PREADING-PRESSURE-DEPENDENT APPROACH   (SPD) 

 

T

The RAS model used in the previous section may be very practical, but from a 

fundamental point of view, it has the drawbacks of neglecting a thermodynamically 

important feature: the effect of spreading pressure on the non-ideality. A more general 

model is generated when one considers that the activity coefficients are a function of 

spreading pressure as well as of composition [Talu and Zwiebel, 1986]. Thus Eqn. 19 has to 

be considered in its complete form. This model deviates fr

ns

 

The calculation of the derivatives dqr/dp1 and dx1/dp1 has been presented in [Kabir 

et al., 1998, Appendix] and is not rep
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It is reasonable to assume that this property also applies in the (γ, Ψ) plane, 
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Limiting expressions, corresponding to x1 → 0, may be obtained using reasonable 

but general assumptions on the model for activity coefficients. We have noticed already that 

the Gibbs-Duhem requirement that Δlim = 0 implies that γ2 approaches 1 with zero slope in 

the (γ, x) plane. 
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This assumption is coherent with a generalised Gibbs-Duhem constraint, and is satisfied by 

the example model which we present below. With these properties, the limiting 

expressions of the derivatives are: 
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Equation 50 has the same form as Eqn.38, but with: 
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Equation 51 is to be compared to Equation 39. A further simplification, to be found in the 

example model below, is obtained when Δ’2 = 0. In what follows, we illustrate the 

calculation with what is probably the simplest such model proposed in the literature. 

 

 

The Iso-Active Sorbent  model of Kopatsis and Myers (ISAC) 

 

Kopatsis [1988] and [Siperstein et al., 1999] in the framework of the so-called Iso-

Active-Solvent Theory (ISAC) indicate a method of construction of the excess free energy 

function by combining a classical, composition dependent model (Margules, Van Laar, 

Wilson…) with an experimental function of loading ψ. Let us illustrate the calculation for 

a one-parameter Margules equation. The above authors propose, for the molar excess 

Gibbs energy: 

 

   g
ex  =  B x1 x2 (1 – e

-Cψ
 )             (53) 

 

from which the activity coefficients are calculated by:  
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The expressions for Δ and Δi, from Eqns. 46 and 47 and their derivatives appearing in Eqn. 

44 are calculated as:   
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The limit values at infinite dilution of component 1 say, are readily obtained from these 

expressions. Notice that the property assumed above in the SPD approach, Eqn.48, is 

satisfied. In addition Δ’2(x1=0) = 0, implying that the coefficient of dψ/dp1 in Eqn.44 

vanishes, and that Eqn.51 applies in its simplified form. 

 

With these properties, the expressions for the derivatives dx1/dp1 and dmt/dp1 are 

identical to Eqns 37 and 38, but with Eqn.39 replaced by Eqn. 51 with Δ'2 = 0. Notice that 

the only change is the appearance of the term 
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lim1lim1
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This cancels for spreading pressure independent activity coefficients. In Eqn.58, the value 

ψ1,lim is calculated from the definition relation of loading ψ, in the framework of the 

adsorbed solution theory, from the single component isotherm: 

 

 

Practical use, validation and extension 

 , to 

obtain γ ∝
 . Once the γ∝  

are obtained, Eqn.54 is written twice for the limiting values:  

� 

 

The practical use of these new relations is not basically different from the RAS case. The 

expression of dmt/dp1 (Eqn.50) can be solved for γ1
∝  which is the only variable that is not 

calculable a priori from the single component isotherms of both components. Clearly, the 

same procedure is applied at the other end of the composition interval for x2 → 0

2
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and this system is solved for B and C. The full description of the thermodynamic co-

adsorption equilibrium is therefore achieved. 

 

Again, the most straightforward method of testing and possibly validating this 

model is to recalculate the complete binary curves, using Eqns.18 and 19 and the fitted 

relations for the γi, and to compare the weighed mass to the mass calculated using Eqn.42 

for the full composition range.  

 

 

AN  EXPERIMENTAL EXAMPLE 

 

This example concerns the co-adsorption of CO2 and CH4 on Norit activated carbon 

in the context of modelling Hydrogen purification by PSA. The total pressure is near one 

atmosphere and the temperature near ambient. The corrected weight of the degassed 

adsorbent sample is ma = 0.96927g. 

 

1. The first step is to measure and exploit the single component adsorption 

isotherms.  

 

This was done up to 5 bars using the micro-balance in a conventional way. For 

measurements below one bar, the measuring cell was equilibrated with a flow of mixture 

of the adsorbed component with helium (the adsorption of which is negligible under these 

conditions), with varying partial pressure of the adsorbed component. For pressures higher 

than 1 bar, the cell can be equilibrated with varying total pressures of the pure adsorbed 

component. Measurements at partial pressures somewhat higher than what is used in the 

binary experiments are required for the calculation of the fictitious pressures P* appearing 

in Eq.18 and subsequently. The measured isotherms are plotted in Figure 2, and can be 

represented with a good fit by a Langmuir-type isotherm with the data and parameters 

given in Table 1.  

�  

(61)                                                                                
1 ii

iiim

i
 p + k

  p kq
 = q

 

 

Table 1: 

Parameters of the Langmuir representation for CO2 and CH4 isotherms   

on Norit AC.at T = 295°K and  P= 1.011 bar 

               Component 

Temperature 
1 = CO2 2 = CH4 

295°K 

qm  

(mol.kg
-1

) 
7.94 4.87 

k     

(bar
-1

) 
0.496 0.389 

314°K 

qm  

(mol.kg
-1

) 
6.48 4.59 

k     

(bar
-1

) 
0.358 0.182 

 

As shown in Appendix, the Langmuir isotherm yields analytical expressions for 

most of the quantities involved in the thermodynamic calculations. From these isotherms, 
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the spreading pressure Π or more conveniently, the loading ψ for each component can be 

constructed by integration using equation A3 in Appendix. The loading curves are shown 

on Figure 3. On this figure are also indicated the graphical meaning of the limit values of 

P* (P*1 lim and P*2 lim ) and of Ψ (Ψ1 lim and Ψ2 lim ). 

