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Abstract. Induction of a concept description given noisy instances is difficult and is further exacerbated 
when the concepts may change over time. This paper presents a solution which has been guided by 
psychological and mathematical results. The method is based on a distributed concept description which 

is composed of a set of weighted, symbolic characterizations. Two learning processes incrementally 
modify this description. One adjusts the characterization weights and another creates new characteriza- 
tions. The latter process is described in terms of a search through the space of possibilities and is shown 
to require linear space with respect to the number of attribute-value pairs in the description language. 

The method utilizes previously acquired concept definitions in subsequent learning by adding an 
attribute for each learned concept to instance descriptions. A program called STAGGER fully 
embodies this method, and this paper reports on a number of empirical analyses of its performance. 
Since understanding the relationships between a~ new learning method and existing ones can be difficult, 
this paper first reviews a framework for discussing machine learning systems and then describes 

STAGGER in that framework. 

1. Introduct ion 

T h e  abi l i ty  to  a d a p t  to the  e n v i r o n m e n t  is an essent ia l  qual i ty  for  any  in te l l igent  

m echan i sm .  F o r  d o m a i n s  in which  l ea rne r s  have  ex tens ive  p rev ious  k n o w l e d g e ,  

such as e lec t ronics ,  it  is a p p r o p r i a t e  to view lea rn ing  as be ing  heavi ly  gu ided  by  tha t  

p r io r  knowledge .  H o w e v e r ,  in d o m a i n s  in which the re  a re  no  h igh-qua l i ty  theo r i e s ,  

such as w e a t h e r  o r  f inancial  p r ed i c t i on ,  some  f u n d a m e n t a l  m e t h o d s  mus t  be  used  to  

gu ide  learn ing .  This  p a p e r  inves t iga tes  a b o t t o m - u p  lea rn ing  t echn ique  which  does  

no t  re ly  on  a s t rong d o m a i n  theo ry .  T h e  specific class of  l ea rn ing  tasks  a d d r e s s e d  

fall  u n d e r  the  t e r m  concept attainment, in which  t h e r e  is an a priori divis ion of  the  

w o r l d  in to  at  leas t  two ca tegor ies .  W h a t  mus t  be  l e a r n e d  is a desc r ip t ion  useful  

for  p red ic t ing  the  ca t ego ry  o f  a p rev ious ly  unseen  ins tance.  F o r  e x a m p l e ,  in 

w e a t h e r  p red i c t i on ,  the  ca t egor i e s  might  be  ra in  and no  rain.  G i v e n  a ser ies  o f  

w e a t h e r  ins tances ,  the  p r o b l e m  is to  l ea rn  which c ombina t i ons  of  f ea tu res  a l low 
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predicting whether there will be rain or not. An example description might be 'low 

barometer and either high winds or low temperature plus high humidity.' 

This general task of concept attainment (or 'learning from examples') has been 

widely studied by machine learning researchers; however, several important 

dimensions of the task have been simplified in the past. For example, few 

researchers have studied the deleterious effects of errors in the descriptions of 

instances. In complex domains, it is rarely the case that even the best hypotheses 

will be 100% accurate; sometimes high wind and low barometer readings lead to 

rain, and sometimes they do not. Hence the learner must be able to tolerate noise. 
Furthermore, most concept attainment work has assumed that the concepts to be 

defined are stable over time. Frequently, however, a derived description of a useful 

concept is disrupted by some change which requires its revision. Consider the fox 

who must revise his model of prey as summer brings out brown in a rabbit's coat 

and winter removes it. Similarly, after a volcanic eruption, feature combinations 

that were once predictive of rain may now fail to be. Furthermore, the learner must 

be able to distinguish between noise and concept change. At any given prediction 

failure, the question arises as to whether this failure is simply due to noise, or 

whether it is indicative that the concept is beginning to drift. 

This paper presents a learning method which draws from results in the fields of 

psychology and mathematics. The heart of the method is based on a distributed 

concept representation which is composed of a set of dually weighted, symbolic 

characterizations. Modification of the concept description occurs at two levels: 

adjustment of the weights and generation of new Boolean characterizations. This 

latter process constructs more general, more specific, and inverted versions of 

existing elements of the concept description in order to classify concept instances 

more effectively. Previous learning is utilized in subsequent concept attainment 

tasks by adding an attribute for each previously acquired concept to the instance 

description. 

The resulting method is incremental and is capable of learning in the presence of 

noise and drift. This work has suggested a series of psychological studies as well as 

interesting mathematical proofs. A program called STAGGER fully embodies this 

method, and this paper presents a number of empirical studies of its performance. 

In an attempt to describe these results clearly, the following section reviews a basic 

component framework for models of learning. The remainder of the paper gives a 

detailed description of STAGGER in terms of this framework, presents a number 

of empirical results, and then reviews the processes employed in related systems. 

1.1 Components of learning from experience 

Though methods in machine learning are remarkably similar in many respects, the 

mapping between individual techniques can be confusing. Terminology in the field 

is not yet well defined or stable, and methods are often described in terms of only 

one specific domain. It is often difficult to determine to what extent some new 
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proposed method is similar to existing ones, or how general an aspect of a method 

might be across domains. Recently, Easterlin (1985) and Langley and Carbonell (in 

press) have proposed components of the task of learning from experience; their 

goal is to clearly describe distinct portions of the general learning task so that each 

specific learning method may be properly compared with others. Collectively the 

authors suggest seven component processes: 

1. Clustering: deciding which objects to group extensionally into a class (e.g., 

at a zoo, separating animals into dangerous and docile groupings). 

2. Initialization: forming initial intensional characterizations of the clustered 

groups of objects (e.g., referring to 'all furry animals' rather than 

enumerating them). 

3. Projection: matching intensional descriptions against subsequent experience 

(e.g., guessing whether a new animal is dangerous or docile). 

4. Evaluation: determining the effectiveness of clusterings and characterizations 

in capturing experience (e.g., measuring how accurately 'furry' describes 

dangerous animals). 

5. Refinement: modifying a clustering or characterization to improve descrip- 

tions (e.g., regrouping animals into carnivores and herbivores). 

6. Aggregation: deciding which elements of instance descriptions are objects 

(e.g., focusing on the whole animal rather than considering each limb as a 

separate object). 

7. Storage: saving learned concepts so that they may be utilized effectively 

(e.g., saving 'furry' and other relevant characterizations for matching, but 

failing to save irrelevant descriptions like 'salty'). 

This is not intended as an exhaustive list of learning components, but for the 

purposes of this paper it is a useful starting point for dividing the overall task of 

concept formation into intuitive parts. 

2. Overview of STAGGER 

In terms of these components, STAGGER assumes a solution to the clustering 

task, since the world is predivided for it into positive and negative classes (e.g., 

predictors of rain versus predictors of no rain). This assumption is common to all 

learning from examples or concept attainment systems. STAGGER's input consists 

of individual descriptions of instances in the world, along with labels indicating 

their class. 

t In addition to the learning from examples or concept attainment task, the tasks of learning search 

heuristics, analytic learning, conceptual clustering, and others may also be described in this framework. 

We refer the reader to Easterlin (1985) and Langley and Carbonell (in press) for more examples. 
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STAGGER's initial concept description is a collection of the simplest possible 

features (e.g., input features: temperature, barometer reading, humidity). Each of 

these simple characterizations has an initially unbiased pair of 'weights.' Tl~e 

projection process matches this distributed concept representation against new 

instances. For each characterization, one of its weights is used if it is matched in this 

instance, and the other weight is used if it is unmatched. Weights are adjusted by 

the evaluation process which keeps track of the number of times each characteri- 

zation is matched or unmatched in examples and nonexamples. The refinement 

process unifies this distributed concept representation by combining individual 

elements to form more complex Boolean characterizations (e.g., low temperature 

and either low barometer or high humidity). 

The major component processes in STAGGER are initialization, projection, 

evaluation, and refinement. This paper first describes these component processes in 

STAGGER and then presents a series of examples to illustrate their operation. 

2.1 Initialization 

Initialization is the process of forming initial intensional descriptions of clustered 

groups of objects. In concept attainment, this description is used to predict the 

category of previously unseen instances. For domains containing noise, a 

description will not be a perfect predictor of a category. Rather, the description 

must represent the extent to which particular combinations of features are thought 

to be in the class of positive instances (e.g., rain predictors). In STAGGER, a 

concept description is a set of numerically weighted characterizations. The 

individual description elements are represented by Boolean functions of attribute- 

values, and each is dually weighted to indicate its predictiveness. This represen- 

tation includes conjunction, disjunction, and negation. 

