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Incremental Iris Recognition:
A Single-algorithm Serial Fusion Strategy to Optimize Time Complexity

Christian Rathgeb, Andreas Uhl and Peter Wild

Abstract— Daugman’s algorithm, mapping iris images to
binary codes and estimating similarity between codes applying
the fractional Hamming Distance, forms the basis of today’s
commercially used iris recognition systems. However, when
applied to large-scale databases, the linear matching of a single
extracted iris-code against a gallery of templates is very time
consuming and a bottleneck of current implementations. As
an alternative to pre-screening techniques, our work is the
first to present an incremental approach to iris recognition.
We combine concentration of information in the first bits of
an iris-code with early rejection of unlikely matches during
matching stage to incrementally determine the best-matching
candidate in the gallery. Our approach can transparently be
applied to any iris-code based system and is able to reduce bit
comparisons significantly (to about 5% of iris-code bits) while
exhibiting a Rank-1 Recognition Rate being at least as high as
for matches involving all bits.

I. INTRODUCTION

The human iris is emerging as the biometric of choice
for high confidence authentication. Proposed approaches to
iris recognition [1] report recognition rates above 99% and
equal error rates less than 1%. Providing high accuracy iris
recognition appears to be well suitable for access control
systems managing large-scale user databases. Within identifi-
cation systems, single iris-codes (probes) have to be matched
against a database of iris-codes (gallery) requiring linear
effort. In case databases comprise millions of iris-codes,
without choice, biometric identification will lead to long-
lasting response times. That is, reducing the computational
effort of iris-based identification systems represents a chal-
lenging issue [2].

In recent work [3], it has been shown that the entropy
of bits in iris-codes differs, depending on which parts of
the iris texture these bits originate from. The inter-relation
of local origin and consistency of bits in iris-codes defines
a global distribution of reliability. We exploit this fact in
order to accelerate iris biometric identification systems. From
analyzing bit-error occurrences in a training set of iris-codes
we estimate a global ranking of bit positions, based on which
given probes are rearranged, i.e. iris-codes are reordered.
With most reliable bits being arranged in the first part of an
iris-code, we can now more successfully apply partial and
incremental matching. The latter is a new technique, which
incrementally computes Hamming Distance (HD) scores
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between probe and gallery templates. Based on the outcome
of partial matching, candidates with high HD scores are
rejected dynamically. By this means, we gain performance
with respect to computational effort as well as recognition
accuracy. Representing a single-algorithm fusion technique
the proposed system is generic and applicable to existing
iris-code databases. In experimental studies, we investigate
trade-offs between the accuracy and computational effort of
different iris recognition algorithms. Obtained results confirm
the soundness of the proposed approach.

The remainder of this paper is organized as follows: in
Sect. II a brief summary of related work is given. Subse-
quently, the proposed system is described in detail in Sect.
III. In Sect. IV experiments are presented and discussed.
Sect. V concludes this work.

II. RELATED WORK

Recent work of Hollingsworth et al. [3] has shown that
distinct parts of iris textures reveal more constant features
(bits in the iris-code) than others. In other words, distinct
parts of iris-codes turn out to be more consistent than others.
This is because some areas within iris textures are more
likely to be occluded by eyelids or eyelashes. Additionally,
parts of iris-codes which originate from analyzing the inner
bands of iris textures are found to be more constant than
parts which originate from analyzing the outer bands. The
authors exploit this fact by ignoring user-specific “fragile”
bits during matching, resulting in a significant performance
gain.

In order to accelerate identification runtime, Gentile et al.
[4] have suggested a two-stage iris recognition system in
which a shortlist of the top ten candidates is estimated using
so-called short length iris-codes (SLICs [2]). For a rather
small testset (85 classes) experiments reveal a performance
speedup of a factor of 12 in terms of bit comparisons.
However, the SLIC top ten candidates did not contain the
correct match in about 7% of the cases which cannot be
overcome in the later stage, limiting the true positive rate to
about 93% for the overall system.

Previous work [5] has presented a more generic approach
for optimizing both, recognition and processing performance
of multibiometric systems in identification mode. The pro-
posed method exploits ranking capabilities of individual
features by reducing the set of possible matching candidates
at each iteration. When applied to hand-based modalities,
the new system is as accurate as sum-rule based fusion of
individual classifiers, but twice as fast as the best single
classifier on 86 classes.
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Fig. 1. System Architecture: the basic operation mode of the proposed system which comprises a training stage, gallery update and identification.