 

The numerical values of these quantities are obtained from equations A6 and A9. 

The limiting values of the adsorbed quantities q* corresponding to the fictitious pressures 

P*lim and to the total pressure P are calculated from the isotherms or Eq. A7, and finally the 

limit values of the curvature parameters ξ are calculated from equations 16 or A8. All the 

corresponding values are gathered in Table 2. Notice that so far, we have only used 

information from the pure component isotherms, and none from co-adsorption 

experiments. 

 

In the present work, we have used the analytical approach described above, based 

on Langmuir isotherms. However, the binary predictions may be quite sensitive to the 

"quality" of the single component isotherms, and if one has very good experimental data, it 

may be better to use a purely numerical approach, possibly fitting the data with non-

physical interpolation functions, such as splines. 

 

Table 2 

Characteristic parameters of adsorption of CO2 and CH4 at T=295°K and P=1.011bar 

 Component  

 

1=CO2             (x1 0) 2=CH4       (x2 0) 

ψi lim                          mol.kg
-1

 ψ1 lim  =        1.452 ψ2 lim   =    2.914 

  P*lim                          bar P*1lim  =      0.458 P*2lim   =   2.397 

q*(Plim)                    mol.kg
-1

 q*1(P1lim)  = 1.352 q*2(P2lim) = 2.213 

q*(P)                        mol.kg
-1

 q*1(P)  =      2.491 q*2(P)    =   1.270 

    ξ                                 − ξ1 lim  =         1.196 ξ2 lim  =        1.843 

 

 

2. The next step is to run the perturbation experiments and look at the limits. 

 

 The procedure was described at the beginning of this paper. The overall result is 

shown on Figure 4 for two temperatures, 295 and 314°K. The total adsorbed mass mt, 

divided by the mass ma of the “clean” adsorbent, is plotted as measured versus partial 

pressure of CO2 (component 1). An interesting experimental verification is done in 

building the curve "from both ends", that is in our example, starting with pure CH4 and 

increasing progressively the CO2 partial pressure, and after reaching 100% CO2, perform 

the reverse operation. The "upwards" and "downwards" points are distinguished on the 

figure, and a good consistency is observed. The total pressure in these experiments 

undergoes slight changes, of the order of 0.5% between the upwards and the downwards 

experiments. The continuous curves are a third-order polynomial fit of the overall data. 

 

At the extremities of these curves, (limit of a small partial pressure change upon a 

pure component) one obtains an experimental value of dmt/dp. This value is then compared 

to the value calculated using the IAS equations 28 and 29, with the parameters of Table 2. 

This comparison is shown in Table 3 for 295°K. 
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Table 3 

Experimental and IAS values of dmt/dp at the composition limits (295°K) 

 

Values of (dmt/dpi)     (g.bar
-1

) (dm/dpi) measured    (dm/dpi)
IAS

 calc (Eq.28) 

x1   = xCO2  0 (dm/dp1)  =  0.14846 (dm/dp1) =  0.12109 

x2  = xCH4  0 (dm/dp2)  =  - 0.08210 (dm/dp2) =  -0.10641 

 

 

It can be observed that the measured and calculated values are in the "good" order of 

magnitude and sign, but we can certainly expect a better fit with a more elaborate model. 

 

3. Next, the full equilibrium is calculated using the IAS algorithm 

  

A convenient algorithm for the IAS calculations is the following: 

- pick a series of values of Ψ between Ψ1 lim and Ψ2 lim of Table 2 

- for each Ψ compute P*1 from Eq.A3 or A4 

- obtain the solid phase composition xi from: 

  x1  =  (P*2 - P)/( P*2 - P*1)   x2  = 1 - x1 

- obtain  q*1(P*1) and q*2(P*2) from the isotherms 

- compute the total adsorbed quantity qt from Eq.19 without the second term 

- obtain the individual adsorbed quantities qi  as qt.xi 

- obtain the gas phase composition yi  from Eq.18 as xi .Pi
*
/P 

  

 Figure 5 shows the plot of these calculated binary isotherms, where the adsorbed 

quantities are expressed in mass and referred to a unit mass of adsorbent. The IAS-

predicted curve of the total adsorbed mass can now be compared to the experimental result. 

A significant difference is observed which may justify to resort to a more elaborate model. 

 

4. The limiting activity coefficients are then determined  

The measured values of dmt/dp (Table 3) can be used to evaluate limiting activity 

coefficients, using Eq.40. The results are in Table 4 and we observe that the values of γ∞ 

are smaller than 1. 

 

 

Table 4 

Calculation of infinite dilution activity coefficients in adsorbed phase from the measured 

limit values of dmt/dp (295°K) 

 

Infinite dilution  

activity coefficients 

CO2 

x1   = xCO2  0 

CH4 

x2  = xCH4  0 

Coefficient  Q  (Eq.41) 0.0359 0.1256 

Coefficient  R (Eq.41) 0.1970 0.0192 

γ∝  (Eq.40) γ1∝ =  0.8515 γ2∝  =  0.4417 
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Ln γ∝ −0.16075 − 0.81712 

 

 

5. Models for non-ideal solutions are tested 

 

 We can now implement some classical model for activity coefficients. Five models 

involving two adjustable parameters have been tested here: Wilson, Van Laar, Margules, 

Flory-Huggins, and ISAC. The first four are presented and can be found in most chemical 

thermodynamics books, for example [Sandler, 1999]. For ISAC, one has to refer to the 

original publication by [Kopatsis et al., 1988]. They all derive from a form of the Gibbs 

excess energy and satisfy the Gibbs-Duhem constraint. The Van Laar model corresponds 

to the Regular Solution assumptions, including a zero excess entropy of mixing. The 

Wilson, Margules and Flory-Huggins models are used with the RAS assumption of zero 

excess surface of mixing, i.e. without the last term in Eqn.19.  

