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Incremental Knowledge Acquisition for
Improving Probabilistic Search Algorithms

J.P. Bekmann1,2 and Achim Hoffmann1
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Abstract. A new incremental knowledge acquisition approach for the
effective development of efficient problem solvers for combinatorial prob-
lems based on probabilistic search algorithms is proposed. The approach
addresses the known problem of adapting probabilistic search algorithms,
such as genetic algorithms or simulated annealing, by the introduction of
domain knowledge. This is done by incrementally building a knowledge
base that controls parts of the probabilistic algorithm, e.g. the fitness
function and the mutation operators in a genetic algorithm.
The probabilistic search algorithm is monitored by a human who makes
recommendations on search strategy based on individual solution can-
didates. It is assumed that the human has a reasonable intuition of the
search problem. The human adds rules to a knowledge base describing
how candidate solutions can be improved, or characteristics of candidate
solutions which he/she feels are likely or unlikely to lead to good solu-
tions. Our framework is inspired by the idea of (Nested) Ripple Down
Rules where humans provide exception rules to rules already existing
in the knowledge base using concrete examples of inappropriate perfor-
mance of the existing knowledge base.
We present experiments on industrially relevant domains of channel rout-
ing as well as switchbox routing in VLSI design. We show very encourag-
ing inital experimental results demonstrating that our approach can solve
problems comparably well to other approaches. These other approaches
use algorithms developed over decades, while we were able to develop an
effective search procedure in a very short time. A brief discussion outlines
our KA experience with these experiments.

1 Introduction

General purpose search algorithms attempting hard problems rely on the in-
troduction of domain knowledge in order to make the search feasible. For a
long time Genetic Algorithms (GA) have been considered to be general purpose
search techniques which can be applied to all sorts of search problems. In prac-
tice, however, it usually proves to be rather difficult to adapt a general purpose
GA design to a particular problem type at hand [1, 2]. To tailor the GA to a
problem really well may easily take months of development.

Anecdotal accounts suggest that tailoring a general purpose probabilistic
search technique, such as GA or simulated annealing, to suit a given problem
can take months or even years while the implementation of the basic algorithm
can be done in a matter of days.



Hence, it is critical to address the problem of tailoring general algorithms
to suit a given problem. In genetic algorithms, there are a number of issues
which need to be adjusted for a problem. They include general parameters, such
as number of generations, population size, the problem encoding and the way
offspring is generated (i.e. what kind of mutation, cross-over etc.).

In particular, for the way of how offspring are generated it appears that a
knowledge acquisition approach can be used to address the problem as humans
seem generally to have some idea of what kind of offspring might improve the
chances of finding a (good) solution.

We pursued the idea that a knowledge acquisition approach could be used
to develop a knowledge base that controls the generation of promising offspring.
While the GA without a tailored knowledge base can be expected to find some
sort of solution (often by far suboptimal), after sufficient computing time is given
(often excessive), an incrementally developed knowledge base for improving the
offspring generation lets us expect a gradual improvement in performance of the
GA.

We chose an incremental knowledge acquisition process, inspired by Ripple
Down Rules [5], as it seems usually possible for a human, who has some idea
of how to find solutions for the problem at hand, to judge at least for extreme
cases, which offspring should be ignored and what kind of offspring are promising
compared to their parents.

The incremental knowledge acquisition approach we present in this paper
allows the user to inspect individuals as they were generated by the existing GA
process. If a generated individual is considered to be useless the probability of
it being generated can be reduced by providing suitable characteristics of the
kind of offspring that should be generated less often or not at all. Similarly,
the probability of promising offspring to be generated can be increased in the
same way. Furthermore, if the human wants to propose a particular way of
constructing an offspring from a parent (or parents), the human can define a
suitable operator that modifies the parent(s) accordingly. The applicability of
such a newly introduced operator would again be controlled by a set of rules,
which are organised in a Ripple Down Rules (RDR) structure.

Our incremental knowledge acquisition framework ensures that previously
provided knowledge about the quality of individuals is largely maintained while
additional knowledge is integrated into the knowledge base by only being applica-
ble to those cases where the existing knowledge base did not judge in accordance
with the human. In other words, the adverse interaction of multiple rules in a
knowledge base is effectively avoided. Our work differs is some important aspects
from traditional RDR in that conditions and rules in the knowledge base (KB)
can be edited, and solutions can be found with an incomplete KB (specification
that does not cover all possible cases).