The initial concept description is the set of all single attribute value pairs. These 

are initially assigned a pair of unbiased weights. During the projection process of 

matching a given instance against this concept description, each of the individual 

elements are examined and one of their weights influences the cumulative 

prediction made. One weight indicates the predictive value of an element when it is 

matched, and the other indicates its predictive value when unmatched. For 

pedagogical simplicity, consider the initial concept description for a domain of 

objects that can be described by size E (small, medium, large}, color ~ (red, 

blue, green} and shape e (circle, square, triangle}. The initial characterizations 

are: 
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Characterization Weights 

size = smal l  1 1 

size = m e d i u m  1 1 

size = large 1 1 

color  = red 1 1 

shape = triangle  1 1 

In this case there are nine initial characterizations. These simple characterizations 

are combined as necessary to form more general or more specific concept 

description elements by the search operators described in Section 2.4. An 

individual element is represented as a disjunctive list of conjunctive clauses; the 

conjunctive forms are represented by a list of the acceptable values for each 

attribute. For example, a characterization matching any object which is either small 

and red or is not a square would be represented as: (size = s m a l l  and c o l o r  = r e d )  or 

s h a p e  = (circle or t r i a n g l e ) .  Negation of a specific attribute's value is expressed by 

the disjunction of all of the possible values except the one negated; negating more 

complex characterizations is done by applying DeMorgan's theorem. Note that this 

representation is Boolean complete, and is therefore sufficient to express 

disjunction within an attribute and disjunction between attributes. However, it 

cannot represent relations such as 'two objects with the same color.' 

2.2 Projection 

Projection is the process of matching intensional descriptions against subsequent 

experience. In STAGGER, projection matches each characterization element in 

the concept description against a new instance. If an individual element is matched 

in this instance, one of its weights is used to increase expectation of a positive 

instance. If the element is unmatched, the other weight, is used to decrease 

expectation of a positive instance. This collective expectation is used to decide 

whether some new instance is positive or negative. This approach differs from most 

traditional machine learning systems in which a single characterization completely 

influences concept prediction. 

STAGGER utilizes Bayesian formulae to weight each characterization. These 

formulae were originally derived in work done for the Prospector mineral 

exploration system (Duda, Gasching, & Hart, 1979). The first of the two formulae, 

logical sufficiency (LS), approximates the degree to which the presence of a feature 

(F) increases expectation of an outcome (O). 

LS - p (FI O) 
p(Fl_~O ) (1) 
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L S  ranges from zero to positive infinity and is interpreted in terms of odds. Odds in 

favor of an outcome may be easily converted to probability by noting that the 

probability of the outcomes is p - od~ A n  L S  value less than unity (approaching 
I +odds" 

zero) indicates a negative correlation, unity indicates independence, and a value 

greater than unity indicates a positive correlation. 

Logical necessity (LN) is the second formula. It approximates the degree tO 

which the absence of a feature decreases expectation of an outcome, and it is 

defined as: 

p ( - 7 F l O )  

L N  - p(-~F170) (2) 

L N  also takes on values from zero to positive infinity. However,  an L N  value less 

than unity indicates a positive correlation because the absence of the feature 

predicts an absence of the outcome; a value greater than unity indicates a negative 

correlation. For both L S  and L N ,  unity indicates that the feature is irrelevant to the 

outcome. 2 

Projection computes an expectation of class membership by multiplying the prior 

odds of a positive instance and the L S  weights of all matched characterizations with 

the L N  weights of unmatched characterizations. 

Odds(positivelinstance) = Odds(posi t ive)  × [I L S  × II L N  (3) 
V m a t c h e d  V u n m a t c h e d  

The resulting number represents the odds in favor of a positive instance. A value ' 

much greater than unity indicates confidence that this instance is positive; a value 

less than unity indicates it is negative, and a value near unity indicates uncertainty. 

This process is quite similar to the weighted featural sum computation of the 

general processing algorithm given by Smith and Medin (1981); that is, category 

membership is calculated by summing the weighted values of each feature that 

matches a specific instance. Both of these calculations have the desirable property 

that the prototypicality of a new instance is computed. An instance with a very high 

projection score is highly prototypical; one with a socre slightly greater than unity is 

less so. Though this work does not attempt to duplicate various typicality effects 

(Smith & Medin, 1981), the projection process does exhibit them. 

S T A G G E R ' s  projection process matches a new instance against all previously 

acquired concept descriptions, generating an expectation for each concept 

attainment task; that is, it attempts to recognize as many concepts as it can in a 

single instance. For example, a park green could be recognized as both a picnic area 

2 It can be shown that LS = 1 if and only if LN = 1. Furthermore, when LS > 1 it will be the case that 
LN < 1 and vice versa. However, in general, LS 4= 1/LN. For example, if p(/~O) = 3/10 and p(b]-70)" 

= 1/10 then LS = 3 and LN = 7/9. 
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and a spot for a ballgame if STAGGER has previously acquired both of those 

concept definitions. Expectation of one concept may turther be used as a predictive 

cfiaracterization for another. Section 3.4 describes how STAGGER augments an 

instance description by projecting over previously attained concepts. In that 

example, learning about a simple concept for chess endgames eases learning about 

ff more complex one. 

In addition to representing concepts in a distributed manner and using Bayesian 

measures to compute a prototypical expectation, STAGGER incrementally 

modifies both the weights associated with individual characterizations and the 

structure of the characterizations themselves. These two latter abilities allow 

STAGGER to adapt its concept description to better reflect the concept. 

2.3 Evaluation 

Evaluation is the process of determining the effectiveness of the internal concept 

descriptions. In STAGGER, each characterization in the concept description is 

continually evaluated by adjusting its weights. This evaluation reflects psychological 

findings in learning and is based on the number of times each characterization has 

succeeded and failed as a predictor. 

2.3.1 Psychological data 
The Bayesian measures used by STAGGER to evaluate characterizations are 

influenced by results in the field of animal learning. In classical conditioning, animals 

learn to associate a novel stimulus with an unpleasant stimulus even when the two 

stimuli are not perfectly paired. This corresponds directly to a concept attainment 

task with noise: the trials are the instances, the unpleasant stimulus represents the 

class information of each instance (positive or negative instance), and the presence 

of various other stimuli constitutes the instance description. Psychologists 

discovered in the late 1960s that, for a rat to associate a novel stimulus (NS) with an 

unpleasant stimulus (US), the likelihood of the unpleasant stimulus in the presence 

of the novel stimulus must be greater than the likelihood of the unpleasant stimulus 

in the absence of the novel stimulus (Rescorla, 1968). Stated in mathematical 

terms, the relation p(USINS) > p(USI~NS) must hold for learning to O c c u r .  3 This 

characteristic of learning in classical conditioning is known as contingency; the 

situations covered by the formula can be broken into four possible cases. 

• When the novel stimulus and the unpleasant stimulus always occur together, 

p(USINS) = 1 > p(USI~NS) = 0 and thus the inequality holds. This 

3 This is a bit of an oversimplification. Animals learn that the novel stimulus and unpleasant stimulus 

are irrelevant to each other if p(USINS) = p(USI~NS) and learn that the novel stimulus predicts the 

absence of the unpleasant stimulus if p(US[NS) < p(USt~NS ). 
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corresponds to a noise-free situation because the novel stimulus perfectly 

predicts the unpleasant stimulus; neither occurs separately. 

• Moreover, if the unpleasant stimulus always follows the novel stimulus, btit 

the novel stimulus sometimes occurs separately, 1 > p(USINS ) > 

p(USI-nNS) = 0. This case corresponds to partial reinforcement since the 

novel stimulus is only partially reinforced by the unpleasant stimulus'. 

Extensive testing indicates that learning also occurs in this case (e.g., 

Fitzgerald, 1963). 

• Furthermore, if the novel stimulus always leads to the unpleasant stimulus, 

but the unpleasant stimulus sometimes occurs alone, then p(USINS) = 1 > 

p(USI~NS) > 0. Here the novel stimulus always leads to the unpleasant 

stimulus, but so may other cues. We have recently termed this case partial 
warning (Granger & Schlimmer, in press) and are currently investigating 

human and animal learning in this condition. Our hypothesis is that learning 

occurs in this case as well. 

• In the fourth possibility, the novel stimulus and unpleasant stimulus 

sometimes occur together and sometimes occur separately. The inequality 

may not hold, for 1 > p(US[NS) ? p(USI~NS) > 0. Learning fails to occur if 

the two stimuli are unpaired even a small number of times (Rescorla, 1968). 

This differential tolerance to isolated stimuli has been replicated extensively with 

different animal subjects (Gamzu & Williams, 1971) and in human experiments 

(Wasserman, Chatlosh, & Neunaber, 1983). 

2.3.2 Calculating contingency 
The above four types of conditioning situations may also be described from a 

machine learning point of view. Consider the possible situations that may arise 

when matching a concept description element against an instance. The characteri- 

zation in question may either be satisfied by the current instance features or not. 