  

 The ISAC model contains an explicit dependence of Gibbs energy and of activity 

coefficients on loading (SPD framework), and therefore accounts for this term in Eqn.19. 

Table 5 gathers the constitutive equations of these five models. Using the values of γ∞ thus 

determined and the limiting equations for Ln γ∞, the unknown parameters are determined 

directly for the Van Laar and the Margules equations. For the Wilson, ISAC and Flory-

Huggins models, the couple of non-linear equations can be reduced to a single equation 

which needs to be solved by a numerical search, but which has seemingly a unique 

physical solution. The values of the parameters of the five models are given in Table 6, and 

Figures 6a and 6b are a representation of the variation of the activity coefficients with 

composition. It is seen that the variation of the γ is qualitatively similar except for the 

Wilson model, and this will have a significant influence on the isotherms themselves. 

Notice that Lnγ is essentially negative (γ < 1) for all models and over the whole range 

(negative deviation from Raoult's law) except  a very slightly positive zone for CH4 with 

Margules, and a practically zero zone for CO2 with Flory-Huggins. Of course, all models 

satisfy the conditions that when the mole fraction of a component tends to 1, the logarithm 

of its activity coefficient tends to 0 with zero slope, as required by the Gibbs-Duhem 

constraint.  

 

 The Flory-Huggins model has a particular status here, since it is not a regular solution 

model (the excess entropy is non-zero). It is actually the only model that does not satisfy 

Herington's consistency test [Herington, 1947]: 

 

             ∫ Ψ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛1

0
2

1 )(0ln andTconstdx
γ
γ

     (62) 

     

 

We believe that this is due to an improper use of this model (imposing the assumption of 

zero excess area) and not to an intrinsic inconsistency. In addition, the value of the 

parameter m, given in Table 6, has visibly no relation with the ratio of molar volumes of 

the two components, as the physical interpretation of this model implies. On the other 

hand, it could be interpreted more realistically as space, or number of sites, occupied by 

the adsorbed molecules on the adsorbent surface. The reason for testing this model is its 
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relation to the sorption in polymers, and thus possibly to adsorption, but its use here should 

be considered as purely empirical. 

 

Table 6 

Numerical values of model parameters for activity coefficients  

CO2+CH4 on Norit AC at 295°K 

 

Wilson Van Laar Flory-Huggins Margules ISAC  

 

Λ12 = 0.00708  

Λ21 = 6.11111 

 
α = − 0.1608 
β = −0.8170 

 

m = 3.396 

χ =  0.3563 
 

α1= −1.4733 
β1 =   1.3125 
α2 =   0.4955 
β2 = −1.3125 

 

B/RT= 0.05310 

 

C= -0.95951 

 

 

 

6. The full equilibrium is now computed with these different models. 

 

 This implies solving the RAS equations, that is Equation 18 with the activity 

coefficients, and Equation 19 (without the spreading pressure dependent term for the first 

four models, with this term for the ISAC model). The algorithm is not basically different 

from that presented above in Section 3, except that the calculation of the adsorbed phase 

composition is not explicit, and requires a simple numerical search.  

 

 A first interesting and useful test is to compare the total adsorbed mass curves for the 

different models with the experimental results. This is done on Figures 7a and 7b for two 

temperatures, 295°K and 314°K. The data and parameters for this second temperature are 

gathered below in Table 9 and will be discussed later. It is seen that at 295°K, all models 

give visually "correct" results, with an underestimation for IAS, a better fit for Margules 

and a relatively poorer one for Wilson in the low CO2 region. The picture is quite different 

at 314°K, where none of the models gives really excellent results. Margules is again the 

best choice. Table 7 gives quantitative measures of the standard deviation and the 

arithmetic average deviation of the models with experiment, and confirms the visual 

impression. 

 

 Figure 7c illustrates a peculiarity of the present method which we want to emphasize. 

It is a plot of the same results as Figure 7a, at 295°K, but using the more usual mole 

concentration in the adsorbed phase, instead of the mass concentration. The problem of this 

representation is that it is not a direct representation of the experimental result, since the 

adsorbed phase composition has to be calculated using one of the models (in the case of 

Figure 7c, with used the Margules relation). Therefore, the validation and comparison with 

experiment should be done exclusively with plots such as Figures 7a and b.  

 

Table 7   

Deviation of models from experiment for the total adsorbed mass (295°K) 

 

                Model  

Deviation%  

IAS Wilson Van Laar Flory-H. Margules ISAC 

Standard deviation 

 

13.21 9.17 1.82 3.40 0.79 2.19 

Mean deviation 

 

11.52 7.87 1.52 2.93 0.63 1.85 
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 Figures 8a and 8b show the reconstitution of the individual adsorption curves for the 

two components, at the two temperatures, using the Margules model. Obviously, similar 

diagrams are easily generated with the other models, but the only evaluation criterion that 

we have is the total adsorbed mass, as shown above. It may be tempting to conclude that 

the Margules model is the best choice in general, owing to its simplicity and to the good 

present results. There are no theoretical grounds for such a general conclusion though. 

 

 A further representation of the full equilibrium is the "phase diagram", where the 

adsorbed phase composition x is plotted versus the gas phase composition y in equilibrium. 