III. SYSTEM ARCHITECTURE

In order to apply incremental iris recognition, it is nec-
essary to (1) obtain an ideal permutation of iris bits from a
training stage, (2) perform a gallery update and (3) modify
the module implementing the matching strategy. All these
tasks and underlying system components are illustrated in
Fig. 1 and described in more detail as follows.

A. Preprocessing and Feature Extraction

In the preprocessing step, pupil and iris of a given sample
are detected by applying Canny edge detection and Hough
circle detection. After localizing the pupil and iris circles, the
area between them is transformed to a normalized rectangular
texture of 512 × 64 pixel, according to the “rubbersheet”
approach by Daugman. As a final step, lighting across the
texture is normalized using blockwise brightness estimation.

In the feature extraction stage, we employ custom im-
plementations of two different algorithms extracting binary
iris-codes. The first one was proposed by Ma et al. [6].
Within this approach the texture is divided into stripes to
obtain 10 one-dimensional signals, each one averaged from
the pixels of 5 adjacent rows (the upper 512 × 50 are
analyzed). A dyadic wavelet transform is then performed
on each of the resulting 10 signals, and two fixed subbands
are selected from each transform resulting in a total number
of 20 subbands. In each subband all local minima and
maxima above an adequate threshold are located, and a
bitcode alternating between 0 and 1 at each extreme point
is extracted. Using 512 bits per signal, the final code is
then 512 × 20 = 10240 bit. The second feature extraction

method follows an implementation by Masek1 in which
filters obtained from a Log-Gabor function are applied. Here,
a row-wise convolution with a complex Log-Gabor filter is
performed on the texture pixels. The phase angle of the
resulting complex value for each pixel is discretized into
2 bits. Again, row-averaging is applied to obtain 10 signals
of length 512, where 2 bits of phase information are used to
generate a binary code, consisting of 512× 20 = 10240 bit.
The algorithm is somewhat similar to Daugman’s use of Log-
Gabor filters, but it works only on rows as opposed to the
2-dimensional filters used by Daugman. Different algorithms
require separate training stages to determine reliable bits.

B. Training Stage and Gallery Update

Based on the idea that distinct parts of iris-codes contain
more constant bits than others, we try to approximate a global
reliability mask in the training stage. For a training set of n
different classes Ui of iris images, where each class contains
k iris images, n · k · (k − 1)/2 intra-class matchings and
k·n·(n−1)/2 inter-class matchings (for balancing reasons we
only compare templates with equal indices within a class) are
performed. Prior to estimating the error probability for each
bit position, we estimate a perfect alignment by tolerating
7 shifts of the second iris-code for each matching pair.
Subsequently, for each bit position the propabilities of intra-
class and inter-class error occurrence are estimated, denoted
by PIntra and PInter , respectively. The reliability at each
bit position is defined by R = PIntra - PInter . Reliability
measures of all bit positions over all pairings define a global
(user-independent) reliability distribution, which is used to

1L. Masek: Recognition of Human Iris Patterns for Biometric Identifica-
tion, Master’s thesis, University of Western Australia, 2003
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rearrange given iris-codes in ascending order with respect
to bit reliability (small values indicate high reliability). A
schematical impression of this process is shown in Fig. 2.

Once the reliability mask is calculated, iris-codes of a
given user gallery are updated. From the previously calcu-
lated reliability mask an ideal permutation of bit positions is
derived and applied to reorder all enrollment samples such
that the first bits represent the most reliable bits and the last
bits represent the least reliable bits.

C. Identification and Matching Strategies

Matching is executed in the transformed domain of re-
ordered iris-codes. If galleries of original iris-codes are
updated as outlined above, also each probe needs to be
permuted before matching. However, due to this modifica-
tion, the iris-code loses its property to tolerate rotational
variance with simple bit-shifts. But this problem can be
targeted by preparing correctly shifted variants using the
inverse permutation.