Similarly, the instance may be either positive or negative. Following the 

terminology used by Bruner, Goodnow, and Austin (1956), a positive instance is 

positive evidence which may either confirm the predictiveness of a characterization 

(if it is matched in this instance) or infirm the characterization's predictiveness (if it 

is unmatched). Similarly, a negative instance is negative evidence which either 

confirms an unmatched element or infirms a matched one. Table 1 summarizes 

these possibilities. Contingency theory states that, in humans and animals, learning 

is impaired in situations containing both positive and negative infirming evidence. 

In situations containing only positive or only negative infirming evidence, learning 

proceeds unhindered. Note that a positive infirming instance may also be termed an 

error of omission (since the characterization was omitted), while a negative 

infirming instance is sometimes termed an error of commission. However, in the 

context of this paper we find it useful to distinguish between the prediction made by 

the program and the match of some characterization. Thus, an error of commission 

is an occasion when the program predicts a positive instance that is in fact negative. 



INCREMENTAL LEARNING FROM NOISY DATA 325 

Table 1. Possible situations in matching a characterization to an instance 

Instance Characterization 
Matched Unmatched 

Positive Confirming (Co) Infirming (Iv) 
Negative Infirming (IN) Confrming (CN) 

Negative infirming evidence is the simple presence of a characterization in a 

negative instance; no prediction is involved. 

The Bayesian weighting measures LS and LN may be easily calculated for each 

characterization by keeping counts of the possible situations listed in Table 1. The 

formulae for LS and LN in terms of the counts of each situation are: 

LS = Cp(IN + CN) LN = Ip(IN + CN) (4) 

IN(C e + Ip) CN(C P + Ip) 

Derivations of these formulae appear in Appendix A. 

The prior odds of a positive instance is also part of the projection process which 

matches the distributed concept description onto an instance. This may also be 

easily computed by dividing the sum of positive evidence for any characterization 

by the sum of the negative evidence for that same characterization: prior odds = 

(Cp + Ip)/(IN + CN). 

Though these measures only bear a surface similarity to the contingency 

inequality (i.e., p(USINS ) > p(USI-1NS)), as Section 3.2.1 describes, LS and LN 

predict the same learning in the four situations enumerated above. 

If STAGGER limited its learning to adjustment of the characterization weights 

via evaluation, the distributed concept representation would be sufficient to 

describe accurately the class of 'linearly separable' concepts (Hampson & Kibler, 

1983). This class is rather small, however. For instance, Exclusive-Or is not linearly 

separable. In this respect STAGGER is similar to connectionist models of learning 

when those models do not have any 'hidden' units. The purpose of the hidden, 

internal units is to allow the encoding of more complicated concepts. The 

refinement process of STAGGER serves an analogous purpose: individual 

characterizations are combined into more complex Boolean functions. 

2.4 Refinement 

The process of refinement modifies learned concepts to improve their effectiveness 

as measured by evaluation. In STAGGER, the elements of the distributed concept 

description are modified by specialization, generalization, and inversion. Modifica- 

tions are triggered by errors in projection and are heuristically guided by the 
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Figure 1. Partial characterization search space. 

Bayesian evaluation measures. Only a frontier of effective characterizations is 

maintained and, over time, refinement condenses the distributed concept description 

into a unified characterization. Backtracking is employed if necessary to recover 

from ineffective refinement. 

2.4.1 Search space and operators 

STAGGER searches through a space of possible characterizations as it refines its 

initial distributed representation of the concept into a unified, accurate one. Each 

possible boolean characterization of attribute values may be viewed as a node in 

the space of all such functions. Figure 1 depicts a small portion of this space over 

the simple domain described earlier (each ellipse represents a Boolean function). 

Any two of the possible Boolean functions are partially ordered along a dimension 

of generality (Mitchell, 1982). Nodes higher in Figure 1 are more general while 

more specific nodes are below. 

STAGGER's initial concept description consists of the simple characterizations 

in the middle of Figure 1. Notice that this space is more than twice the size of that 

typically searched by a conjunction-only method like version spaces (Mitchell, 

1982). Another interesting difference is that the version space method searches its. 

space of characterizations from both sides toward the middle; STAGGER beam- 

searches (Lowerre & Reddy, 1980) from the simplest points in the middle outward 
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toward both boundaries. In order to limit memory requirements, only a frontier of 

h.ighly ranked characterizations is retained; hence, the search is linear with respect 

to the number of attribute-value pairs in the description language. 

STAGGER's three search operators correspond to specializing, generalizing, or 

inverting characterizations. To make a concept description element more specific, 

search proceeds down a path which is a conjunction of two good elements currently 

in the search frontier. Complex characterizations are conjoined by first pairwise 

conjoining each clause of the disjuncts and then disjoining all of the results (see 

Section 2.1). Conversely, to make a more general element, search proceeds to a 

new disjunction. Lastly, a poorly scoring characterization may be negated; this 

does not raise or lower its degree of generality. Complex negation is accomplished 

via application of DeMorgan's theorem. 

2.4.2 Operator preconditions 
The conjunction, disjunction, and negation operators are not applied exhaustively; 

search is limited by proposing new elements only when STAGGER makes an error 

in projection. Furthermore, the type of error heuristically guides the direction of 

search. When a negative instance is predicted to be positive (an error of 

commission), projection is behaving in too general a manner. Thus search is 

expanded toward a more specific characterization, and a new conjunction is 

proposed from two good elements. On the other hand, a guess that a positive 

instance is negative (an error of omission) is overly specific; search is expanded to 

include a more general characterization by proposing a new disjunction. Either 

type of projection error also causes STAGGER to expand search by proposing the 

negation Of a poor characterization. Table 2 summarizes these search direction 

heuristics. 

The criteria for selecting good candidate elements differ between operators. 

STAGGER follows a two-step process of choosing good component characteri- 

zations. One set of heuristics nominates potential candidates, and a second set elects 
the crucial ones for inclusion in new characterizations. 

The nomination heuristic specifies alternative groups of characteri,~zations from 

which to form compounds, depending on the search operator and the type of 

prediction error made. After STAGGER has made an error of commission, 

concept description elements matched in this negative instance may be partially 

necessary, but are clearly not sufficient. Some elements must have suggested (via 

Table 2. Search direction heuristic 

Projection Actually Error type Search direction Boolean function 

Positive Negative Commission Specialize AND[cl, c2] 

Negative Positive Omission Generalize OR[cl, c2] 

- -  - -  Either Invert NOT[c] 
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Table 3. Nomination heuristic 

Error type Function Characterization nomination 

AND[cl, c2] Matched, Unmatched 
Commission OR[cl, c2] Unmatched, Unmatched 

NOT[c] Matched 

AND[cl, c2] Matched, Matched 
Omission OR[cl, c2] Matched, Unmatched 

NOT[c] Unmatched 

the projection process) that this instance was likely to be positive, but because this 

instance was negative, some necessary element was unmatched. Conjunction 

combines two necessary elements, so matched characterizations are nominated 

along with unmatched ones. If a disjunction is formed, elements which are 

unmatched in this nonexample are nominated since disjunction combines two 

sufficient characterizations, and no sufficient characterizations were present. 

Negation is used to invert characterizations which predict nonexamples. Its 

component is nominated from those characterizations which are matched in this 

nonexample. 

In an error of omission (an unpredicted example), all necessary characterizations 

must have been present, but some sufficient ones may have been missing. Again, 

conjunction combines necessary characterizations, so matched elements are 

nominated. Disjunctions are constructed from a known sufficient characterization 

(one matched) and another potentially sufficient (one unmatched). Nominating 

unmatched elements takes into account that STAGGER failed to predict an 

example: some characterization it considered important was missing. A new 

negation is nominated from the unmatched characterizations. Table 3 summarizes 

STAGGER's nomination heuristic. 

The nomination heuristic indicates potentially valuable candidates for conjunc- 

tion, disjunction, and negation. However, more characterizations are nominated 

than are needed by the search operator. The election heuristic further narrows the 

possible candidates by electing the crucial elements from those nominated. A 

Bayesian evaluation measure elects the most predictive of the nominated 

characterizations. Consider a situation leading STAGGER to propose appropriately 

a new conjunction. For example, the familiar concept father: a parent and a male. 

The two characterizations (parent and male) are always present in a positive 

instance (father) though they sometimes occur alone (a brother is male). This is 

negative infirming evidence (refer to Table 1). As Section 3.2.1 illustrates, L N  

tolerates negative infirming evidence and therefore elects criterial elements for 

conjunctions. In practice, a conjunction would be formed from the lowest L N  

element matched in the nonexample and the lowest L N  unmatched concept 

description element. By a similar argument, the converse Bayesian measure, LS, 
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Table 4. Election heuristic 

Function Election measure 

AND[cl ,  c2] LN(ci) << 1 

OR[cl,  c2] LS(ci) >> 1 

NOT[c] LN(c) >> 1 or LS(c) << 1 

elects high scoring characterizations to be used in forming new, disjunctive 

characterizations. New negated characterizations are elected equally by both 

Bayesian measures. Table 4 summarizes this second step candidate election 

heuristic. 