Our framework HeurEAKA (Heuristic Evolutionary Algorithms using Knowl-
edge Acquisition) allows the GA to run in conjunction with the current - initially
empty - knowledge base on problem instances. The evolutionary process can be
monitored by the human and individuals can be evaluated. If a particular in-
dividual is generated that appears undesirable or suboptimal, the human could
enter a new rule that prevents such behaviour in future or provide an improved
alternative action. The user might also add a rule which imposes a fitness penalty
on such individuals. More generally, the user formulates rules based on charac-



teristics of selected individuals, and these are applied in the general case by the
GA.

We expect the application of KA to other GA problems to be promising
whenever an expert has some kind of intuition of what differentiates good candi-
dates from bad candidates, as well as being able to make at least a guess at how
individual candidates may be improved. Given these considerations, we expect
that our approach is applicable to most practical GA applications.

This paper is organised as follows: In the next section we present our knowl-
edge acquisition framework HeurEAKA including a brief review of genetic algo-
rithms. Section 3 presents a case study where our framework was applied to the
problem of switchbox routing, an industrially relevant problem from the realm
of VLSI design. It also briefly discusses earlier experiments with the problem
of channel routing in VLSI design. The following sections, section 4 and sec-
tion 5 discuss our results and the lessons learned so far. This is followed by the
conclusions in section 6.

2 Our Incremental Knowledge Acquisition Framework
HeurEAKA

The HeurEAKA framework naturally falls into a genetic algorithm and a knowl-
edge acquisition component. The GA is essentially a general purpose genetic
algorithm. The KA part comprises a knowledge base manager which controls
modification of the KB as well as the evaluation of cases supplied by the GA.
The KA module contains a primitives interface which allows customization for
problem domain specific functionality. The framework is implemented with a
graphical user interface, but also supports batch-style processing.

2.1 Genetic Algorithms

Evolutionary algorithms are loosely based on natural selection, applying these
principles to search and optimisation. These include evolution strategy, evolu-
tionary programming, genetic programming and genetic algorithms, which we
concentrate our work on.

Basic GAs are relatively easy to implement. A solution candidate of the
problem to be solved is encoded into a genome. A collection of genomes makes
up a population of potential solutions. The GA performs a search through the
solution space by modifying the population, guided by an evolutionary heuristic.
When a suitable solution has been identified, the search terminates.

A genetic algorithm usually starts with a randomly initialized population of
individuals, and searches through the solution space guided by a fitness value
assigned to individuals in the population. Based on probabilistic operators for
selection, mutation and crossover, the GA directs the search to promising areas.
GAs have been applied to a wide variety of domains, and were found to be quite
effective at solving otherwise intractable problems [3] .

GAs do suffer from a variety of problems, most notably the “black art” of
tuning GA parameters such as population size, selection strategies, operator
weightings, as well as being very sensitive to problem encoding and operator
formulation [1, 4]. We aim to address some of these issues with an explicit for-
mulation of domain knowledge using well suited KA techniques.



Genome encoding and manipulation is treated by the GA as opaque. All
manipulations take place indirectly via the primitives interface (see Section 3.3).

In order to generate new individuals, the GA has to select parents from the
current population and then generate offspring either by mutation and/or by
crossover. Further, some individuals of the current generation should be selected
for removal and replaced by newly generated individuals.

Offspring of selected parents are either created via a crossover copy oper-
ation or as a mutated copy. A parameter determines which operator will be
applied. The crossover operator mimics natural evolutionary genetics and allows
for recombination and distribution of successful solution sub-components in the
population.

In order to select individuals either as a parent for a new individual or as
a candidate to be removed from the population, the knowledge base is invoked
to determine the fitness of an individual as explained below. In order to gener-
ate suitable offspring, another knowledge base is invoked which probabilistically
selects mutation operators.

Fig. 1 illustrates the interaction between the GA and the KA module.
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Fig. 1. The GA consults the KB when eval-
uating and mutating a genome. Picking an in-
dividual, the expert can iteratively review the
corresponding rule trace and modify the KB.
For compactness, the diagram only shows the
refinement of the evaluation operators - in
practice, the mutation operators are refined
in the same way.
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Fig. 2. A simple RDR structure. The dashed line

indicates the path taken & rule executed (V ) for ade,
the bold box indicates how action Z would be added
for adghij.