In experiments we test two types of matching strategies:

• Partial matching: this method involves a traditional
determination of the fractional HD, but restricts codes
to a certain length. By this means, the amount of bit
comparisons - and therefore time complexity - can be
controlled exactly at the cost of possible degradation of
matching accuracy. In case the reliability mask can suc-
cessfully identify non-reliable bits over different users
we can even expect to gain performance [3]. In order
to assess the effect of reliability masks we test three
types of permutations: Original refers to the identity
permutation, i.e. partial matching on the unaltered iris-
code, Random refers to a random permutation and
Sorted uses the introduced ideal permutation.

• Incremental matching: this new technique illustrated in
Fig. 3 performs partial matching of the probe with
each gallery template for a given window size. After
having obtained all partial HDs for a window, they
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Fig. 3. Incremental iris matching: HD is incrementally calculated allowing
early rejection of unlikely matches.

are combined with the corresponding HDs from previ-
ous windows (incremental computation) and all gallery
templates are ordered according to their HD. Only
candidates with a high chance for being the correct
identity are kept, rejected candidates are excluded from
further computations. Parameters for this method are
window sizes and the exclusion criterion.

The idea, that a cascade of classifiers at multiple stages
rejects candidates is not new, e.g. Viola and Jones [7] use
this technique for face detection. However, the proposed
incremental matching is the first method to work on iris-
codes and combining reliability masks with early rejection.
Our approach may also be seen as a single-algorithm fusion
technique operating on different parts of the iris texture [8]:
since the fractional HD over a sum of adjoint windows
corresponds to the sum of HDs of these windows, the
proposed method is a sum-rule fusion of partial matching
classifiers.

IV. EXPERIMENTAL STUDIES

In order to assess partial and incremental matching tech-
niques, we employ the CASIA-V3-Interval2 iris database
consisting of good quality NIR illuminated indoor images
with 320 × 280 pixel resolution. Examples of input and
processed textures are illustrated as part of the system ar-
chitecture in Fig. 1. For experiments, we considered left-eye
images only yielding a total of 1307 out of 2655 instances.
These images are partitioned into two sets:
• Training-A: 87 images of the first 10 classes for param-

eter estimation purposes;
• Test-B: 177 single-enrollment gallery images and 1043

probe images of the remaining 177 classes for closed-
set identification experiments.

The following subsections will cover each a specific
research question concerning the soundness of our approach.

2The Center of Biometrics and Security Research, CASIA Iris Image
Database, http://www.sinobiometrics.com



A. Do reliability masks really concentrate more reliable
information in the first bits of an iris-code?

After obtaining the reliability mask and ideal permutation
from set Training-A, we test block-wise partial matching on
set Test-B, see Figs. 4, 5 (10240-bit iris-codes are divided
into 20 adjacent 512-bit blocks).

For the unaltered configuration (Original), bits in early
512-bit blocks tend to exhibit more information with respect
to rank-1 recognition rate (RR-1) than later blocks, however
there is no clear monotonicity for both algorithms. Indeed,
if block size is further reduced, a typical sawtooth-pattern
becomes visible as can be seen in the according reliability
masks in Figs. 6,7 which define the reliability at each bit
position, as previously described. It turns out, that reliable
bits are not uniformly distributed (as observed in [3]), but
rather follow a specific pattern. Experiments show, that this
pattern can be learned by relatively few training samples
(Training-A with 87 images) and reproduces the desired sort-
ing behavior in a distinctive set (Test-B). Recognition rates
for this partial matching variant (Sorted) stay rather high
until about 50 percent of the iris-code (92-97% for Ma, 91-
95% for Masek), and then rapidly decrease. When applying
Random (partial matching using random permutation), we (1)
obtain an almost equal RR-1 (92.3% with standard deviation
0.9 for Ma, 91.8% with standard deviation 1.0 for Masek) for
each 512-bit block and (2) this rate is higher than for each
other block in the original iris-code. Hence, if no training
data is available random permutations are suggested.
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Fig. 4. RR-1 for 512-bit blocks for Ma (7 shifts) on Test-B.
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Fig. 5. RR-1 for 512-bit blocks for Masek (7 shifts) on Test-B.