2.4.3 Pruning and backtracking 

New characterizations are introduced into the search frontier in a generate-and-test 

manner. The search operator heuristics generate new characterizations which are 

then either pruned from the frontier or established as part of it. If an established 

concept description element becomes ineffective, search backtracks and the 

established characterization is pruned. 

A characterization is immediately pruned unless (a) all of its sponsoring 

components are part of the established search frontier and (b) at least one of the 

components is not sponsoring any other characterizations. This effectively limits 

the size of the search frontier to at most twice the number of attribute-value pairs, 

because each expanding characterization requires at least one uncommitted 

sponsor from the among the established elements. 

For a new characterization to avoid being pruned and become established as part 

of the search frontier, it must be more effective than its sponsoring components. At 

the time of its introduction, a threshold based on the Bayesian values of the 

components is stored with the new characterization. If the new element surpasses 

this threshold, it is established as part of the search frontier and the components are 

pruned. The interim performance of a new characterization is assessed by 

examining recent changes in its Bayesian values (e.g., the last 10). These changes 

are averaged and, if this average is very small (e.g., below 0.1), the element 

appears to be reaching an asymptote. If this new characterization is still below the 

designated threshold, it is pruned. 

The threshold for a new, conjunctive characterization is based on the LN values 

of its sponsoring components. Because the new, more specific element matches less 

often than its sponsoring components do, it is guaranteed to have the same or less 

negative infirming evidence. Therefore, if the new characterization also has less 

positive infirming evidence, it is more effective than its components. LN is the 

appropriate measure of competition since it sensitively measures positive infirming 

evidence (see Section 3.2.1). By similar reasoning, the competition measure for a 
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Table 5. Pruning heuristic 

Boolean function Threshold Prune Establish Impeach 

AND [cl,  c2] T = min{LN(cl) ,  LN(c2)} ,~ T < T > T 

OR [cl, c2] T = max{LS(cl) ,  LS(c2)} :/- T > T < T 

NOT [c] T = 1/LN(c) 4~ T < T > T 

T = 1/LS(c) ~ T > T < T 

more general characterization is LS. Inverted characterizations compete by 

exceeding the mathematical inverse of the selection measure used. For example, a 

negation proposed from a small LS score would need to surpass 1/LS to avoid 

being pruned. 

When STAGGER advances the search frontier inappropriately, it may perform 

the functional equivalent of backtracking by reversing the direction of search (see 

Table 2). However, since the search space behind the frontier has been pruned, 

simply using the search operators described above may not be sufficient to recover 

the appropriate characterization. For this reason, when a new concept description 

element is established and its sponsoring components are pruned, those components 

are saved with the new characterization. If the Bayesian evaluation functions 

indicate that the new characterization is currently performing worse than when it 

was established, it is impeached. The saved components are reactivated and 

compete as the failing element did before. This amounts to chronological 

backtracking because moves through the search space are retracted in the opposite 

order from which they were proposed. Table 5 summarizes the pruning heuristic. 

STAGGER searches from simple toward complicated descriptions, stopping 

when the characterizations accurately describe the concept. The concept description 

elements are as simple as possible, and this preference for parsimony is a major 

source of bias. The three search operators employed by STAGGER are triggered 

by projection errors and they use nomination and election heuristics to generate 

new characterizations. These new parts of the concept description are then either 

pruned out or added to the concept description frontier according to their 

performance as assessed by the evaluation measures. If a characterization fails to 

perform as well as it has in the past, backtracking is triggered to unwind the search. 

Overall, the beam-search nature of refinement in STAGGER allows modification 

of the distributed concept representation while remaining within a reasonable 

memory size. 

2.5 Summary 

STAGGER forms an initial concept description from a weighted set Of attribute- 
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Table 6. Pseudo code for the STAGGER program 

'defun stagger (concepts instance) 
(prog (concept odds guess) 

(if (is-a-new concept) then 
(setq concept (initial-characterizations)) 
(grow-new-concept concept concepts) 

(setq instance (aggregate-over concepts instance)) 
(setq odds (project-over instance)) 
(setq guess 

(if (> odds 1) then 'positive 
elseif (< odds 1) then 'negative 
else (random)) 

(evaluate-all (characterizations-for concepts)) 
(if (guess-agrees-with instance guess) then nil 
elseif (error-is-a 'commission) then 

(propose-a-conjunction instance concepts) 
(propose-a-negation instance concepts) 

elseif (error-is-an 'omission) then 
(propose-a-disjunction instance concepts) 
(propose-a-negation instance concepts) 

(prune-ineffective-characterizations concepts))) 

value characterizations. These characterizations collectively influence prediction of 

the class of subsequent instances. Evaluation serves to adjust the weights of the 

distributed description while refinement consolidates it. In Table 6, pseudo code 

for the top level of STAGGER is listed to clarify further the functioning of the 

system. New concept attainment tasks have their search frontier initialized to the 

singletons of each attribute-value pair. The description of the instance is then 

augmented with attributes projected from previously acquired concepts. The 

matching process of projection yields a prototypicality score for this instance which 

is used to predict its class. An evaluation process then ranks each competing 

characterization according to its effectiveness at predicting the class correctly. If a 

mistake was made in classifying the instance, characterization refining operators 

take a single step in the search toward more accurate characterizations. Points 

along the search frontier which prove ineffective are pruned. 

3. Examples of STAGGER at work 

S T A G G E R  is a fully implemented Franz Lisp program. We have tested its 

performance in a number of domains, including simple weather prediction, animal 

classical conditioning, and chess endgame classification. The following examples 

demonstrate the ability of STAGGER to tolerate noisy instances, track changing 

concepts over time, and utilize previous learning to aid subsequent learning. 
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Table 7. Sample weather instances (after Quinlan, 1985) 

Attributes Instance 
Outlook Temperature Humidity Windy 

Sunny Hot High True 
Sunny Hot High False 
Sunny Mild High False 
Sunny Mild Normal True 
Sunny Cool Normal False 
Overcast Hot High False 
Overcast Hot Normal False 
Overcast Mild High True 
Overcast Cool Normal True 
Rain Mild High True 
Rain Mild High False 
Rain Mild Normal False 
Rain Cool Normal True 
Rain Cool Normal False 

Negative 
Negative 
Negative 
Positive 
Positive 
Positive 
Positive 
Positive 
Positive 
Negative 
Postive 
Positive 
Negative 
Positive 

3.1 Classifying weather 

S T A G G E R  is well suited for the domain of weather prediction. Classifying 

situations that lead to tornadoes, hurricanes, or droughts requires tolerating 

occasionally misleading data. Furthermore,  previously effective predictors of 

weather events may be nullified by global changes in the world weather situation, 

such as a volcanic eruption. As an example, consider the simple set of 14 weather 

instances in Table 7 (after Quinlan, 1985): 

The characterization that S T A G G E R  eventually forms for this set of instances is 

(humidity = normal and windy = false) or outlook = overcast. This characterization 

accurately covers 12 of the 14 instances. The remaining two instances are correctly 

classified by the distributed concept description as a whole. 

Consider an intermediate state, before any modifications have been made to the 

distributed concept description. After  processing a few initial instances, the 

concept description looks like Table 8. Note that the evidence counts are initialized 

to 10 and, after being incremented, they have decayed to 99% of their value. 

Given a new instance in which outlook = rain, temperature = cool, humidity = 

normal,  and wind = true, this concept description is projected by multiplying the 

L S  and L N  weights of the individual characterizations; the L S  weights of each 

matched characterization are multiplied together with the L N  weights of each 

unmatched characterization and the prior odds. The weights used for this instance 

are italicized in Table 8. The prior odds are approximated by dividing the number 

of times instances were positive (Cp + IF) by the number of time instances were 

negative (CN + IN). The expected odds in favor of this instance being positive are 

1.42 to 1. 
However ,  this particular instance is negative. The evaluation process in 
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Table 8. Intermediate  weather  concept  description 

Characterizat ion 

Cp C N Ip I N LS LN 

Outlook = sunny 10.48 10.78 15.35 12.99 0.74 1.31 

o u t l o o k  = overcast  12.56 14.49 i3.28 t0.00 1.19 0.87 

o u t l o o k  = rain 11.75 12.99 14.17 10.78 1.00 1.00 

temperature  = cool  11.36 13.51 14.48 10.78 0.99 1.01 

t emperature  = mild 12.58 13.43 13.26 10.57 1.11 0.92 

temperature  = hot  11.32 11.55 15.07 12.45 0.83 1.19 

humidity  = normal  14.19 13.51 11.64 10.78 1.24 0.81 

humidity  = high 11.64 10.78 14.19 13.51 0.81 1.24 

windy  = true 10.65 12.00 15.18 11.77 0.83 1.16 

windy = false 15.18 11.77 10.65 12.00 1.16 0.83 

Prior odds  = 1.09 Ht~ = 1.02 l-It. o = 1.28 

Odds  = 1.42 

S T A G G E R  first updates the counts of negative confirming and infirming evidence 

for each characterization. For instance, the count of negative infirming evidence for 

the characterization outlook = rain is incremented because this characterization 

was matched in this negative instance. Conversely, the negative confirming count is 

incremented for outlook = overcast since this characterization was unmatched. 