2.2 Knowledge Acquisition

Our knowledge acquisition approach for building the knowledge base for fitness
determination and the knowledge base for selecting operators for offspring gen-
eration is based on the ideas of ripple down rules (RDR) [5]. RDR builds a
rule base incrementally based on specific problem instances for which the user
explains their choices. An extension of RDR allows hierarchical structuring of
RDRs - “nested RDR” (NRDR) [6]. NRDR allows re-use of definitions in a KB,
and the abstraction of concepts which make it easier to describe complex prob-
lems on the knowledge level and also allow for more compact knowledge bases
for complex domains.

Ripple Down Rules Knowledge Base: We use single classification RDRs
(SCRDRs) for both types of knowledge bases. A single classification RDR is a
binary tree where the root node is also called the default node. To each node
in the tree a rule is associated, with a condition part and a conclusion which is
usually a class - in our case it is an operator application though. A node can have



up to two children, one is attached to an except link and the other one is attached
to the so-called if-not link. The condition of the default rule in the default node is
always true and the conclusion is the default conclusion. When evaluating a tree
on a case (the object to be classified), a current conclusion variable is maintained
and initialised with the default conclusion. If a node’s rule condition is satisfied,
then its conclusion overwrites the current conclusion and the except-link, if it
exists, is followed and the corresponding child node is evaluated. Otherwise, the
if-not link is followed, if it exists, and the corresponding child node is evaluated.
Once a node is reached such that there is no link to follow the current conclusion
is returned as a result. Figure 2 shows a simple RDR tree structure. In bold is
a rule that a user might have added for the case where conditions adghij hold,
causing action Z to be executed, instead of W.

In typical RDR implementations, any KB modification would be by adding
exception rules, using conditions which only apply to the current case for which
the current knowledge base is inappropriate. By doing this, it is ensured that
proper performance of the KB on previous cases is maintained.

Nesting RDRs allows the user to define multiple RDRs in a knowledge base,
where one RDR rule may use another, nested RDR tree in its condition, and
in HeurEAKA as an action. I.e. the nested RDR tree is evaluated in order to
determine whether the condition is satisfied. A strict hierarchy of rules is required
to avoid circular definitions etc.

For the purpose of controlling the Genetic Algorithm, in our approach all
conclusions are actually actions that can be applied to the case, which is an in-
dividual genome. The rules are formulated using the Rule Specification Language
as detailed below.

Fitness Knowledge Base The user specifies a list of RDRs which are to be
executed when the fitness of a genome is determined. The evaluation task can
thus be broken into components as needed, each corresponding to a RDR. The
evaluator executes each RDR in sequence.

Mutation Knowledge Base For determining a specific mutation operator
a list of RDRs provided by the user is consulted. Each RDR determines which
specific operator would be applied for modifying an individual. Unlike for the
evaluation, for mutation only one of the RDRs for execution will be picked
probabilistically using weights supplied by the user.

Rule Specification Language (RSL): Conditions and actions for a rule
are specified in a simple language based loosely on “C” syntax. It allows logical
expressions in the condition of a rule, and a list of statements in the action
section.

The RSL supports variables and loop structures. Domain specific variable
types can be defined, as well as built-in primitive commands relevant to the
problem domain. Section 3 gives examples of rule specification.

The Knowledge Acquisition Process in HeurEAKA: The knowledge
acquisition process goes through a number of iterations as follows: on each indi-
vidual the fitness KB is applied and a set of rules executed. The user can select
some of the individuals that appear to be of interest and then review the rules
that were involved in the creating of those individuals.

The genetic algorithm can be started, stopped and reset via a graphical user
interface. A snapshot of the GA population is presented, from which the user
can pick an individual for closer inspection. Figure 3 shows an example of the
GA window, in this case applied in the problem domain of switchbox routing.



As shown in Fig. 4, an individual solution can be inspected. It was found
necessary to have a good visualization and debugging interface to be able to
productively create and test rules.

A user can step back, forward and review the application of RDR rules to
the genome, and make modifications to the respective KB by adding exception
rules. Figure 10 shows an example of how these would be entered.