B. How are reliable bits distributed over iris textures for
different iris recognition algorithms?

We have seen, that reliability masks (see Figs. 6,7) indeed
induce a ranking of bits for unseen iris-codes. In order to

check for similarities between masks for different algorithms,
we have to re-map bit errors to the localized area of origin
within the iris texture. Fig. 8 illustrates this back-mapping
revealing similarities in the structure of different reliability
masks and corresponding reliability textures.

The shape of reliability textures is quite expectable: since
reliability masks are computed on the whole iris texture
without considering iris masks, usually masked areas should
exhibit many errors, while unmasked areas should be free of
errors. A typical two-dome pattern of non-reliable bits with
stable middle bands (as reported in [3]), especially for lower
iris parts (right arm of the unrolled iris texture) probably due
to less frequently occluding eyelashes, is clearly visible.
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Fig. 6. Reliability mask for Ma on Training-A.
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Fig. 7. Reliability mask for Masek on Training-A.
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Fig. 8. Distribution of reliable bits: (a) reliability texture for Ma (b)
reliability texture for Masek.

C. Does incremental iris recognition reduce matching time
complexity at retaining high recognition accuracy?

We have tested incremental iris recognition using Ma and
Masek’s algorithms in 2 different shifting variants: 0 shifts
and 7 shifts. Table I lists all rates for tested matching variants.
For 0 shifts, Incremental is able to reduce the total number
of bit comparisons to 3.2% at 82.7% RR-1 for Ma and to
3.8% at 87.7% RR-1 for Masek. The obtained recognition
rates are even slightly better than for the Original reference
using all bits (79.8% RR-1 for Ma and 86.8% RR-1 for
Masek) due to the property of reliability masks to identify
non-reliable bits. The 7 shifts variant draws a similar picture



TABLE I
RR-1 RATES OF PRESENTED MATCHING TECHNIQUES FOR DIFFERENT

AMOUNTS OF BIT COMPARISONS ON TEST-B
RR-1 Ma Masek
(Bits) 0 shifts 7 shifts 0 shifts 7 shifts

Original

All Bits 79.8 98.6 86.8 95.7
1% Bits 19.4 19.2 20.5 18.4

10% Bits 64.8 87.0 72.8 81.8
Best RR-1 79.8 98.8 87.5 97.4

(Bits) (100%) (70.7%) (70.7%) (70.7%)

Random

1% Bits 56.6 61.6 66.3 65.6
10% Bits 76.0 96.5 85.0 95.2
Best RR-1 79.8 98.6 87.0 95.9

(Bits) (100%) (84.1%) (59.5%) (42.0%)

Sorted

1% Bits 69.8 77.9 66.7 67.5
10% Bits 83.6 97.7 86.0 94.9
Best RR-1 84.1 99.2 88.6 97.3

(Bits) (14.9%) (35.4%) (50.0%) (70.7%)

Incre-
mental

1% Bits 76.5 79.7 75.1 67.5
Best RR-1 82.7 99.2 87.7 97.2

(Bits) (3.2%) (4.8%) (3.8%) (5.0%)
Non-partial 81.0 99.1 87.6 97.2

(Bits) (5.1%) (4.9%) (3.9%) (5.0%)

with Incremental reducing the number of bit comparisons to
4.8% at 99.2% RR-1 for Ma and 5.0% at 97.2% RR-1 for
Masek (Original reference rates: 98.6% for Ma, 95.7% for
Masek). These rates refer to best RR-1 performance varying
the maximum amount of bits. But also in case of allowing
all bits (non-partial) incremental iris recognition is a highly
scalable technique.
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Fig. 9. Time complexity vs. Recognition accuracy for Ma (0 shifts).
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Fig. 10. Time complexity vs. Recognition accuracy for Ma (7 shifts).

D. Which tradeoff exists between time complexity and recog-
nition accuracy for investigated time-scaling approaches?

The varying amount of bits to be matched for identification
introduces a tradeoff between time complexity (in terms of
bit comparisons) and recognition accuracy (RR-1), visualized
in Figs. 9-12. This tradeoff also exists for incremental
matching, since it is possible to abort the computation if a
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Fig. 11. Time complexity vs. Recognition accuracy for Masek (0 shifts).
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Fig. 12. Time complexity vs. Recognition accuracy for Masek (7 shifts).

certain amount of bits has been matched. In this configuration
however, it is no longer possible to directly control the
amount of bit comparisons, since the list of potential matches
is reduced dynamically.