This error of commission also triggers the refinement process to search for a 

more specific characterization. The lowest LN characterization matched in this 

negative instance is conjoined with the lowest LS characterization unmatched in 

this nonexample.  In this case the new characterization humidity = normal and 

windy = false is added to the concept description. The threshold that this new 

characterization must surpass to become an established part of the search frontier 
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(and avoid being pruned) is the minimum of the LN values of the two sponsoring 

characterizations, or min {0.81, 0.83} = 0.81. The inversion operator  also 

constructs a new characterization which is the negation of the matched, poorly 

scoring characterization windy = true. Since windy = false is already a part of the 

concept description frontier, the component  windy = true is immediately pruned. 

Over time, S T A G G E R  continues to apply its refinement search operators as it 

makes errors in projection. The evaluation process provides a measurement of 

candidates for refinement as well as indicating appropriate occasions for pruning. 

An accurate concept description is a carefully weighted set of potentially complex 

characterizations. In this case, a single characterization does 86% of the work of 

categorization and the distributed representation handles the remaining 14°/'o. 

3.2 Tolerating noisy data 

Like weather prediction, real-world concept attainment tasks will inevitably entail 

inaccuracies in the description of instances. These descriptions may be subject to 

either random or systematic variation. An example of random noise would be a 

temperature  sensor which is accurate to within 10% of its operating range. It may 

read too high on one occasion and too low on another; the direction of its error is 

random. Only a few authors have dealt with this possibility. The most notable is 

Quinlan (1983), who identifies several potential sources of random errors: faulty 

measurement,  ill-defined thresholds (e.g., when is a person 'tall '?), and subjective 

interpretations of a multitude of inputs (e.g., what criteria are used when 

describing a person as 'athletic'?). 

However ,  it may often be the case that errors in description are the result of a 

systematic variation. For example, a smoke detector may give a false alarm though 

it does not fail to detect real fires. Or a rain gauge may leak and sometimes read 

lower, but never higher, than it should. The errors of these latter two instruments 

are systematically of one type (e.g., only to low for the rain gauge), though they 

may occur with an unpredictable frequency. Systematic noise is defined as the 

occurrence over instances of positive infirming events or negative infirming events, 

but not both. 

When random variation occurs, a learning system may attempt to extract the 

'real' concept from the extraneous instance information, up to a point. When all of 

the instances are subject to random variation, there is no distinction between the 

concept and the noise itself. When there is systematic variation (i.e., only one type 

of infirming evidence), however, it is possible to tolerate a much higher level of 

variation. This section first explains the ability of LS and LN to tolerate systematic 

variations better than random variations and then depicts the overall ability of 

S T A G G E R  differentially to tolerate systematic versus random noise. 

3.2.1 Evaluation of  noisy data 
Empirically analyzing the behavior of the LS and LN measures indicates that they 
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Figure 2. Relative ratings of systematic versus random variations. 

differentiate between systematic and random variations in instance descriptions, 

rating the farmer highly and the latter poorly. Figure 2 plots the relative ratings of 

systematic and random variation situations. 

In Figures 2, 3, and 4, the x-axis denotes the percentage of instances that were 

subject to potential variation. The scale ranges from a noise-free situation (on the 

right) to one in which half of the instances were randomly identified as positive or 

negative (on the left). The y-axis is plotted on a log scale and denotes the 

magnitude of LS  for a single feature. The y-scale ranges from maximal correlation 

(at the top), to irrelevance (the midpoint), back to maximal correlation (at the 

bottom). The further a point is from the midpoint the more relevant it is. 

For both of the cases depicted in Figure 2, half of the instances were positive and 

contained the feature in question; the other half were negative instances and did 
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Figure 3. Positive infirming. 
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not contain the feature. 4 The systematic variation case (upper, heavy line) was 

generated by varying the percentage that a negative instance might be erroneous; 

the random variation case (lower, lighter line) was generated by varying the 

percentage that either type of instance might be erroneous. 

Introducing randomness in only one type of instance adds only one type of 

infirming evidence. In the systematic case depicted in Figure 2, mutating negative 

instances into positive ones introduces positive infirming evidence. The faulty rain 

gauge falls into this case, since it sometimes leaks and reads too low (positive 

infirming evidence), but it never indicates precipitation unless it has been raining 

4 Figures 2, 3, and 4 assume that there are the same number of positive and negative instances. This 

assumption is relatively harmless, sinc e the shape and magnitude of the curves remain constant as the 

ratio between the two is varied. 
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Figure 4. Negative infirming. 

(no negative infirming evidence). 

Adding randomness to either type of instance, however, introduces both types of 

infirmi~ag evidence. The random variation case (lower, light line) contains a 

combination of positive infirming evidence (some negative instances were identified 

as positive) and negative infirming evidence (some positive instances were 

identified as negative). A temperature gauge which sometimes reads too low and 

sometimes reads too high behaves in a similar manner. Notice that subjecting an 

instance to a random identification process is not the same as always replacing the 

class information of an instance a given percentage of the time for, in the latter 

case, a noise level of 100% would result only in an inversion, but no loss, of 

information. 

The LS measure tolerates positive infirming evidence, but ranks positive and 

negative infirming situations poorly. Ho~vever, LS also ranks negative infirming 

evidence situations poorly. LN provides the opposite characteristics, for it tolerates 
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negative infirming situations but not a mixture of the two types. Figure 3 and 4 

depict the evaluations yielded by LS and LN under positive infirming and negative 

infirming situations, respectively (recall that unlike LS, LN values less than unity 

indicate correlation). 

The use of LN as an election heuristic for conjunctions and LS for disjunctions is 

based on the above analysis. Characterizations which should be combined into a 

conjunction accrue negative infirming evidence; LN tolerates this type of 

systematic variation. Similarly, LS tolerates positive infirming evidence which 

potential disjuncts accumulate. 

The tolerance of these measures to either positive or negative infirming evidence, 

but not both, corresponds closely to the findings of contingency experiments. 

Section 2.3.1 identifies four situations corresponding to types of trial presentation 

conditions. In the no noise case, the partial reinforcement case, and in the partial 

warning case, learning occurs in all but the noisiest of situations. Each of these 

conditions contains at most one of the two types of infirming evidence, and thus the 

Bayesian measures presented here will indicate relevance between potential 

predictors and outcomes. In the fourth case, however, which includes unpaired 

novel and unpleasant stimuli, even small amounts of infirming evidence inhibit 

learning. This phenomenon is mirrored by the intolerance of LS and LN to a 

mixture of positive and negative infirming evidence. 

An interesting effect of these evaluation functions is that they may lead the 

projection processes in STAGGER to make instance classification errors. For 

example, if a particular attribute-value pair is subjected to a large degree of 

systematic, negative infirming evidence (always present in positive instances but 

sometimes present in negative instances) it will be ranked highly (Figure 4). When 

this attribute-value pair is present in an instance description, projection is likely to 

make a positive prediction; a feature with negative infirming evidence will lead to 

errors of commission. In this case, the performance of STAGGER is violating the 

consistency condition (Michalski, 1983) since it is failing to exclude all negative 

instances from the positive class. Animal subjects behave similarly in analogous 

partial reinforcement situations (Fitzgerald, 1963). Conversely, if an attribute- 

value pair is subject to systematic positive infirming evidence, STAGGER's errors 

of omission will be violating the completeness condition (i.e., failing to include all 

positive instances in the positive class). This models the partial warning condition 

recently proposed by Granger and Schlimmer (in press). An attribute-value pair 

with random variation, however, will be ranked poorly. STAGGER will not be 

misled to classify instances incorrectly. 