Figure 9 shows this diagram as constructed with the different models at 295°K, and 

indicates that this representation has little sensitivity to the choice of the model.  The 

differences are emphasised and the relative position of the curves appears more clearly 

when one plots as ordinate the difference x-y, in other words, the vertical distance of the 

curve from the diagonal, as in Figures 10.  

 

DISCUSSION AND EXTENSIONS 

   

  Validation with independent data. 

 

 It is of interest to test the complete approach using "complete" data, that is where the 

adsorbed quantities of each component is measured, not just the total adsorbed mass. For 

this purpose, we have used co-adsorption data furnished by L'Air Liquide for a total 

pressure of 2.06 bars and 293°K. The adsorbed concentrations were determined using a 

material balance on a batch equilibration technique with measurement of the gas phase 

composition at equilibrium, and the total adsorbed quantity curve is obtained by their 

summation. These experimental data appear as discrete points on Figure 11. The curve of 

total adsorbed mass is then smoothed with a polynomial to evaluate the limiting slopes 

dm/dp. We then recalculated the characteristic parameters at this new total pressure from 

the single component isotherms of Figure 2, neglecting the temperature difference between 

293 and 295°K, and the infinite dilution activity coefficients are determined as in the 

experimental example above, using only the limiting slopes of the smoothed total adsorbed 

mass curve. Table 8 summarizes the numerical results. 

 

Table 8: Data and parameters for the CO2-CH4 isotherm at 293°K, P=2.06 bar 

 

i 1 = CO2 2 = CH4 units 

ψlim 2.598 5.122 mol.kg
-1

 

Plim
 

0.884 5.578 bar 

qlim(P) 3.862 2.031 mol.kg
-1

 

qlim(Plim) 2.263 3.205 mol.kg
-
 

ξlim 1.377 1.092 - 

(dm/dpi)xi=0 0.1058 - 0.0490 g.bar
-1

 

Qi 0.0167 0.1069 g.bar
-1 

Ri 0.1049 0.0158 g.bar
-1

 

γi
∝ 0.856 0.273 - 
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 These activity coefficients were then used with the Margules model to construct the 

binary co-adsorption isotherms shown as continuous lines on Figure 11. The standard 

deviation on the total adsorbed mass is about 3%, while it is of the order of 7% for CO2 

and 15% for CH4. The procedure over-predicts  CH4 adsorption and under-predicts CO2 

adsorption. It is noteworthy that the value of 
∞
1
γ  

is almost the same as at 1 bar, and that the 

results are rather sensitive to this value, while they are relatively insensitive to the value 

of , which is very different from that at 1 bar.. ∞
2γ

 

Model dependence and number of parameters.  

The approach presented here starts with the determination of  and . The 

values found are "mathematically univocal", meaning that there is only one set of values 

satisfying the equations that determine them, given the measured quantities. Within the 

RAS approach, the values found are also model-independent, i.e. they are the same for 

Wilson, Van Laar, Margules or any other spreading pressure independent model for 

composition dependence. In addition, the two parameters of the models used here are also 

uniquely determined. They account for the full composition dependence of the activity 

coefficients.  

∞
1
γ ∞

2γ

In the SPD approach on the other hand, the values of 
∞
1
γ  and  depend on the 

spreading pressure dependence postulated, for instance, that of ISAC, and in that sense are 

model-dependent. This dependence requires the introduction of at least one parameter, so 

that only one parameter is left to account for the composition dependence. The question 

posed is then how to handle models with more parameters, for example combining a two-

parameter Margules or Wilson expression for the composition dependence with the 

exponential factor of the ISAC model. This was done for example in the paper by 

[Myers,1989],  by an optimization method of the three parameters, using binary data at 

different pressures. A similar approach could in principle be taken here using all the 

experimental data available at one pressure, not just the limiting γ's. As an initial guess, 

one may use the infinite dilution γ values estimated as for RAS.  But the "one pressure" 

fitting approach does not discriminate between the effect of the spreading pressure and the 

effect of composition on the activity coefficients, and is therefore a relatively blind fitting 

that does not guarantee coherence. We discuss this question further in connection with the 

pressure dependence of activity coefficients. 

∞
2γ

 

 Pressure dependence of activity coefficients and prediction at other pressures.  

 

 As suggested by [Van der Vaart et al., 2000], it would seem a priori reasonable to 

assume that the activity coefficients are independent of total pressure, an assumption 

coherent with the picture of the Regular Adsorbed Solution Theory. To substantiate this 

assumption, one may notice that the Helmholtz energy of condensed phases is practically 

pressure independent and if the excess surface of mixing is assumed zero, the Gibbs excess 

energy is equal to the Helmholtz excess energy. This does not strictly imply independence 

with respect to spreading pressure, but probably a weak dependence. A possible 

application of this approach would then be to predict the co-adsorption of the same 

constituents under different pressures. We have thus tried to represent the binary system at 

2.06 bar using the activity coefficients at 1 bar. The resulting curves give a representation 

(not shown here) that is only slightly poorer than that of Figure 11, with the same trends 

(good fit for the total mass, over-prediction of CH4 adsorption and under-prediction of 
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CO2 adsorption). The pressure independence of the activity coefficients may thus be taken 

as an approximation. 

 

 Let us now compare the values obtained above at 1.01 bar (Table 4) and at 2.06 bar 

(Table 8). It is seen that γ∝(xCO2=0) practically has the same value, and can thus be 

considered pressure independent. Such is not the case for γ∝(xCH4=0), which is almost 

divided by two when doubling the pressure. This trend has a low sensitivity to the value of 

dm/dp, and is mostly sensitive to the properties of the single component isotherms. It is 

clear that for accurate values of the infinite dilution activity coefficient, pressure 

independence is not acceptable, even though, as mentioned above, the binary curves are 

relatively insensitive to γ2
∝
. 

