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Incremental Learning of 3D-DCT Compact

Representations for Robust Visual Tracking
Xi Li, Anthony Dick, Chunhua Shen, Anton van den Hengel, and Hanzi Wang

Abstract

Visual tracking usually requires an object appearance model that is robust to changing illumination, pose and other

factors encountered in video. Many recent trackers utilize appearance samples in previous frames to form the bases upon

which the object appearance model is built. This approach has the following limitations: (a) the bases are data driven, so

they can be easily corrupted; and (b) it is difficult to robustly update the bases in challenging situations.

In this paper, we construct an appearance model using the 3D discrete cosine transform (3D-DCT). The 3D-DCT is based

on a set of cosine basis functions, which are determined by the dimensions of the 3D signal and thus independent of the input

video data. In addition, the 3D-DCT can generate a compact energy spectrum whose high-frequency coefficients are sparse

if the appearance samples are similar. By discarding these high-frequency coefficients, we simultaneously obtain a compact

3D-DCT based object representation and a signal reconstruction-based similarity measure (reflecting the information loss

from signal reconstruction). To efficiently update the object representation, we propose an incremental 3D-DCT algorithm,

which decomposes the 3D-DCT into successive operations of the 2D discrete cosine transform (2D-DCT) and 1D discrete

cosine transform (1D-DCT) on the input video data. As a result, the incremental 3D-DCT algorithm only needs to compute

the 2D-DCT for newly added frames as well as the 1D-DCT along the third dimension, which significantly reduces the

computational complexity. Based on this incremental 3D-DCT algorithm, we design a discriminative criterion to evaluate

the likelihood of a test sample belonging to the foreground object. We then embed the discriminative criterion into a particle

filtering framework for object state inference over time. Experimental results demonstrate the effectiveness and robustness

of the proposed tracker.

Index Terms

Visual tracking, appearance model, compact representation, discrete cosine transform (DCT), incremental learning,

template matching.

I. INTRODUCTION

Visual tracking of a moving object is a fundamental problem in computer vision. It has a wide range of applications

including visual surveillance, human behavior analysis, motion event detection, and video retrieval. Despite much effort

on this topic, it remains a challenging problem because of object appearance variations due to illumination changes,

occlusions, pose changes, cluttered and moving backgrounds, etc. Thus, a crucial element of visual tracking is to use an

effective object appearance model that is robust to such challenges.

Since it is difficult to explicitly model complex appearance changes, a popular approach is to learn a low-dimensional

subspace (e.g., eigenspace [1], [2]), which accommodates the object’s observed appearance variations. This allows the

appearance model to reflect the time-varying properties of object appearance during tracking (e.g., learning the appearance

of the object from multiple observed poses). By computing the sample-to-subspace distance (e.g., reconstruction error [1],

[2]), the approach can measure the information loss that results from projecting a test sample to the low-dimensional

subspace. Using the information loss, the approach can evaluate the likelihood of a test sample belonging to the foreground

object. Since the approach is data driven, it needs to compute the subspace basis vectors as well as the corresponding

coefficients.

Inspired by the success of subspace learning for visual tracking, we propose an alternative object representation based

on the 3D discrete cosine transform (3D-DCT), which has a set of fixed projection bases (i.e., cosine basis functions).

Using these fixed projection bases, the proposed object representation only needs to compute the corresponding projection

coefficients (3D-DCT coefficients). Compared with incremental principal component analysis [1], this leads to a much

simpler computational process, which is more robust to many types of appearance change and enables fast implementation.

The DCT has a long history in the signal processing community as a tool for encoding images and video. It has been

shown to have desirable properties for representing video, many of which also make it a promising object representation

for visual tracking in video:
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Fig. 1: Illustration of 3D-DCT’s compactness. The left part shows a face image sequence, and the right part displays the corresponding
energy spectrum of 3D-DCT. Clearly, it is seen from the right part that the energy spectrums of 3D-DCT are compact.