3.2.2 Program performance with noisy data 

The tolerance of STAGGER's evaluation measures to noise is also reflected in the 

system's overall performance. Figure 5 depicts STAGGER's performance after 

noisy training for a simple conjunctive concept. The upper, heavy line portrays 

average performance when the training cases were subjected to varying percentages 

of negative infirming, systematic noise. Even at the 50% noise level when all of the 
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Figure 5. STAGGER's differential noise tolerance. 

positive instances are randomly designated as examples or nonexamples, STAGGER 

is still able to utilize the information present in the negative instances to form an 

accurate description of the concept. In the random variation case depicted by the 

lower, light line, both positive and negative examples were subject to random 

identification. STAGGER's  performance in this case is still reasonable, but is 

severely degraded when compared to either the noise-free case or the systematic 

noise case. 

3.3 Tracking changes in a concept definition 

An essential feature of a learning mechanism is the ability to respond to changes in 

"the environment. For instance, a fox learns to look for a changed coat color in his 

prey as the seasons change. One factor to consider when addressing the issues of 
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Figure 6. Tracking concept drift. 

changing concepts is distinguishing between randomness and genuine change. 

Secondly, the amount of previous learning about a given concept should adversely 

affect relearning of a new definition for that concept. The adage 'It's hard to teach 

an old dog new tricks' summarizes a main finding of a class of studies in animal 

learning (e.g., Siegel & Domjan, 1971). In short, these studies indicate that the 

ease of revising a learned concept definition is inversely proportional to the amount 

of previous training. 

STAGGER addresses the noise versus change issue through the use of its 

evaluation function. When the impeachment heuristic (Table 5) indicates that a 

characterization is currently below its threshold, backtracking is triggered. A 

conjunction is typically impeached when it gathers positive infirming evidence; this 

indicates that it is too specific. A disjunction is impeached when it collects negative 

infirming evidence and is indicated as being too general. Figure 6 depicts the 

performance of STAGGER on three successive definitions for the same concept: 
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Figure 7. Search .frontier size. 

(1)  s ize = smal l  and color  = red,  (2) color = green or shape = circular,  and (3) s ize 

= ( m e d i u m  or large) .  

The dashed vertical lines indicate when the definition of the concept was 

changed. Notice how performance falls immediately following the change because 

the previously acquired definition was not sufficient to characterize new changed 

instances. Initial sensitivity to specific instances is the main cause for the bumpiness 

of the curves. A secondary cause arises when effective clauses are pruned out as the 

search frontier advances (e.g., when small  and red are pruned out for small  and 

red).  In each of the three cases, S T A G G E R  formed the explicit, symbolic 

representation of the concept 's definition and evaluated it as the best among those 

on the search frontier. The size of the search frontier (the number of characteri- 

-zations in the distributed concept description) at each step is displayed in Figure 7. 

As effective characterizations are established, their sponsoring components are 
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Figure 8. Tracking concept drift given extensive training. 

pruned and the size of the search frontier is reduced. Notice how backtracking is 

triggered after each concept change, resulting in a sharp climb in the size of the 

frontier as previously effective characterizations are impeached. 

Because STAGGER retains counts of situations types, it is in effect keeping an 

abbreviated history of the effectiveness of each characterization. This allows the 

program to model the effects of previous learning at a gross level. Contrast Figure 8 

which depicts the program performance with more than four times the amount of 

training for each concept than depicted in Figure 6. Notice that the the horizontal 

scale in Figure 8 is compressed by one-fifth and recovery learning is considerably 

quicker in the minimal training case. 

Requiring a learner to follow changes in the environment over time raises an old 

issue: the sensitivity of various learning methods to the order of instances. In 

general, immunity to the order of presentation is a desirable quality in a learning 

method. However, consider two orderings of instances for the single concept of the 
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fox's prey. If all of the white rabbits precede all of the brown ones, then the 

appropriate behavior is to describe the prey as white and then change that 

description to brown. The learner could form a disjunction, but that would be less 

suitable and might be inaccurate as well. On the other hand, if white rabbits and 

brown ones are intermixed (domestic and wild rabbits, for example), then it would 

be appropriate to form the disjunction white or brown. Learning methods will be 

more widely applicable if they form a disjunctive characterization given a mixed 

presentation ordering, and if in a sequenced presentation they form and then 

modify a characterization. 

3.4 An example from chess 

Some domains are amenable to knowledge-intensive learning techniques since they 

are well-understood environments. Chess is a classic example because the function 

of each of the pieces may be presented from the outset, and search techniques can 

be applied to discover the outcome of any given situation. However, even the most 

agile player benefits from the ability to quickly recognize a board as an instance of 

'situations lost in two moves.' In general, descriptions of piece positions are also 

additive in chess; the ability to recognize a particular type of board control may aid 

in quickly recognizing more abstract situations. Given piece positions and an 

indication whether these are an example of a particular situation, STAGGER 

forms a characterization which may be used to identify other similar boards. 

Furthermore, by adding an attribute with a true or false value for each learned 

concept, S T A G GER uses learning about previous classes of board positions to 

speed learning about subsequent situations. 

As an illustrative problem, consider the task of determining whether a particular 

board is safe for black's knight (Quinlan, 1979). The specific problem pits a black 

king and black knight against a white king and white rook. The initial configuration 

is neither a checkmate nor a stalemate position. Furthermore, the black knight is 

pinned in each instance, meaning that it cannot be moved without placing the black 

king in check (an illegal move). An instance is identified as 'safe' if black can move 

the king to defend its knight, leaving white unable to capture the knight without 

forfeiting its rook. Figure 9 depicts a sample unsafe board configuration meeting 

these constraints. 

Boards preserving these constraints are randomly generated and then described 

in terms of the following three simple types of attributes: 

• Distance in king moves - -  allowing only legal king moves, how many would 

it take to move from the square of one piece to the square of another? This 

attribute has the values, 1, 2, or > 2. There are six attributes of this type 

resulting from a pairwise combination of each of four pieces. 

• Board relationship - -  whether a pair of pieces are on the same rank or file, 

the same diagonal, or otherwise related. There are again six attributes of this 
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Figure 9. Example of an unsafe, pinned black knight. 

type. 

Square type - -  whether a piece is on a corner square, on an edge, or in the 

open section of the board. There are four attributes of this type. 

There are a total of 16 attributes, each with three values. Although there are 63 

x 43 × 63 = 2,985,984 objects possible, an exhaustive enumeration of the actual 

95,480 distinct boards corresponding to a knight pin indicates that there are only 

3,259 actual objects in terms of these attributes. This compression is due to the 

natural constraints which arise in chess; for instance, the black knight cannot be on 

a corner square since it must be pinned between the black king and the white rook. 

Quinlan (1979) included an additional six true or false attributes when he 

presented this task to his ID3 program. Of these, five are always true or always 

false for this endgame task. They were useful for other endgame tasks Quinlan 

investigated. The remaining attribute is more abstract than those listed above. If 

there is a legal move which leaves the black king next to the knight then the 

attribute black king can move adjacent to knight is true. 

Randomly generated boards (69% of the instances were positive) were described 

in terms of the 17 attributes listed above and then presented to S T A G G E R  

sequentially. 5 The most salient characterization that S T A G G E R  formed for the 

concept safe is shown below. 6 

5 Inclusion of the additional constant attributes used by Ouinlan did not affect the quality of any of the 

results presented here. 
6 The last condition is actually the disjunction king moves from white king to knight = (two or >two). 

We interpret it as a negation since it resulted from an application of the inversion operator described in 

Section 2.4. 



INCREMENTAL LEARNING FROM NOISY DATA 345 

black king can move adjacent to knight is true and king moves from white 

king to knight =/= 1 

This characterization is relatively simple, partially because the class of endgames is 

severely restricted and partially due to the inclusion of the high-level attribute black 

king can move adjacent to knight. Identifying and defining this abstract attribute 

was itself a concept formation task. One step in pushing this process back onto the 

learning method itself would be to only identify high-level features without giving 

their definitions. Using this approach, instead of including the attribute black king 

can move adjacent to knight and its value in the description of each instance, the 

learning program would be given the task of attaining that concept. We did this 

with STAGGER by first training it to recognize situations in which the black king 

could move next to the knight using only the 16 attributes enumerated above. 7 The 

constructed characterization shown below correctly classifies more than 99% of the 

3,259 boards. 

king moves from black king to knight ~ 2 and (knight square type is open 

or king moves from white king to knight is > 2) 

Having acquired a characterization for this concept, STAGGER is then able to use 

this characterization as a true or false attribute in subsequent concept attainment 

tasks. Given the task of determining whether a board is safe for the black knight, 

STAGGER scans all of the concepts it has previously acquired and adds an 

attribute for each of them to the instance description language. These new 

attributes are assigned a true or false value by projecting the appropriate concept's 

characterizations over all 'older' attribute-values. In this case, thought only the 16 

attributes were used to describe the instances, the characterization acquired for a 

safe board is the same as in the more completely described case. 

This approach to utilizing previous concept learning is not unique to STAGGER. 