Since the evaluation of a set of RDRs can cause a number of actions to be
executed, it is necessary to allow the user to step through an execution history.
Given non-deterministic elements of operator selection, the interactive debugger
has to maintain complete state descriptions, i.e. genome data, variable instan-
tiation and values used in random elements, to make it feasible for the user to
recreate conditions for repeated testing.

Fig. 3. Taken from an application of the
HeurEAKA framework to the domain of
switchbox routing: The GA window dis-
plays snapshots of the population at given
intervals. The user can start, stop and step
through evolution. An individual can be
selected for closer inspection and evalua-
tion, leading to Fig. 4.

Fig. 4. The interactive screen allows the
user to inspect the individual, step through
rule application, and amend the KB as
needed. More details in Fig.10.(Note that
these screenshots were included to convey
an overall impression only)

If the user does not agree with the performance of a rule R in the knowledge
base, there are two ways of addressing it: Either the addition of an exception
rule to R can be made, or a modification of R is possible.

Modification of rules in the KB is not normally done with Ripple Down Rules,
as it is assumed that every rule which is ever entered into the knowledge base
has its reason to be there. Also, a modification of a rule may have undesirable
side effects which are not necessarily easy to control.

While these are valid reasons for not modifying rules, our initial experiments
suggest that it is sensible to modify rules at the beginning of building a knowledge
base. In particular, for the definition of new actions for modifying genomes, it
proved useful to have this option to modify rules.

In traditional RDR, the system can suggest conditions for new rules based on
past cases and the conditions of rules that did not fire. In our current framework
this is not supported for two reasons. Firstly, the rule attribute space is very large



- it extends over expressions containing GA attributes, RSL variables and nested
RDRs with parameters. Coming up with useful suggestions based on this large
set is quite hard - one might consider machine learning methods for suggesting
conditions. The second reason is that we are dealing with non-deterministic
choices in the probabilistic algorithm. These choices are not reflected in the
attributes tested by conditions, therefore past cases are not usually sufficient
for determining how one arrived at a certain conclusion. Nonetheless, we hope
that further work on methods for evaluating operator effectiveness might help
in identifying useful rule construction strategies.

Indeed, it is part of our approach to be able to use a KB which is incomplete.
i.e. Rules will not always be applied correctly since there is not always supervision
by the user, also the selection of rules is left to chance, so there is no guarantee
that an ‘optimal’ rule will be picked. Nonetheless, the heuristic search will be
able to cope with an incomplete ruleset and still find useful solutions. The idea is
that one provides generally useful operators and heuristic knowledge (e.g. in the
form of operator weightings) and allow the genetic algorithm’s search strategies
and probabilistic selection to make up the rest of the algorithm.

User Interface: As mentioned previously, a good user interface is necessary
for the productive development of rules. Visualisation of complex problems is a
powerful way to elicit intuitive understanding from the user. Rules can be added
easily and interactively, appearing in the same context as the visualisation. KB
organization is handled transparently using RDR principles.

The user interface is re-usable for different problem domains. The only part
that needs to be changed is the visualisation window. The GUI is implemented
in Qt (a portable GUI toolkit by Trolltech), and the visualisation is wrapped
in a single graphical widget object. This can readily be replaced by something
that translates the genome into graphical format. Should the visualisation not
be straightforward, requiring, e.g. interaction or animation, this can all be con-
veniently wrapped in this object. Along with the other modules in HeurEAKA,
it should be relatively straightforward to apply to a new problem domain.

User Assistance: HeurEAKA provides some assistance to the user, helping
to identify appropriate cases for modification of the KB:

A set of validation functions can be defined by the user, which are run on
each individual during the execution of the GA. When a function identifies an
appropriate individual, the GA is halted with an exception and provides a pointer
to the individual along with a trace of all the rules applied in the last mutation
operation. The user can then decide whether to further examine the individual.
It is up to the user what he/she wants in the evaluation function, but we found
it useful to include some general heuristic conditions which we found would
indicate particularly bad characteristics, or even illegal solutions - allowing us
to trace the origins of such individuals in the population.