• As illustrated in Fig. 1, the DCT leads to a compact object representation with sparse transform coefficients if a

signal is self-correlated in both spatial and temporal dimensions. This means that the reconstruction error induced by

removing a subset of coefficients is typically small. Additionally, high-frequency image noise or rapid appearance

changes are often isolated in a small number of coefficients;

• The DCT’s cosine basis functions are determined by the signal dimensions that are fixed at initialization. Thus,

the DCT’s cosine basis functions are fixed throughout tracking, resulting in a simple procedure of constructing the

DCT-based object representation;

• The DCT only requires single-level cosine decomposition to approximate the original signal, which again is

computationally efficient and also lends itself to incremental calculation, which is useful for tracking.

Our idea is simply to represent a new sample by concatenating it with a collection of previous samples to form a 3D

signal, and calculating its coefficients in the 3D-DCT space with some high-frequency components removed. Since the

3D-DCT encodes the temporal redundancy information of the 3D signal, the representation can capture the correlation

between the new sample and the previous samples. Given a compression ratio (derived from discarding some high-

frequency components), if the new sample can still be effectively reconstructed with a relatively low reconstruction

error, then it is correlated with the previous samples and is likely to be an object sample. The fact that every sample is

represented by using the same cosine basis functions makes it very easy to perform the likelihood evaluations of samples.

The DCT is not the only choice for compact representations using data-independent bases; others include Fourier and

wavelet basis functions, which are also widely used in signal processing. The coefficients of these basis functions are

capable of capturing the energy information at different frequencies. For example, both sine and cosine basis functions

are adopted by the discrete Fourier transform (DFT) to generate the amplitude and phase frequency spectrums; wavelet

basis functions (e.g., Haar and Gabor) aim to capture local detailed information (e.g., texture) of a signal at multiple

resolutions by the wavelet transform (WT). Although we do not conduct experiments with these functions in this work,

they can be used in our framework with only minor modification.

Using the 3D-DCT object representation, we propose a discriminative learning based tracker. The main contributions

of this tracker are three-fold:

1) We utilize the signal compression power of the 3D-DCT to construct a novel representation of a tracked object.

The representation retains the dense low-frequency 3D-DCT coefficients, and discards the relatively sparse high-

frequency 3D-DCT coefficients. Based on this compact representation, the signal reconstruction error (measuring

the information loss from signal reconstruction) is used to evaluate the likelihood of a test sample belonging to

the foreground object given a set of training samples.

2) We propose an incremental 3D-DCT algorithm for efficiently updating the representation. The incremental algorithm

decomposes 3D-DCT into the successive operations of the 2D-DCT and 1D-DCT on the input video data, and it

only needs to compute the 2D-DCT for newly added frames (referred to in Equ. (18)) as well as the 1D-DCT

along the third dimension, resulting in high computational efficiency. In particular, the cosine basis functions can

be computed in advance, which significantly reduces the computational cost of the 3D-DCT.

3) We design a discriminative criterion (referred to in Equ. (20)) for predicting the confidence score of a test sample

belonging to the foreground object. The discriminative criterion considers both the foreground and the background

3D-DCT reconstruction likelihoods, which enables the tracker to capture useful discriminative information for
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adapting to complicated appearance changes.

II. RELATED WORK

Since our work focuses on learning compact object representations based on the 3D-DCT, we first discuss the DCT

and its applications in relevant research fields. Then, we briefly review the related tracking algorithms using different

types of object representations. As claimed in [3], [4], the DCT aims to use a set of mutually uncorrelated cosine basis

functions to express a discrete signal in a linear manner. It has a wide range of applications in computer vision, pattern

recognition, and multimedia, such as face recognition [5], image retrieval [6], [7], video object segmentation [8], video

caption localization [9], etc. In these applications, the DCT is typically used for feature extraction, and aims to construct

a compact DCT coefficient-based image representation that is robust to complicated factors (e.g., facial geometry and

illumination changes). In this paper, we focus on how to construct an effective DCT-based object representation for robust

visual tracking.