Iba (1984) and Sammut and Banerji (1986) describe concept attainment systems 

which save each learned concept description and use them to rewrite the 

description of an instance. After training on one task, their systems are able to 

recognize subsequent instances as examples of previous concepts. This eases 

learning about subsequent, similar tasks. 

In terms of the framework of component processes presented in Section 1.1, 

STAGGER is aggregating instance descriptions by adding higher-level attributes. 

Aggregation is the process of determining the appropriate part-of relationships, or 

deciding which elements of instance descriptions are objects (Langley & Carbonell, 

in press). This task may also be viewed as a search for the appropriate granularity 

of features used to describe objects, or the process of adjusting the level of the 

7 Positive instances constituted 75% of the randomly generated boards. 
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representation language. In concept attainment, this amounts to forming more 

complicated, higher-level features which can effectively describe instances or 

aggregating smaller, primitive features into more effectual units. STAGGER 

attempts to aggregate simple descriptions into more useful ones by incorporating an 

attribute describing each learned concept into the description of new instances. 

Thus learning about one concept becomes a stepping stone for the search through 

the space of characterizations for another. This is a source of positive transfer 

during concept learning. 

Dietterich and Michalski (1981) describe the similar process of constructive 

induction, or producing new descriptors which were not present in the input events. 

As an example, they point to the use of fixed augmentation rules in Induce 1.2 

(Dietterich & Michalski, 1981). A sample rule adds an attribute by counting the 

number of objects in an instance which possess a given feature. STAGGER is 

performing constructive induction, for it is producing new descriptors which were 

not present in the input instance. But it is also doing more, since previous learning 

is utilized in the rewriting process. 

Return for a moment to the previous discussion regarding the sensitivity of 

various learning methods to the presentation order of instances (Section 3.3). If 

training instances of the concept black king can move adjacent to knight are mixed 

with instances of safe, then there would be no benefit or leverage for the attainment 

of either concept. However, if black king can move adjacent to knight is presented 

first, STAGGER can use that concept to speed learning about the safe concept. 

This is a second occasion in which sensitivity to the order of the instances is a 

desirable quality in a learning algorithm. Learning methods which utilize previous 

learning to enhance subsequent concept formation will be more widely applicable. 

As Sammut and Banerji (1986) note, it is precisely this ability in students that 

encourages teachers to structure class material according to ascending difficulty. 

4. Related work 

The nature of the learning methods employed in STAGGER and Anderson's 

ACT* model (Anderson, 1983) are quite similar; they both utilize a weighted, 

distributed concept description, and they both perform a bidirectional search from 

simple concepts to more general and more specific ones. In addition to being a 

model of learning, ACT* is also a model of cognitive performance. It is based on a 

bipartite division of memory: a declarative memory stores factual information while 

a procedural memory stores knowledge about how to do things. The learning 

methods applied to the procedural memory are the most similar to those employed 

in STAGGER. A concept, or learned procedure, is expressed in terms of 

production rules which specify an action and a situation under which that action is 

appropriate. ACT* iterates by first determining which rules are appropriate and 

then selecting one to fire. Though the concept description is distributed among a 

number of separate productions, in a given cycle, only one characterization is 
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projected onto the current instance. 

The productions are subject to two types of modification by the learning 

component of ACT*: compilation and tuning. The compilation processes compose 

multiple productions together into longer action sequences and proceduralize 

productions by replacing variables with specific values. 

The tuning processes generalize, specialize, and strengthen existing productions. 

Generalization (or specialization) introduces a new more general (or more specific) 

copy of a production into procedural memory. These new productions vie with 

others on the basis of their strength and specificity. The strength of a production is a 

number roughly reflecting its accuracy and effectiveness. When a production is 

chosen for projection, its strength is incremented. If the production turns out to be 

incorrect, it is weakened by one-fourth of its value. Because they compete with 

each other, a production is effectively weakened when it is not applied because 

other productions are strengthened; it is also strengthened when another 

production applies and fails. The net change of a production's strength expressed as 

a probabilistic value is: 

A S  = p (F)  - p ( F A - q O )  S - p( -nF)  + p(--nFA--nO) S 
4 4 

This calculation is effective at dampening the potentially spurious effects of 

generalization and specialization. Langley (in press) has further demonstrated the 

ability of a similar formula to increase tolerance to noise in a learning production 

system. However, adjusting the strength of a production in this manner does not 

accommodate the findings of contingency. To clarify this point, consider this 

strength change expressed in terms of the matching situations in Table 1: 

A S  --  Cp  + I N - - -  IN4 S - [p  --  C N -Jr- - ' ~  S 

In the case where the novel stimulus and the unpleasant stimulus always occur 

together, the production would become strong; it would not be weakened because 

there is no positive or negative infirming evidence. However, the other three cases 

each contain infirming evidence, partial reinforcement (novel stimulus occurs 

alone) contains negative infirming evidence, yet this would incorrectly result in a 

relatively weak production. Partial warning (unpleasant stimulus occurs alone) 

contains positive infirming evidence, and the production would barely be 

weakened. This predicts learning as is appropriate in this case. Random 

reinforcement (both stimuli occur alone) would resemble the partial reinforcement 

case. The presence of negative infirming evidence would greatly weaken the 

production, and the positive infirming evidence would have little effect. This 

function's failure to tolerate differentially either type of infirming evidence, but not 

both, disallows accounting for both partial reinforcement and partial warning 

effects. 
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Langley's discrimination learning method (in press) is similar to Anderson's  

ACT* in many respects. The learned concepts are expressed as a set of production 

rules, one of which is projected at any given time. Refinement of rules occurs only 

via specialization and these rules are strengthened using an evaluation measure 

similar to Anderson's.  In addition to demonstrating this method's ability to tolerate 

random noise, Langley has also shown that it can track simple changes in a concept 

definition over time. As the definition of a concept drifts, recently learned 

productions are weakened while the specialization process proposes new ones. The 

new productions are strengthened and eventually overwhelm any previous 

learning. Because this program is based on a strengthening evaluation function, 

however,  it considers any infirming evidence as indicative of change. It does appear 

that this method should correctly model the effects of extensive training to a 

defunct concept definition; extensive pretraining would give proportionately large 

strengths to effective characterizations. These strong productions would have an 

inhibitory effect on subsequent relearning of new characterizations for the same 

concept. 

Quinlan (1983, 1985) describes an algorithm named ID3 which constructs its 

characterization in a manner similar to S T A G G E R ;  the characterization is initially 

simple, and it is refined until sufficiently effective. For ID3, a characterization is 

represented as a decision tree. Its root is an attribute of the instances (e.g., size), 

and arcs descending to subdecision trees are labeled with a value for this attribute 

(e.g., small). The leaves of the tree are marked either as examples or nonexamples 

of the concept. To project the decision tree over a particular instance, the root 

attribute is tested and the appropriate arc is followed until a leaf is reached. Some 

hint of prototypicality may be obtained by considering the depth at which a leaf was 

reached. Since the most important tests are made first, a prototypical positive 

instance matches at a shallow point in the tree. 

In the process of constructing the decision tree, ID3 chooses an attribute for the 

root test which maximizes the amount  of information gained by testing it. The 

information theory measure used to evaluate each potential root also mirrors 

performance in the four contingency situations. The thread common to the 

evaluation measures used in S T A G G E R  and ID3 is the notion of statistical 

independence. The latter states that two events are statistically independent when 

the probability of their joint occurrence is equal to the product of their individual 

probabilities, or p(E1 A E2) = p(E1)p(E2) (Fine, 1973). In short, LS and LN 
measure statistical independence, since LS = LN = 1 if and only if the two events 

are statistically independent.  Similarly, the information theoretic measure indicates 

that a feature is irrelevant to the outcome precisely when the two events are 

statistically independent (Schlimmer, 1986). There  are a number of measures 

currently in use which also measure statistical dependence in one way or another,  

including category utility (Gluck & Corter,  1985) and our previous work (Granger 

& Schlimmer, 1985a, 1985b). Seemingly appropriate measures, however,  may not 

make the proper  measurement.  For example, neither p(OIF) nor p(F]O) 
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correspond to statistical independence as can be shown algebraically (Schlimmer, 

1986). 

Quinlan (1983) has extensively demonstrated the ability of ID3 to tolerate 

random noise in both the class information of instances and the values of individual 

features. Furthermore, ID3 is also able to construct sophisticated characterizations. 

For example, in one chess endgame task, ID3 constructs a decision tree of over 393 

tests (Quinlan, 1979). As in STAGGER, the major source of bias in ID3 is 

parsimony, for ID3 attempts to build the simplest decision trees that will accurately 

characterize the instances. This is the motivation behind the use of the information 

theoretic measure. 