 

 For a more accurate prediction of the binary curves, changing the limiting activity 

coefficient with pressure is apparently not sufficient. What is actually missing here is a 

detailed description of the spreading pressure dependence. In a forthcoming publication, 

we shall show how a complete 4-parameter SPD model can be built univocally, using data 

at two pressures, without recourse to a fitting method. The methodology and the 

calculations are too long to be presented in the present paper.  

 

Temperature dependence of activity coefficients. 

 

As for temperature, there is no reason to expect any simple dependence, and  

clearly new single component isotherms have to be measured as well as new activity 

coefficients. We have made measurements of the total adsorbed mass at 314°K and 1.01 

bar (Figure 4) and determined the corresponding activity coefficients. Table 9 gives the 

corresponding parameters and activity coefficients, Figure 7b shows the representation of 

the total adsorbed mass, and Figure 8b shows the binary isotherms.  

 

Table 9. 

Data and parameters for the CO2-CH4 isotherm at 314°K, P=1.01 bar 

 

i 1 = CO2 2 = CH4 units 

qm* 6.48 4.59 mol.kg
-1

 

bi 0.358 0.182 bar
-1

 

ψlim 0.737 1.967 mol.kg
-1

 

Plim
 

0.347 3.123 bar 

qlim(P) 1.718 0.690 mol.kg
-1

 

qlim(Plim) 0.706 1.624 mol.kg
-
 

ξlim 1.141 1.539 - 

(dm/dpi)xi=0 0.0929 - 0.0312 g.bar
-1

 

Qi 0.0163 0.0827 g.bar
-1

 

Ri 0.1020 0.0105 g.bar
-1

 

γi
∝
 0.9346 0.2034 - 

ex

ih  -3.39 +28.23 kJ.mol
-1

 

 

 

By comparing with Table 4, we clearly see a strong dependence of the infinite 

dilution activity coefficients on temperature, with an increase with temperature for CO2 

and a decrease for CH4. The data at different temperatures can be used to evaluate 
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thermodynamic quantities that are essentially excess partial molar enthalpies, and may be 

assimilated to activation energies for the activity coefficients: 
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Assuming either that ex

ih  is a constant or that the temperature interval is small, this 

equation may be integrated into: 
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The measured values of γi
∝

 may be used to evaluate ex

ih . Their order of magnitude is given 

in Table 9. When assumed constant in a range, they can be used for interpolation or 

moderate extrapolation.  

 

 

 Comparison with earlier data. 

 

 As mentioned in the introduction, a few earlier studies concern co-adsorption of 

carbon dioxide and methane on a activated carbon, and its description using activity 

coefficients. The data of [Buss, 1995] show activity coefficients larger than unity over the 

whole composition range, for an activated carbon with large pores and a relatively 

homogeneous surface. The data of [Van der Vaart et al., 2000] on Norit RB1 should be 

more in agreement with the present findings, since the isotherms for the pure components 

at 1 bar, the total mass adsorbed and the co-adsorbed concentrations of CO2 are quite close 

to that found here. Nevertheless, the activity coefficients are significantly different. The 

Wilson parameters as fitted by these authors are Λ12 = 2.8 and   Λ21 = 0.018 (to compare to 

our values Λ12 = 0.0071; Λ21 = 6.1111) corresponding to γ1
∞= 0.954 and γ2

∞= 9.18. In 

particular, the large value of the activity coefficient for CH4 contradicts our small value of 

0.442. 

 

 We are tempted to explain this difference by the fact that the limiting activity 

coefficients do not enter at all in the Van der Vaart calculations, and that their Wilson fit is 

somewhat rough, whereas they are the fundamental data in our approach, and their values 

entirely determines the shapes of the Wilson plot. The qualitative difference is that in our 

case, the activity is practically always smaller than that of an ideal bulk mixture, whereas 

the Van der Vaart values shows a very high activity of methane at low concentrations. 

These features should probably be explained on physical grounds. 

 

 

CONCLUSION 

 

 Let us discuss critically the methodology proposed in the light of the examples and 

results presented. 

 

Experimental simplicity, practical convenience, theoretical complexity.   
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 The main interest of this approach is its experimental simplicity. Besides the single 

component isotherms, only two measurements are strictly necessary, at the limits of large 

dilution, to obtain the two basic parameters, the γ∞. But such measurements are rather 

difficult and on the other hand, the complete gravimetric curve is convenient to obtain. 

The latter is thus used for testing the experimental conditions (incremental and 

decremental curves should coincide), for extrapolation to infinite dilution, as a verification 

of the overall fit of the model, and also to discriminate between activity models.  Choosing 

a priori a simple model for the activity coefficients, such as Margules or Van Laar, suffices 

to construct a reasonable estimate of the complete binary isotherm. The theoretical 

complexity has to be faced only once: once the formulae are established, the calculations 

and algorithms are quite straightforward. 

 

Model versus measure.  

 Let us first recall that the approach proposed aims at building a thermodynamic model 

of the equilibria capable of representation, of extrapolation, of multi-component extension, 

and of incorporation in a process simulator. Model building includes parameter 

determination and model discrimination. Measuring the total mass adsorbed in the binary 

system (together with the single component isotherms) gives sufficient information for this 

purpose, under certain assumptions.  It is not an information equivalent to measuring the 

individual adsorbed quantities, and this approach should not be considered as an alternative 

to full measuring techniques.  

  

Thermodynamic assumptions, accuracy, versatility and coherence. 

 The versatility and fitting power of the models used here are restricted by two factors: 

- the fact that two adjusted parameters only are introduced, and that we want them 

uniquely determined by the measured data; 

- the fact that the models are thermodynamically coherent, in the sense of satisfying 

all thermodynamic constraints coherent with the assumptions (such as Gibbs-

Duhem), and the assumptions themselves are not thermodynamically prohibited. 