In the field of visual tracking, researchers have designed a variety of object representations, which can be roughly

classified into two categories: generative object representations and discriminative object representations.

Recently, much work has been done in constructing generative object representations, including the integral his-

togram [10], kernel density estimation [11], mixture models [12], [13], subspace learning [1], sparse representation [14]–

[17], visual tracking decomposition [18], covariance tracking [2], [19], [20], and so on. Some representative tracking

algorithms based on generative object representations are reviewed as follows. Jepson et al. [13] design a more elaborate

mixture model with an online EM algorithm to explicitly model appearance changes during tracking. Wang et al. [12]

present an adaptive appearance model based on the Gaussian mixture model in a joint spatial-color space. Comaniciu

et al. [21] propose a kernel-based tracking algorithm using the mean shift-based mode seeking procedure. Following

the work of [21], some variants of the kernel-based tracking algorithm are proposed, e.g., [11], [22], [23]. Ross et

al. [1] propose a generalized tracking framework based on the incremental PCA (principal component analysis) subspace

learning method with a sample mean update. A sparse approximation based tracking algorithm using ℓ1-regularized

minimization is proposed by Mei and Ling [14]. To achieve a real-time performance, Li et al. [17] present a compressive

sensing ℓ1 tracker using an orthogonal matching pursuit algorithm, which is up to 6000 times faster than [14].

In contrast, another type of tracking algorithms try to construct a variety of discriminative object representations, which

aim to maximize the inter-class separability between the object and non-object regions using discriminative learning

techniques, including SVMs [24]–[26], boosting [27], [28], discriminative feature selection [29], random forest [30],

multiple instance learning [31], spatial attention learning [32], discriminative metric learning [33], [34], data-driven

adaptation [35], etc. Some popular tracking algorithms based on discriminative object representations are described as

follows. Grabner et al. [27] design an online AdaBoost classifier for discriminative feature selection during tracking,

resulting in the robustness to the appearance variations caused by out-of-plane rotations and illumination changes. To

alleviate the model drifting problem with [27], Grabner et al. [28] present a semi-supervised online boosting algorithm for

tracking. Liu and Yu [36] present a gradient-based feature selection mechanism for online boosting learning, leading to the

higher tracking efficiency. Avidan [37] builds an ensemble of online learned weak classifiers for pixel-wise classification,

and then employ mean shift for object localization. Instead of using single-instance boosting, Babenko et al. [31] present

a tracking system based on online multiple instance boosting, where an object is represented as a set of image patches.

Besides, SVM-based object representations have also attracted much attention in recent years. Based on off-line SVM

learning, Avidan [24] proposes a tracking algorithm for distinguishing a target vehicle from backgrounds. Later, Tian et

al. [25] present a tracking system based on an ensemble of linear SVM classifiers, which can be adaptively weighted

according to their discriminative abilities during different periods. Instead of using supervised learning, Tang et al. [26]

present an online semi-supervised learning based tracker, which constructs two feature-specific SVM classifiers in a

co-training framework.

As our tracking algorithm is based on the DCT, we give a brief review of the discrete cosine transform and its three

basic versions for 1D, 2D, and 3D signals in the next section.

III. THE 3D-DCT FOR OBJECT REPRESENTATION

We first give an introduction to the 3D-DCT in Section III-A. Then, we derive and formulate the DCT’s matrix forms

(used for object representation) in Section III-B. Next, we address the problem of how to use the 3D-DCT as a compact

object representation in Section III-C. Finally, we propose an incremental 3D-DCT algorithm to efficiently compute the

3D-DCT in Section III-D.
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A. 3D-DCT definitions and notations

The goal of the discrete cosine transform (DCT) is to express a discrete signal, such as a digital image or video, as

a linear combination of mutually uncorrelated cosine basis functions (CBFs), each of which encodes frequency-specific

information of the discrete signal.