Statistics are kept on rules involved in mutation operations. Changes in fit-
ness are attributed to the rules that caused them, also the frequency of rule use
in successful vs. unsuccessful individuals is tracked. These data help the user
gain an overview of how useful particular parts of the KB are, and highlight
problem areas that might need attention.



3 Case Study & Experiments

The following section provides an overview of two case studies done using Heur-
EAKA. A detailed description of the features available is not possible due to
space limitation. We present how our framework was applied to the problem
domain of channel and switchbox routing, along with experimental results.

3.1 Domain Specifics

In order to demonstrate that genetic algorithms enhanced with knowledge ac-
quisition can be used to develop algorithms for solving complex combinatorial
problems, detailed channel routing as well as switchbox routing, both industrially
relevant problems within the realm of VLSI design, were chosen to demonstrate
the approach.

A channel routing problem (CRP) is given by a channel of a certain width. On
both sides of the channel are connection points. Each connection point belongs
to a certain electrical net and all connection points of the same net need to be
physically connected with each other by routing a wire through the channel and,
of course, without two nets crossing. The width of the channel determines how
many wires can run in parallel through the channel. The length of the channel
determines how many connection points on both sides of the channel there may
be. Furthermore, the layout is done on a small number of different layers (e.g. 2
to 4 layers), to make a connection of all nets without crossing possible at all. It
is possible to have a connection between two adjacent layers at any point in the
channel. Such a connection is also called a via.

The switchbox routing problem is similar to the CRP, but does not deal
with only a two-sided channel, but rather a rectangle with connections on all
sides. Since wires can originate and terminate on the sides of a switchbox, and
the width of a channel generally being fixed (due to the fixed wire terminals on
either side), the SRP is more difficult to solve.

A solution to the CRP and SRP will be referred to as a layout. A KB contains
rules for the manipulation of layout instances, these can be used as part of a
heuristic algorithm capable of solving layouts in the general case.
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Fig. 5. Switchbox
and channel routing
in a general VLSI
layout problem.

Fig. 6. An example of a
switchbox solution containing
60 wires, 70 tracks and 100
columns.

Fig. 7. A sample of a three
layer channel routing layout
with 150 columns (3 layer is
easier than 2 layer).



Genome Encoding: A genome describes the layout of a CRP or SRP so-
lution. This takes the form of a list of wires. The wires are numbered 0-w where
w is the number of pin pairs that need to be connected, each connection be-
ing a wire. Each wire contains a sequential list of nodes. Each node has three
coordinates corresponding to the row, column and layer number.

A layout is characterized by the number of columns and rows (tracks), how
many pins (wire terminals) are to be found on the side of the channel / switchbox
and what the pin configuration is. A problem instance used for the system would
be given by the VLSI layout problem to be solved. Initially, a genome will usually
not represent a valid solution as some wires are usually crossing. Only when all
those crossings have been eliminated and not more than the prescribed number
of layers are used would the fitness value of a genome reach a satisfactory level.

Genome Operations: Individuals in the GA are initialised with a ran-
dom wire layout without regard to conflicts. The GA operates on a genome by
crossover, mutation and evaluation.

The GA’s crossover operation is currently not part of a knowledge base
(Sect. 5 discusses this further). In crossover, two parents are duplicated giv-
ing two children. A set of wires is exchanged between the two children using
2 point crossover. This works by picking 2 random numbers, c1 and c2 (where
0 ≤ c1 ≤ c2 < number of wires). The set of wires numbered c1 to c2 are
exchanged between the children.

Evaluation is done using the evaluation KB. Typically the user uses as a
fitness criteria the number of layers and conflicts in a layout. The length of
wires, number of vias and possible cross-talk (electronic interference occurring
in parallel wires) are also useful fitness criteria.

The mutation KB contains rules designed to manipulate the layout, typically
they would describe the resolution of a conflict identified using the .findconflict
command (a primitive function returning a conflict found in the layout).

Primitives Interface & Rule Specification Language Extensions:
Primitives relating to the layout problem are supplied. These include the types
wire and node, as well as other layout-specific commands. High level operators
are defined as NRDRs forming a useful vocabulary for intuitive descriptions on
the knowledge level. Pre-defined primitive functions are also supported, these in-
clude, for example, .maxlayers (counts the number of layers found in a layout),
.countconflicts (the number of conflicts found in a layout). Some describe as-
pects of the GA operation, for example .ga.generation and .ga.popmaxfitness
(highest fitness in whole population).