These factors contribute to convenience of use and to predictive power, which in a sense 

we pay for in loss of versatility and fitting power. If more accuracy and more versatility are 

sought, more parameters are needed. Unicity of these parameters and thermodynamic 

coherence can only be preserved if more measured data are used in the framework of an 

extended model. We shall show how this can de done in a forthcoming paper. 

 

 Unicity of the γ∞ and model dependence. 

 The fact that we get the γ∞ from one experimental information only at each end of the 

composition range stems from the thermodynamic constraints and from choosing a two 

parameter model. Any additional measurement is redundant and must be reconciliated with 

the above. The analytical and linear character of the expressions for the γ∞ (Equations 40-

41 or 50-51) ensures that the solutions for the γ∞ corresponding to given experimental data 

are unique (contrarily to any global fitting method). As mentioned above, they are also 

model-independent for the RAS models, but not for the SPD models. 

 

 The different models for the composition dependence of the γ can be discriminated 

only through a numerical best fit criterion, using for example the full adsorbed mass curve, 

not through a thermodynamic criterion. The model of activity coefficient variation is 

therefore not unique. Other models are available than those used here. For example the 

UNIQUAC approach [Abrams and Prausnitz, 1975] also involves two parameters that can 

be determined in this way, but together with a number of chemical parameters obtained 
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from tables. The Non-Random Two-Liquids model [Renon and Prausnitz, 1968] involves 3 

parameters, and would require a global fitting approach.  

 

 Just as the Adsorbed Solution Theory, the approach proposed is in principle 

independent of the model chosen to represent the single-component isotherms. In our 

specific example, we have used Langmuir isotherms because they turn out to represent 

reasonably our data, and in addition, are convenient for calculations (see Appendix ). But 

any other model fitting well the isotherm data would do, and as a matter of fact, no explicit 

model at all is needed. Since the quality of the binary representation is sensitive to the 

quality of the single component representation, if accurate experimental data are available, 

it may be better to use a table of measured values with a suitable interpolation rule rather 

than an analytical model.  

 

  Extensions and  perspectives. 

 A number of open questions and of potential developments are left for future work, 

concerning the experimental procedure as well as the theory.  Among these, we should like 

to mention: use of temperature programming to obtain conveniently temperature dependent 

data; interpolation between different pressures and temperatures, as envisaged through 

Equation 63; obtain binary data at different total pressures using an inert gas; generate 

approximate but consistent analytical expressions for the co-adsorption curves; extend the 

approach to heterogeneous surfaces; incorporate the binary co-adsorption results into a 

general model of multi-component column operation. 

 

 But the main point seems the need to extend the approach to models accounting for 

spreading pressure dependence and with more parameters, as suggested by Myers' work 

[Myers, 1989].  Besides being more in coherence with the full non-ideal adsorbed solution 

theory, one would certainly gain in both fitting power and predictive power. While this 

paper was being reviewed, we have actually set the bases for such a development, 

introducing two additional parameters, obtained independently from data at two different 

pressures. This will be presented in a forthcoming paper. 
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APPENDIX  

 

Example of Langmuir single-component isotherms. 

 

In this case, a large part of the calculations may be carried out analytically, and 

therefore it constitutes a good illustration. Letting: 
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iiim
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the derivative is 

   

 

and the spreading pressure or rather the loading ψ is obtained from:  

 

 

 For a given loading ψ, Eq. A3 may be inverted to yield :  

 

 

In mixture adsorption, the value of spreading pressure or loading is common to all 

components, and therefore, for a given value of ψ, the fictitious pressures Pi* of all 

components must have values that satisfy Equation A3 or A4. 

 

 The "curvature parameters" ξi are given by Eq. A5 below and may be computed, 

using Eqs A1 and A2. 

 

The limiting values at infinite dilution of component 1 may be calculated by observing 

that when  x1 →  0,  p2  → P,  P
*

2  → P and q2  → q2 (P). Then Eqn. A3 is written twice 

for i = 1 and 2, and the right hand sides are equated and solved for P1
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her quantities being constant. With two values of γ∞
  and a classical two 

rameter model of activity coefficients, the RAS approach is then completely identified. 

If one wants to test the two parameter SPD model, Eqn.60 is used with ψlim calculated 

om Eqn. A3 as 

The constants B and C are identified and reintroduced into Eqn.54, completing the 

identification of this model. 

 

[ ]

The limit value *

1limq  necessary to use Eqns.23, 28, 29 is then obtained from the 

isotherm Eqn.A1: 

  Finally, Eqn.A5 is particularized for i=2, with P2* =P: 

 

 

  

All quantities involved in Eqns. 28 and 29 have now an explicit algebraic expression, 

calculable from the single component isotherms, and therefore the "theoretical IAS value" 

of dmt/dp1 may be calculated, and compared to the measured value.  Of course, the same 

procedure is used for infinite dilution of component 2. If the discrepancy between 

measured and calculated values of dmt/dp1 justifies it, ∞
i γ  is used as adjusting parameter in 

Eqns 38-40, all ot

pa

fr
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NOMENCLATURE 

 

ai  molar surface area of species i    [m
2
mol

-1
] 

A  specific surface area of adsorbent    [m
2
kg

-1
] 

B  coefficient in ISAC model (Eq.53-60)   [J.mol
-1

] 

C  coefficient in ISAC model (Eq.53-60)   [kg.mol
-1

] 

g  molar Gibbs energy      [J.mol
-1

] 

g
ex

  excess molar Gibbs energy in adsorbed phase  [J.mol
-1

] 

ki  coefficient in Langmuir isotherm (Eq. 60)   [bar
-1

] 