We briefly define the 1D-DCT, 2D-DCT, and 3D-DCT, which are applied to 1D signal (fI(x))
N1−1
x=0 , 2D signal

(fII(x, y))N1×N2
and 3D signal (fIII(x, y, z))N1×N2×N3

respectively:

CI(u) = α1(u)

N1−1∑

x=0

fI(x) cos

[
π(2x+ 1)u

2N1

]

, (1)

CII(u, v) = α1(u)α2(v)

N1−1∑

x=0

N2−1∑

y=0

fII(x, y) cos

[
π(2x+ 1)u

2N1

]

cos

[
π(2y + 1)v

2N2

]

, (2)

CIII(u, v, w) = α1(u)α2(v)α3(w)
∑N1−1

x=0

∑N2−1
y=0

∑N3−1
z=0 fIII(x, y, z)

·
{

cos
[
π(2x+1)u

2N1

]

cos
[
π(2y+1)v

2N2

]

cos
[
π(2z+1)w

2N3

]}

,
(3)

where u ∈ {0, 1, . . . , N1 − 1}, v ∈ {0, 1, . . . , N2 − 1}, w ∈ {0, 1, . . . , N3 − 1} and αk(u) is defined as

αk(u) =







√
1
Nk

, if u = 0;
√

2
Nk

, otherwise;
(4)

where k is a positive integer.

The corresponding inverse DCTs (referred to as 1D-IDCT, 2D-IDCT, and 3D-IDCT) are defined as:

fI(x) =

N1−1∑

u=0

CI(u)α1(u) cos

[
π(2x+ 1)u

2N1

]

︸ ︷︷ ︸

1D-DCT CBF

, (5)

fII(x, y) =

N1−1∑

u=0

N2−1∑

v=0

CII(u, v)α1(u)α2(v) cos

[
π(2x+ 1)u

2N1

]

cos

[
π(2y + 1)v

2N2

]

︸ ︷︷ ︸

2D-DCT CBF

, (6)

fIII(x, y, z) =
∑N3−1

w=0

∑N1−1
u=0

∑N2−1
v=0 CIII(u, v, w)·

α1(u)α2(v)α3(w) cos

[
π(2x+ 1)u

2N1

]

cos

[
π(2y + 1)v

2N2

]

cos

[
π(2z + 1)w

2N3

]

︸ ︷︷ ︸

3D-DCT CBF

. (7)

The low-frequency CBFs reflect the larger-scale energy information (e.g., mean value) of the discrete signal, while

the high-frequency CBFs capture the smaller-scale energy information (e.g., texture) of the discrete signal. Based on

these CBFs, the original discrete signal can be transformed into a DCT coefficient space whose dimensions are mutually

uncorrelated. Furthermore, the output of the DCT is typically sparse, which is useful for signal compression and also

for tracking, as will be shown in following sections.

B. 3D-DCT matrix formulation

Let CI = (CI(0), CI(1), . . . , CI(N1 − 1))
T

denote the 1D-DCT coefficient column vector. Based on Equ. (1), CI

can be rewritten in a matrix form: CI = A1f , where f is a column vector: f = (fI(0), fI(1), . . . , fI(N1 − 1))T and

A1 = (a1(u, x))N1×N1
is a cosine basis matrix whose entries are given by:

a1(u, x) = α1(u) cos

[
π(2x+ 1)u

2N1

]

. (8)

The matrix form of 1D-IDCT can be written as: f = A
−1
1 CI. Since A1 is an orthonormal matrix, f = A

T
1 CI.