Example of rules applied to the Switchbox Routing problem: Ini-
tially, a KB is built up defining operators using primitives based on node and
wire manipulation. These form the foundation for more high-level concepts which
can be used intuitively by an expert.

Assuming we start with a KB with relatively high-level actions defined,
e.g. RaiseWholeWire, MoveVerticalSegmentRight, MoveHorizontalSegmentDown
and MoveHorizontalSegmentUp, we can show how a sequence of these actions
could be applied by the GA to solve a conflict, as seen in Fig. 8.

When applied to another example, Fig. 9 shows that the same sequence is
unlikely to find a solution, and the expert can amend the KB to suggest an
alternative action. A little background information might be in order: when
improving a genome, the KB has rules which identify a random conflict to be
fixed. This will tag the nodes immediately preceding or at the conflict of the two



conflicting wires - labeled here as N1 and N2. ‘Preceding’ is defined in relation to
the node ordering which starts at the bottom or left side of a channel/switchbox
and ends at the terminating pin.

In this case, the user may find that MoveVerticalSegmentRight is undesirable,
and formulate a rule with condition is Vertical(N1) && is Horizontal(N2) &&
right of(N2.next,N1), and action MoveHorizontalSegmentUp(N1.prev). This rule
would be added as an exception in the KB. The operators referenced here are
defined as RDRs elsewhere in the KB, where is Vertical(N1) returns true if
the segment between N1 and its succeeding node is vertical (change in row),
is Horizontal(N2) returns true if the segment between N2 and its successor is
horizontal (change in column). right of(N2.next,N1) will return true if the node
succeeding N2 lies to the right of N1.

Figure 10 and Fig. 11 show how an expert would interact with the GUI to
add the exception for the rule in Fig. 9.
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Fig. 8. Resolution of conflicts in a switch-
box using 3 actions suggestions given by
an expert. See Sect. 3.1. for a description.
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Fig. 9. An exception is created by the ex-
pert, replacing the first rule suggested by
the KB, using the rule specified in Fig.
8. The tags N1 and N2 are explained in
Sect.3.1

3.2 Channel Routing Experiments

In order to test our approach and the implemented tool, a KB was created. Initial
tests were done with a KB containing 2 RDRs and 10 rules, later tests were run
with 50 RDRs and 167 rules. On average the KA process took approximately 10
minutes per rule.

We tested HeurEAKA with a “minimal” KB in order to approximate a GA
with very little domain knowledge, the 10 rule KB mentioned above was our
“small” KB. Both of these KBs were relative trivial to create. With this we
showed that without any useful knowledge about how to go about trying to
solve a layout problem, the GA was unable to find a solution. The graph in
Fig.12 shows how they performed. Initially, we see a reduction in conflicts due
to the GA selecting those randomly initialised layouts with the least number
of conflicts. The crossover operator accounted for some improvement too, since
it spread useful sub-components of solutions through the population. Once the



Fig. 10. The user is presented with a trace
of rules selected for each mutation & eval-
uation step. When Nested RDRs are used,
each RDR has a chosen rule.

Fig. 11. An exception to the rule selected
by the user in Fig.10 can be added.

easy part of the solution had been completed, both rule bases were ineffective
for resolving the more difficult conflicts. The mature KB was able to solve the
problems.

Layer Restriction: Initial tests using the 167 rule KB were run for 3 layer
layouts, with some found for up to 150 pins a side, an example is shown in Fig.
7. We decided to concentrate on 2 layer solutions as they are more comparable
to other attempts at solving the CRP, and the theoretical limits are better
understood for 2 layer layouts.

Channel Width / Number of Tracks: For testing purposes, random pin
configurations where generated. In order to approximate real problems and also
to control layout density, a heuristic ratio of long distance to short distance
crossing connections was used. This ratio was around 1:3.

The density for a 2-layer problem is defined as the maximum over all positions
p along the length of the channel as follows: the number of nets which have at
least one connection point on the left as well as one connection point on the
right of p. This determines the theoretical lower limit on tracks needed to solve
the problem.