G
ex

  excess Gibbs energy of adsorbed phase   [J] 

m  coefficient in Flory-Huggins model    [-] 

ma  mass of clean adsorbent sample    [kg] 

mi  adsorbed mass of component i         [kg] 

mt  total adsorbed mass            [kg] 

M  average molar mass of the gas mixture   [kg.mol
-1

] 

Mi  molar mass of component I     [kg.mol
-1

] 

  quantity defined in Eq. 39     [kg.mol
-1

] RASM 2
′
SPDM 2

′   quantity defined in Eq. 51     [kg.mol
-1

] 

n  number of moles of the mixture    [mol] 

Pi  partial pressure of component I in gas   [Pa] or [bar] 

P  total pressure       [Pa] or [bar] 

Pi*  fictitious pressure of component i in  Adsorbed Solution 

  theory        [Pa] or [bar] 

qi  concentration of adsorbed component i  [mol.kg
-1

 adsorbent]  

qm  maximal adsorbed concentration in Langmuir isotherm [mol. kg
-1

] 

qt  total concentration in adsorbed phase   [mol. kg
-1

]  

Q  coefficient in Eq.40, defined by Eq.41   [kg.bar
-1

] 

R  coefficient in Eq.40, defined by Eq.41   [kg.bar
-1

]  

R  gas constant       [J.mol
-1

.K
-1

] 

S
ex

  excess entropy of mixing in adsorbed phase   [J.K
-1

] 

T  temperature       [K] 

V
ex

  volume of mixing in the adsorbed phase   [m
3
] 

xi  mole fraction of component I in adsorbed phase  [-] 

yi  mole fraction of component I in gas phase   [-] 

 

Greek letters 

α  coefficient in Van Laar model    [-] 

αi  coefficient in Margules model    [-] 

β  coefficient in Van Laar model    [-] 

βi  coefficient in Margules model    [-] 

γi  activity coefficient of component i in adsorbed phase [-] 

Δ  defined by Eq. 35 or 47     [-] 

Δi  quantity defined in Eq.46     [-] 

Δ’2  quantity defined in Eq.52     [kg.mol
-1

] 

Λ12, Λ21 parameters of Wilson model     [-] 

χ  parameter of Flory-Huggins model    [-] 
Π  spreading pressure of adsorbed phase   [J.m

-2
] or [N.m

-1
] 

Ψ  loading, or compressibility factor of adsorbed phase [mol. kg
-1

] 

ξi  concavity parameter of isotherm of component i, defined by Eq. 24 [-] 
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Subscripts 

1, 2  designate components 1 (CO2) and 2 (CH4) 

i, j  designate components 

lim designates limiting values, when the concentration of one component tends 

toward zero 

t designates total quantities, sum of the quantities relative to the two 

components 

 

Superscripts 

ex  excess properties 

*  properties of single component equilibria 

°  initial state 

∞  infinite dilution 
_  

overline: partial molar quantities 
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Table 1: 

Parameters of the Langmuir representation for CO2 and CH4 isotherms   

on Norit RB2.at T = 295°K and  P= 1.01 bar 

 

               Component 

Temperature 
1 = CO2 2 = CH4 

295°K 

qm  

(mol.kg
-1

) 
7.94 4.87 

k     

(bar
-1

) 
0.496 0.389 

314°K 

qm  

(mol.kg
-1

) 
6.48 4.59 

k     

(bar
-1

) 
0.358 0.182 

 

 

 

Table 2 

Characteristic parameters of adsorption of CO2 and CH4 at T=295°K and P=1.01bar 

 

 

             Component  

 

1=CO2             (x1 0) 2=CH4       (x2 0) 

ψi lim                      

mol.kg
-1

 
ψ1 lim  =        1.452 ψ2 lim   =    2.914 

P*lim 

bar 
P*1lim  =      0.458 P*2lim   =   2.397 

q*(Plim)                   

 mol.kg
-1

 
q*1(P1lim)  = 1.352 q*2(P2lim) = 2.213 

q*(P)                     

mol.kg
-1

 
q*1(P)  =      2.491 q*2(P)    =   1.270 

    ξ 
 

ξ1 lim   =         1.196 ξ2 lim  =        1.843 

 

  

 

 

Table 3 

Experimental and IAS values of dmt/dp at the composition limits (295°K) 

 

Values of (dmt/dp1)     (g.bar
-1

) (dm/dpi) measured    (dm/dpi)
IAS

 calc (Eq.28) 

x1   = xCO2  0 (dm/dp1)  =  0.14846 (dm/dp1) =  0.12109 

x2  = xCH4  0 (dm/dp2)  =  - 0.08210 (dm/dp2) =  -0.10641 

Values of M
~

  (Eq.29) (kg.mol
-1

) M
~

1  = 0.1216 M
~

2 = - 0.0011 
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Table 4 

Calculation of infinite dilution activity coefficients in adsorbed phase from the measured 

limit values of dmt/dp 

 

Infinite dilution  

activity coefficients 

CO2 

x1   = xCO2  0 

CH4 

x2  = xCH4  0 

Coefficient  Q  (Eq.40) 0.0359 0.1256 

Coefficient  R (Eq.40) 0.1970 0.0192 

γ∝ γ1∝ =  0.8515 γ2∝  =  0.4417 

Ln γ∝ −0.16075 − 0.81712 

 

 

 

 

 

Table 6 

Numerical values of model parameters for activity coefficients  

CO2+CH4 on Norit RB2 at 295°K 

 

Wilson Van Laar Flory-Huggins Margules ISAC  

 