The 2D-DCT coefficient matrix CII = (CII(u, v))N1×N2
corresponding to Equ. (2) is formulated as: CII = A1FA

T
2 ,

where F = (fII(x, y))N1×N2
is the original 2D signal, A1 is defined in Equ. (8), and A2 is defined as (a2(v, y))N2×N2

such that

a2(v, y) = α2(v) cos

[
π(2y + 1)v

2N2

]

. (9)
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The matrix form of the 2D-IDCT can be expressed as: F = A
−1
1 CII(A

T
2 )

−1. Since the DCT basis functions are

orthonormal, we have F = A
T
1 CIIA2.

Similarly, the 3D-DCT can be decomposed into a succession of the 2D-DCT and 1D-DCT operations. Let F =

(fIII(x, y, z))N1×N2×N3
denote a 3D signal. Mathematically, F can be viewed as a three-order tensor, i.e., F ∈

RN1×N2×N3 . Consequently, we need to introduce terminology for the mode-m product defined in tensor algebra [38].

Let B ∈ RI1×I2×...×IM denote an M -order tensor, each element of which is represented as b(i1, . . . , im . . . , iM ) with

1 ≤ im ≤ Im. In tensor terminology, each dimension of a tensor is associated with a “mode”. The mode-m product of

the tensor B by a matrix Φ = (φ(jm, im))Jm×Im is denoted as B ×m Φ whose entries are as follows:

(B ×m Φ) (i1, . . . , im−1, jm, im+1, . . . , iM ) =
∑

im

b(i1, . . . , im, . . . , iM )φ(jm, im), (10)

where ×m is the mode-m product operator and 1 ≤ m ≤ M . Given two matrices G ∈ RJm×Im and H ∈ RJn×In such

that m 6= n, the following relation holds:

(B ×m G)×n H = (B ×n H)×m G = B ×m G×n H. (11)

Based on the above tensor algebra, the 3D-DCT coefficient matrix CIII = (CIII(u, v, w))N1×N2×N3
can be formulated

as: CIII = F ×1 A1 ×2 A2 ×3 A3, where A3 = (a3(w, z))N3×N3
has a similar definition to A1 and A2:

a3(w, z) = α3(w) cos

[
π(2z + 1)w

2N3

]

. (12)

Accordingly, 3D-IDCT is formulated as: F = CIII ×1 A
−1
1 ×2 A

−1
2 ×3 A

−1
3 . Since Ak(1 ≤ k ≤ 3) is an orthonormal

matrix, F can be rewritten as:

F = CIII ×1 A
T
1 ×2 A

T
2 ×3 A

T
3 . (13)

In fact, the 1D-DCT and 2D-DCT are two special cases of the 3D-DCT because 1D vectors and 2D matrices are 1-order

and 2-order tensors, respectively, namely, f ×1 A1 = A1f and F×1 A1 ×2 A2 = A1FA
T
2 .

C. Compact object representation using the 3D-DCT

For visual tracking, an input video sequence can be viewed as 3D data, so the 3D-DCT is a natural choice for

object representation. Given a sequence of normalized object image regions F = (fIII(x, y, z))N1×N2×N3
from previous

frames and a candidate image region (τ(x, y))N1×N2
in the current frame, we have a new image sequence F

′

=

(fIII(x, y, z))N1×N2×(N3+1) where the first N3 images correspond to F and the last image (i.e., the (N3 + 1)th image)

is (τ(x, y))N1×N2
. According to Equ. (13), F

′

can be expressed as:

F
′

= C
′

III
×1 A

T
1 ×2 A

T
2 ×3 (A

′

3)
T , (14)

where C
′

III
∈ RN1×N2×(N3+1) is the 3D-DCT coefficient matrix: C

′

III
= F

′

×1 A1 ×2 A2 ×3 A
′

3 and A
′

3 ∈
R(N3+1)×(N3+1) is a cosine basis matrix whose entry is defined as:

a
′

3(w, z) =







√
1

N3+1 , if w = 0;
√

2
N3+1 cos

[
π(2z+1)w
2(N3+1)