CRP problems tested included 30,50,70 and 80 columns, with densities and
track numbers of 20/25, 24/35, 39/50, 44/70 respectively. Our experiments show
that reasonable solutions can be found using our approach. The size of layouts
and track sizes look comparable to those benchmarks used with other CRP
algorithms [11] and [7] - many are in the 12-23 column range, some up to 129.

3.3 Switchbox Routing Experiments

In order to see how flexible the HeurEAKA approach is, we tried to use the
existing KB on a slightly different problem. We made modifications in the prim-
itives module reflecting a different problem. We used a modified version of the
KB developed for the CRP. Changing the primitives and adapting the KB from
CRP to SRP took 2 days. Generally the SRP is more difficult to solve than



Fig. 12. Channel rout-
ing: Quasi random muta-
tions “minimal” KB and
a “small” KB are unable
to solve the 30 pin layout
problem. The more mature
KB can solve it effectively.

Fig. 13. Channel rout-
ing: Comparison of differ-
ent conflict resolution rates,
given different layout sizes
and layer allocation strate-
gies (static vs incremental).

Fig. 14. Switchbox rout-
ing: Comparison of differ-
ent conflict resolution rates,
given different number of
colums, tracks and wires.

the CRP. Track availability is far more restricted in the SRP since wire ter-
minals are fixed on tracks (at the sides of the switchbox). Also, assumptions
about terminals locations and wire orientation made in the CRP KB were not
always valid for SRP. Nonetheless, it was found that due to the flexible nature
of how HeurEAKA applies rules, it was possible to solve SRPs. In other words,
in order to solve the CRP we encoded sufficient examples for solving problems
that we generic enough to apply to the SRP. Also we are using a GA that is
robust enough to recover from wrong operations and capable of functioning with
incomplete operations.

Only two layer switchboxes were tested. Switchbox configurations were gen-
erated randomly with no restrictions on wire crossing distances. Solutions to
switchbox layouts were found for (column number, track number, wire count):
(30,20,20), (50,30,30), (70,50,40), (80,50,50), (100,70,60). Figure 14 shows con-
flict resolution rates for these switchboxes, and Fig. 6 shows an example of a
switchbox solution.

The dimensions the SRPs solved compare favourably with the benchmarks
tested in other attempts for do switchbox routing, notably when compared to
those achieved by other GA approaches [8, 12].

4 Knowledge Acquisition Experience

A comprehensive KB was created, comprising 49 RDRs and 167 rules. Initial
rules were low-level rules needed for the manipulation of nodes and wires. These
were necessary for establishing sufficient operators to use in a knowledge level
description. This work was fairly technical and required repeated editing and
debugging to ensure operator correctness. Incorrect operators at the low level
would often create invalid layouts (diagonal wires or vias, moved wire terminals)
or undesirable wiring - double-backing, repeated nodes etc. In order to help the
user, a validation module was run during a genome’s evolution, and any invalid
layouts would generate an exception. The offender could then be hand-analysed
(the exception generates an execution trace).

After the low level rules were defined, the KA process became easier since
most rules could be defined at a higher level of abstraction. Because this was
a more intuitive abstraction level, it was easier to formulate rules and required



less revision of conditions or actions. This part of the KB is primarily what
the probabilistic algorithm makes use of: choosing from the different high level
strategies in an attempt to resolve conflicts.

Using some of the simple rule statistics provided by HeurEAKA, it was possi-
ble to identify some dud rules, i.e. those that attracted excessive fitness penalties.
In general it was felt that these statistics needed to be further developed to be
really useful.

Another general strategy used for formulating rules was to let the GA run and
wait for the population to converge to promising solutions. Once the population
fitness rates had plateau’d, it was assumed current rules could suggest no better
improvements. Individuals were pulled out of the population and rules added
where the expert could suggest a strategy for improving on them.

5 Discussion

The experiments show that it is feasible to attempt solutions to complex prob-
lems using the HeurEAKA framework - in this case we applied it to the domain of
detailed Channel Routing Problem (CRP) and the Switchbox Routing Problem
(SRP). We were able to effectively perform KA using ripple-down rules based
knowledge acquisition, which formed an effective KB for the GA.

The development of the problem specific components of HeurEAKA did re-
quire some effort in addition to KB construction, it would be commensurate
with any other attempt at solving a CRP/SRP, since basic encoding and access
of a layout is necessary. We argue that the additional effort usually spent on
adapting and tuning GAs towards a problem domain is in excess of ours.