For partial iris matching, Random performs much better
than Original over the entire range of bit comparisons and for
all tested algorithm variants. With Random it is possible to
reduce the amount of bit comparisons to about 10% without
significant degradation in performance (maximum absolute
RR-1 degradation less than 5% of the original value).

Even without reordering (Original), partial matching tol-
erates a loss off about 50% of the bits without degrading
performance too much. But in this case, as can be seen from
the graphs in Figs. 9-12, recognition rates decline rapidly if
the amount of bits falls below 5%.

With reliability masks (Sorted), partial matching recog-
nition rates can be further optimized and now even exceed
Original match performance using all bits (1-5% higher RR-
1 at 15-70% of bit comparisons, depending on the type of
algorithm). This is the case, because the last bits in the code
contain less discriminative information and may degrade total
performance.

Finally, Incremental consequently delivers the highest sav-
ings in terms of bit comparisons, only about 5% of iris-code
bits are required while all RR-1 values are at least as high
as for a full iris-code match. However, additional savings by
partial matching are negligible.

E. How to choose reasonable parameters for incremental
iris recognition?

For incremental iris recognition there are two parameters:
window sizes (positions within the iris-code where to com-
bine and rank HD values), and exclusion criterion (EC).

Regarding the first parameter it turns out, that evaluations
at positions with logarithmic spacing are well suited. This is
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because the RR-1 is sensitive to small changes for few bit
comparisons, while tolerating larger changes if a high amount
of bits is available. Also the additional worst case ranking
overhead per match is in O(log(n)∗r) where n refers to the
(partial) iris-code length and r is the time amount required
to combine, resort and reject HD measures.

In case of the second parameter, a natural approach is to
define a maximum tolerance of HD deviation of candidate
x with sample s from the best-matching candidate b at i
percent of bit comparisons:

EC i(x) :=

{
keep if HD i(x, s)−HD i(b, s) < ηi,
reject otherwise.

(1)
Performance as well as intra- and inter-class scores depend
on the amount of bit comparisons, see Figs. 13-15. This way,
at each iteration step in the incremental computation, we
assess the probability that the current template may finally
end up with a smaller HD value than the current best-
matching candidate. An adequate choice for ηi is:

ηi := max
(a,b)∈G

|HD i(a, b)−HD50(a, b)| +

avg
(a,b)∈I

|HD i(a, b)−HD50(a, b)| (2)

obtained from intra-class matches G and inter-class matches
I in set Training-A. Note, that as reference rate we selected
the outcome after 50% of the iris-code to account for non-
reliable bits (see Fig. 13).

While there may be other (user-dependent) parameters
achieving even higher savings in processing time, the pre-
sented choice is a straight-forward approach and only small
training data is needed to produce stable results. However,
the choice of suitable parameters is still an interesting point
to work on and will be subject to future research in this area.

V. SUMMARY AND CONCLUSION
Several years of research have proven the accuracy and

practicality of iris recognition [1]. While proposed ap-
proaches reach a high level of maturity with respect to
recognition rates, performing identification on large-scale
user galleries requires exhaustive linear search. In order
to overcome system bottlenecks recent research has been
focused on reducing computational effort in iris-based iden-
tification systems [4].

In this work we presented a generic approach to opti-
mize time complexity of biometric identification employing
different iris recognition algorithms. From a training set
of iris images we derive a global distribution of reliability
over each single bit position of iris-codes, based on which
operational galleries of enrollment samples are reordered.
By analogy, bits of acquired iris-codes are permutated, such
that template matching, for which we propose a partial and
an incremental strategy, is highly accelerated in a single-
algorithm serial fusion scenario. The proposed technique
offers significant advantages over conventional bit-masking,
which would represent binary reliability masks. Reliability
masks are global and therfore applicable to all users. Thus,
memory is saved (single mask per algorithm) while matching
procedures remain unaltered for each pair-wise comparison.
Furthermore, reliability masks define a precise ranking of
bits in iris-codes, rather than ignoring parts of iris textures.
In our experiments we demonstrate that by applying the
proposed approach we are capable of reducing the overall
bit comparisons to about 5% (!) while maintaining or even
increasing recognition performance.
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