]

, otherwise.
(15)

According to the properties of the 3D-DCT, the larger the values of (u, v, w) are, the higher frequency the corresponding

elements of C
′

III
encode. Usually, the high-frequency coefficients are usually sparse while the low-frequency coefficients

are relatively dense. Recently, PCA (principal component analysis) tracking [1] builds a compact subspace model which

maintains a set of principal eigenvectors controlling the degree of structural information preservation. Inspired by PCA

tracking [1], we compress the 3D-DCT object representation by retaining the relatively low-frequency elements of C
′

III

around the origin, i.e., {(u, v, w)|u ≤ δu, v ≤ δv, w ≤ δw}. As a result, we can obtain a compact 3D-DCT coefficient

matrix C∗
III

. Then, F
′

can be approximated by:

F
′

≈ F∗ = C
∗
III

×1 A
T
1 ×2 A

T
2 ×3 (A

′

3)
T . (16)

Let F∗ = (f∗
III

(x, y, z))
N1×N2×(N3+1) denote the corresponding reconstructed image sequence of F

′

. The loss of high

frequency components introduces a reconstruction error ‖τ − f∗
III

(:, :, N3 +1)‖, which forms the basis of the likelihood

measure, as shown in Section IV-B.
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Algorithm 1: Incremental 3D-DCT for object representation.

Input:
• Cosine basis matrices A1 and A2 (whose values are fixed given N1 and N2)

• Cosine basis matrices A
′

3

• New image (τ(x, y))
N1×N2

• D = F ×1 A1 ×2 A2 of the previous image sequence F = (fIII(x, y, z))N1×N2×N3

begin

1) Use the FFT to efficiently compute the 2D-DCT of τ ;

2) Update D
′

according to Equ. (18);

3) Employ the FFT to efficiently obtain the 1D-DCT of D
′

along the third dimension.

Output:

• 3D-DCT (i.e., C
′

III) of the current image sequence F
′

= (fIII(x, y, z))N1×N2×(N3+1)

Fig. 2: Comparison on the computational time between the normal 3D-DCT and our incremental 3D-DCT. The three subfigures
correspond to different configurations of N1 ×N2 (i.e., 30 × 30, 60 × 60, and 90 × 90). In each subfigure, the x-axis is associated
with N3; the y-axis corresponds to the computational time. Clearly, as N3 increases, the computational time of the normal 3D-DCT
grows much faster than that of the incremental 3D-DCT.

D. Incremental 3D-DCT

Given a sequence of training images, we have shown how to use the 3D-DCT to represent an object for visual tracking,

in Equ. (16). As the object’s appearance changes with time, it is also necessary to update the object representation.

Consequently, we propose an incremental 3D-DCT algorithm which can efficiently update the 3D-DCT based object

representation as new data arrive.

Given a new image (τ(x, y))N1×N2
and the transform coefficient matrix D = F ×1 A1 ×2 A2 ∈ RN1×N2×N3

of previous images F = (fIII(x, y, z))N1×N2×N3
, the incremental 3D-DCT algorithm aims to efficiently compute the

3D-DCT coefficient matrix C
′

III
∈ RN1×N2×(N3+1) of the previous images with the current image appended: F

′

=

(fIII(x, y, z))N1×N2×(N3+1) with the last image being (τ(x, y))N1×N2
. Mathematically, C

′

III
is formulated as:

C
′

III
= F

′

×1 A1 ×2 A2 ×3 A
′

3, (17)

where A
′

3 ∈ R(N3+1)×(N3+1) is referred to in Equ. (14). In principle, Equ. (17) can be computed in the following two

stages: 1) compute the 2D-DCT coefficients for each image, i.e., D
′

= F
′

×1 A1 ×2 A2; and 2) calculate the 1D-DCT

coefficients along the time dimension, i.e, C
′

III
= D

′

×3 A
′

3.