Λ12 = 0.00708  

Λ21 = 6.11111 

 
α = − 0.1608 
β = − 0.8170 

 

m = 3.396 

χ =  0.3563 
 

α1= −1.4733 
β1 =   1.3125 
α2 =   0.4955 
β2 = −1.3125 

 

B/RT= 0.05310 

 

C= -0.95951 

 

 

 

 

 

Table 7 

Deviation of models from experiment for the total adsorbed mass (295°K) 

 

                Model  

Deviation%  

IAS Wilson Van Laar Flory-H. Margules ISAC 

Standard deviation 

 

13.21 5.15 2.15 3.86 0.79 2.91 

Mean deviation 

 

11.52 3.33 1.80 3.24 0.68 2.24 
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Table 8 

Data and parameters for the CO2-CH4 isotherm at 293°K, P=2.06 bar 

 

 

i 1 = CO2 2 = CH4 units 

ψlim 2.598 5.122 mol.kg
-1

 

Plim
 

0.884 5.578 bar 

qlim(P) 3.862 2.031 mol.kg
-1

 

qlim(Plim) 2.263 3.205 mol.kg
-
 

ξlim 1.377 1.092 - 

(dm/dpi)xi=0 0.1058 - 0.0490 g.bar
-1

 

Qi 0.0167 0.1069 g.bar
-1 

Ri 0.1049 0.0158 g.bar
-1

 

γi
∝ 0.856 0.273 - 

 

 

 

Table 9. 

Data and parameters for the CO2-CH4 isotherm at 314°K, P=1.01 bar 

 

i 1 = CO2 2 = CH4 units 

qm* 6.48 4.59 mol.kg
-1

 

bi 0.358 0.182 bar
-1

 

ψlim 0.737 1.967 mol.kg
-1

 

Plim
 

0.347 3.123 bar 

qlim(P) 1.718 0.690 mol.kg
-1

 

qlim(Plim) 0.706 1.624 mol.kg
-
 

ξlim 1.141 1.539 - 

(dm/dpi)xi=0 0.0929 - 0.0312 g.bar
-1

 

Qi 0.0163 0.0827 g.bar
-1

 

Ri 0.1020 0.0105 g.bar
-1

 

γi
∝
 0.9346 0.2034 - 

ex

ih  -3.39 +28.23 kJ.mol
-1
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Figure 1 Experimental set-up of microbalance to measure adsorption equilibria 
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Figure 2 Adsorption isotherms of carbon dioxide and methane on Norit RB2 

activated carbon at 295°K 

 

■ ▲  Experimental values below 1 bar obtained by the flow method 

o  □  Experimental points provided by L’Air Liquide 

______ Langmuir fit with parameters of Table 1 
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Figure 3  Loading or compressibility factor Ψ versus partial pressure 

 

The curves are obtained by integration of the isotherms using Equation 4, and illustrate 

the graphical meaning of the limit values Plim and Ψlim  
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Figure 4  Total adsorbed mass ratio versus partial pressure at two temperatures 

 

The ordinate is mt/ma , i.e. the value measured by the microbalance minus the mass of 

the clean  adsorbent, divided by the mass of adsorbent (ma = 0.96927 g) 

❈,+  Experimental values at decreasing CO2 concentration 

● ,   Experimental values at increasing CO2 concentration 

____________ Cubic polynomial fit 
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Figure 5  Binary isotherms at 295°K and 1.01 bar. IAS predictions and experiment 

 

ο Total adsorbed mass ratio measured (identical to that of Figure 4) 

■ Total adsorbed mass ratio calculated by the Ideal Adsorbed Solution (IAS) 

model  

,▲ Individual component adsorbed mass ratio calculated by the IAS model 

_____ Graphical fit  
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Margules

Wilson 

 

 

 

 

Figure 6a   Variation of CO2 activity coefficients with binary composition for 

five models (295°K; 1.01 bar). The ordinate scale is logarithmic 
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Figure 6b   Variation of CH4 activity coefficients with binary composition for 

five models (295°K; 1.01 bar). The ordinate scale is logarithmic 
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Figure 7a  Comparison of  the experimental total adsorbed mass ratio with the 

predictions of the ideal (IAS) model and with the five non-ideal models at 

295°K 
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Figure 7b  Comparison of  the experimental total adsorbed mass ratio with the 

predictions of the ideal (IAS) model and with the five non-ideal models at 

314°K 
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Figure 7c  Comparison of  the mole concentration in the adsorbed phase with 

the predictions of the ideal (IAS) model and with the five non-ideal models at 

295°K ;   
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Figure 8a   Binary adsorption isotherms described by the two-parameter 

Margules model at 295°K 

 

The Margules model is in Table 5 and the parameter values are in Table 6. 

o Total adsorbed mass ratio, experimental values  

■ Total adsorbed mass ratio, calculated 

◊, ∆ Individual components, calculated 

_____  graphical fit 
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 Figure 8b   Binary adsorption isotherms described by the two-parameter 

Margules model at 314°K 

 

The Margules model is in Table 5 and the parameter values are in Table 6. 

o Total adsorbed mass ratio, experimental values  

■ Total adsorbed mass ratio, calculated 

◊, ∆ Individual components, calculated 

_____  graphical fit 
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Figure 9   Phase diagram for CO2 calculated from experimental data using 

different models 
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Figure 10  Difference phase diagram calculated from different models at 295°K 

 

The ordinate represents the difference between the adsorbed mole fraction x predicted 

from the models and the gas phase mole fraction y. 
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Figure 11  Binary isotherms at 293°K and 2.06 bar, predicted and experimental. 

 

▵ ◊  Measured mass concentrations  of individual components 

▢   Total mass adsorbed calculated as the sum of the individual components 

_____ Calculated curve using the single component isotherms of Figure 2 and the 

Margules model with the parameters at 2.06 bar (Table 8) 
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