However, refinement in ID3 is nonincremental. Quinlan assumes that all of the 

instances are available at the outset for examination by the program. As a result, 

ID3 examines a large number of the instances at one time and does not have 

mechanisms for modifying an existing tree to incorporate new instances. ID3 could 

be modified to track concept changes, but the resulting algorithm would be 

relatively inefficient in terms of storage space and processing time. One way to do 

this would be to store a queue of instances. As each new instance was added to the 

queue, all of them could be tested. If too few of them were correctly classified by 

the current decision tree, a new decision tree could be constructed from scratch. 

The incremental nature of a learning algorithm does not guarantee that it will be 

able to deal with concept drift over time. Mitchell (1982), for example, reports on 

the version space learning method in which an appropriate description of observed 

instances is formed via a bidirectional search through a space of possibilities. 

Whereas STAGGER searches the space of possible characterizations from the 

middle toward both sides, the version space method searches from most specific 

and most general toward the middle. The concept description is distributed across a 

set of maximally general characterizations and a complementary set of maximally 

specific characterizations. This entire concept description is used in projection to 

determine if a new instance is likely to be positive or negative. Additionally, this 

method has the desirable property that the degree to which a static concept is 

learned may be measured by noting the distance between the two characterization 

sets. 

Though relational information is utilized, the version space method assumes the 

strong bias that a conjunctive characterization can accurately capture the concept 

to be learned. In later work (Mitchell, Utgoff, & Banerji, 1983), a modification was 

proposed which would form disjunction descriptions or tolerate limited noise in 

instances (but not both interestingly). Though this method is incremental and can 

refine its concept description as new observations are made, it may not be able to 

track concept changes. Specifically, it is unclear whether the algorithm could be 

modified to allow learned characterizations to change and recross the search 

boundaries if the definition of a concept drifted over time. 

The techniques used in STAGGER also have a fair amount in common with 

connectionist approaches. Though these approaches differ from STAGGER 
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because they avoid using symbolic representations, their representation of the 

concept description is distributed, is modified incrementally, and is tolerant of 

noisy instances. For instance, Hampson and Kibler (1983) present a learning 

method based on a multilayer perceptron network. The learned concept is 

represented as a set of weighted connections between neuron-like units. They 

show that this network can acquire any Boolean function of its inputs. This con- 

cept representation is distributed, and each unit participates in projection. 

Hampson and Kibler further demonstrate that the evaluation process which 

adjusts the strengths between nodes yields the classes of learning exhibited in 

contingency experiments. Moreover, they show how their method can track 

concept drift. Flexibility in their approach naturally arises out of the concept 

representation. When the definition of a concept changes, the network begins to 

falter and appropriate changes in the connection weights are made. If the weight- 

altering threshold is set so that the network freezes its weights immediately 

following an accurate classification of the instances, extensive pretraining has no 

effect on subsequent relearning. However, if the weights continue to be modified 

well beyond initially satisfactory performance in order to increase the confidence of 

the projection process, the effects of overtraining will be retained by the network 

and significantly more training on subsequent definitions will be required to 

overcome the imprinted weights. 

Holland's genetic algorithm (Holland, 1975) is an incremental method which 

utilizes a distributed concept description and is able to tolerate noise as well as 

track changes in concepts over time. In his framework, characterizations are 

represented as bit patterns which are subject to natural selection style laws of 

propagation. Initially a population of these bit patterns are randomly generated. 

All of these are then matched against a new instance and a cumulative projection is 

made. An external function provides an evaluation of the fitness of each of these 

characterizations, and weak characterizations are discarded. To fill in the 

vacancies, copies of the most effective characterizations are made by mixing their 

patterns together in a manner similar to genetic mating. The processes of 

projection, evaluation, and refinement then iterate with this new set of bit patterns. 

The genetic algorithm is relatively tolerant of noisy instances. However, 

depending on the specific evaluation function used, it may or may not be making a 

contingency-like distinction between random and systematic noise. Secondly, this 

learning method is able to track changing concepts. This is undoubtedly due to the 

strong influence of the laws of genetic propagation on the design of the method's 

refinement operators. Furthermore, this method may also exhibit the effects of 

over-training. Though it does not appear to keep any record of pattern 

effectiveness, successful patterns may come to dominate the breeding space. These 

patterns may then exhibit extreme reluctance to be bred out, given a large 

amount of previous training. Mauldin (1984) reports on a similar phenomena in 

which the genetic algorithm converges prematurely on a suboptimal solution due to 

a nearly complete dominance of the breeding space. 
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5. Conclusions 

The framework reviewed in this paper presents seven processes for the task of 

learning from experience: clustering, initialization, projection, evaluation, refine- 

ment, aggregation, and storage. STAGGER ignores the clusteringltask since it 

assumes that all instances are prelabeled with appropriate class infbrmation; all 

work in learning from examples makes the same assumption. Initialization in 

STAGGER is based on a distributed concept description composed of a set of 

weighted characterizations. Each characterization is a symbolic expression of 

conjunctive, disjunctive, and negated attribute-values. Projection of learned 

concept descriptions onto new instances utilizes the cumulative effect of the 

weighted elements and obeys the principle of prototypicality. Furthermore, 

projection matches instances against previously learned concepts and, in doing so, 

affords a savings in subsequent learning. 

The learning processes in STAGGER evaluate characterizations and search for 

more effective characterizations. The process of evaluating characterizations 

mirrors results in psychology and statistics, providing a clear differentiation 

between random and systematic variations. Another possible evaluation function, 

strengthening, was shown to be inadequate for this purpose. Refinement introduces 

new characterizations and is a heuristically guided beam-search through the space 

of possibilities. Search operators propose more specific, more general, and inverted 

versions of existing characterizations. Evaluation driven backtracking allows 

tracking a change in a concept's definition over time, differentiating properly 

between random variation and genuine change, as well as conforming to the effects 

of over-training. Simple aggregation in STAGGER augments the descriptions of 

instances in terms of previous learning. A nodes-and-links memory model 

implementation of STAGGER, which addresses the issues of memory storage and 

retrieval, is not described in this paper but is discussed by Granger and Schlimmer 

(1985b). 

As concept change over time within a domain, it is valuable to have a learning 

method for tracking these drifting concepts. STAGGER can be viewed as 

providing fundamental, robust mechanisms for dealing with noise and drift in 

learning. These mechanisms are by no means intended as a complete, closed 

solution. Rather, we hope that this case study has provided insights that will 

encourage other researchers to adapt pivotal portions of this method as they 

address the difficult problems currently challenging the field of machine learning. 
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Appendix A: Derivation of LS and LN 

Section 2.3 states that the LS and LN measures can be computed via a simple 

formula composed of the situation types in Table 1. This appendix shows the 

derivation by first substituting in joint probabilities for each of the conditional 

probabilities and then use the counts of situation types to estimate the joint 

probabilities. Here are the conditional probability forms of LS and LN again: 

L S -  p(FIO) _ p(TFlO) 
p(F[~O) LN p(TFITO)  

The definition of conditional probability states that p(AIB ) = p(AAB)/p(B). The 

above equation may therefore be rewritten as: 

LS = p(F A O)p(-70) LN = p(-TF A O)p(70) 
p(F A -70)p(O) p(TF A --qO)p(O) 

Noting that the outcome is either a positive or negative instance and the feature is 

either a matched or an unmatched characterization, the above probabilities may be 

approximated with counts of the situation types in Table 1 as follows: 

p(F A O) ~ Cp](Cp + IF + I N + CN) 

p(F A -70) ~ IN/(C v + Ip + IN + CN) 

p(-7FA O) ~ Ip/(Cp + Ip + IN + CN) 

p(TF A 7 0 )  ~ CN/(Cp + Ip + I N + CN) 

Marginal probabilities of the form p(A) may be similarly approximated by noting 

that p(A) = p(A A B) + p(A A 7B). 

p(F) -~ (Cp -~- IN)/(Cp + Ip + IN + CN) 

p(--7F) ~ (Ip -~ CN)/(C P d- Ip + IN + CN) 

p(O) ~ (Cp + Ip)/(ep + IF + IN + CN) 

p(--IO) -~ (IN + CN)/(Cp + Ip + IN + CN) 
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Substituting these approximations yields: 

Cp x IN+CN 

LS - C P + I p + I N + C N  C p + I p + I N + C N  

L N =  

IN × Cp+Ip 

Cp+Ip+IN+CN Cp+Ip+IN+C N 

Ip x IN+CN 

Cp+Ip+IN+CN Cp+Ip+IN+CN 

CN X C p + I p  

C p + I p + I N + C N  C p + I p + I N + C N  

Simplifying by canceling Cp+Ip+IN+CN results in equation 4 presented in Section 

2.3. 

LS = Cp(IN + CN) 
IN(Cp + Ip) 

LN = Ip(IN + CN) 
CN(Cp + Ip) 
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