A number of studies have been made in the application of GAs to CRP
and SRP, these make extensive use of domain knowledge by formulating either
custom operators, or using existing known routing techniques [7, 8]. [7] show that
the use of informed operators results in finding of better solutions for the CRP,
which is what one would expect.

It is known that the development of a suitable representation, mutation and
crossover operators for genetic algorithms is often quite difficult [1]. Instead of
relying on the definition of operators through expert introspection and trial and
error, we allow the user to formulate them by exploring example cases. There
is an approach somewhat related in the use of case based reasoning for GA in
VLSI design [9]. Here, however, previous cases are selected by an expert and
only used for injection into a GA search, rather than formulation of operators.
It does not build on generalizations and expert insight learned from these cases,
thus being far less powerful.

There is some controversy over the importance of mutation vs. crossover
operators [2] in the successful design of GAs. In our current implementation,
we have chosen to initially concentrate on KA for the mutation and evaluation
operators.

It is worth investigating the use of KA for replacing the current crossover
operator with a KB based one. Goldberg [2] explains that in selectorecombinative
GAs, the design of crossover operators is very important for successful search.
When choosing the operator one wants a good chance of preserving sub-solutions
when exchanging between two individuals. When designing a crossover operator,
initially a user is likely to have very little prior knowledge in matching the
crossover operator to the problem encoding [2]. With KA one can support the



iterative refinement of the crossover operator in a similar way to our existing
approach. We expect, however, that it will not be as easy for a user to create rules
identifying good strategies for sub-component exchange as it is for incremental
improvement of one genome (as is currently done for the mutation operator).

We have provided the user with useful tools in the formulation of a KB.
The KA process was effective and supported by a good user interface. Helper
functions providing some automated selection of cases which would be good
candidates for formulation of new rules have been attempted. Extensions could
include the ability to review new and exisiting rules against a case history, and
better statistical measures relating their use in successful and unsuccessful evo-
lutionary paths.

On average rules took approximately 10 minutes each to formulate, taking
about 30 hours for the formulation of a viable knowledge base. The formula-
tion of effective CRP and SRP algorithms has been the subject of much study
and industry-standard algorithms took many years to develop [10]. In our case
KA was done by a novice, using mainly intuition and being able to incremen-
tally specify rules in a natural way on the knowledge level. Thus the effort and
expertise required was significantly less than commercial routing solutions.

Direct comparison of our solution to existing benchmarks needs extension to
supporting wire nets in the HeurEAKA tool. The results outlined in the previous
sections look promising, and with the continued development of the KB, should
produce even better results in the future.

The application of our framework in the well understood domain of CRP and
SRP, enables us to benchmark our results against industrially used algorithms.

6 Conclusion

In this paper we have presented a framework for solving complex combinatorial
problems based on incremental knowledge acquisition from a human expert.
We outline how our approach makes it easier to tackle such problems than the
conventional design of algorithms.

Given that the development of standard genetic algorithms still requires
considerable effort in the formulation and tuning of operators, we introduce
a method that is better suited to integrate domain knowledge. We used NRDR,
an unconventional KA technique, by integrating it into the design process to
provide an intuitive method of supporting an expert’s development effort.

We have adapted the principles of RDR to apply them in probabilistic search
algorithms. Considering the use of unusual RDR characteristics, our approach
showed that they still allowed us to perform effectively.

We demonstrate our approach in the domain of detailed channel and switch-
box routing. This shows that the approach achieves results comparable to con-
ventional approaches developed with considerably more effort.

We also hope to extend the RDR techniques used to provide more automated
support for rule formulation such as the automatic evaluation of proposed new
rules on databases of genomes that were generated through previous genetic
searches. Currently the process of identifying good candidate solutions for rule
formulation requires a fair amount of interaction by the user. In future this
process can be more automated by leveraging performance statistics of muta-
tion operators, as well as the possible introduction of some machine learning
techniques.



The knowledge base used in the experiments for CRP and SRP is sufficient
to solve problems comparable to those used in other GA benchmarks. However,
in future work we plan to extend our implementation to be able to tackle more
challenging problems. If we can show the competitiveness of these solutions, we
hope to apply the framework to problems in other domains.
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