According to the definition of the 3D-DCT, the CBF matrices A1 and A2 only depend on the row and column

dimensions (i.e., N1 and N2), respectively. Since both N1 and N2 are unchanged during visual tracking, both A1 and

A2 remain constant. In addition, F
′

is a concatenation of F and (τ(x, y))N1×N2
along the third dimension. According

to the property of tensor algebra, D
′

can be decomposed as:

D
′

(:, :, k) =

{
D(:, :, k), if 1 ≤ k ≤ N3;

τ ×1 A1 ×2 A2, k = N3 + 1;
(18)

Given D, D′ can be efficiently updated by only computing the term τ ×1A1×2A2. Moreover, A
′

3 is only dependent on

the variable N3. Once N3 is fixed, A
′

3 is also fixed. In addition, τ ×1A1×2A2 can be viewed as the 2D-DCT along the

first two dimensions (i.e., x and y); and C
′

III
= D

′

×3 A
′

3 can be viewed as the 1D-DCT along the time dimension. To

further reduce the computational time of the 1D-DCT and 2D-DCT, we employ a fast algorithm using the Fast Fourier
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Algorithm 2: Incremental 3D-DCT object tracking.

Input: New frame t, previous object state Z
∗

t−1, previous positive and negative sample sets: F+ =
(

f+
III

(x, y, z)
)

N1×N2×N
+

3

and F− =
(

f−

III
(x, y, z)

)

N1×N2×N
−

3

, maximum buffer size T.

Initialization:
– t = 1.
– Manually set the initial object state Z

∗

t .
– Collect positive (or negative) samples to form training sets F+ = Z

+
t and F− = Z

−

t (see Section IV-A).
begin

• Sample V candidate object states {Ztj}
V
j=1 according to Equ. (21).

• Crop out the corresponding image regions {otj}
V
j=1 of {Ztj}

V
j=1.

• Resize each candidate image region otj to N1 ×N2 pixels.
• for each Ztj do

1) Find K nearest neighbors FK
+ ∈ RN1×N2×K (or FK

− ∈ RN1×N2×K ) of a candidate sample τ (i.e., τ = otj)
from F+ (or F−).

2) Obtain the 3D signals F
′

+ and F
′

− through the concatenations of (FK
+ , τ) and (FK

− , τ).

3) Perform the incremental 3D-DCT in Algorithm 1 to compute the 3D-DCT coefficient matrices: C
′

III+
, C

′

III−
.

4) Compute the compact 3D-DCT coefficient matrices C
∗

III+
, C∗

III−
by discarding the high-frequency coefficients

of C
′

III+
and C

′

III−
.

5) Calculate the reconstructed representations of F
′

+ and F
′

− as F∗

+ and F∗

− by Equ. (16).
6) Compute the reconstruction likelihoods Lτ+ and Lτ− using Equ. (19).
7) Calculate the final likelihood L∗

τ using Equ. (20).

• Determine the optimal object state Z
∗

t by the MAP estimation (referred to in Equ. (22)).
• Select positive (or negative) samples Z

+
t (or Z−

t ) (referred to in Sec. IV-A).
• Update the training sample sets F+ and F− with F+

⋃

Z
+
t and F−

⋃

Z
−

t .
• N+

3 = N+
3 + |Z+

t | and N−

3 = N−

3 + |Z−

t |.
• Maintain the positive and negative sample sets as follows:

– If N+
3 > T, then F+ is truncated to keep the last T elements.

– If N−

3 > T, then F− is truncated to keep the last T elements.

Output: Current object state Z
∗

t , updated positive and negative sample sets F+ and F−.

Transform (FFT) to efficiently compute the DCT and its inverse [3], [4]. The complete procedure of the incremental

3D-DCT algorithm is summarized in Algorithm 1.

The complexity of our incremental algorithm is O(N1N2(logN1 + logN2) + N1N2N3 logN3) at each frame. In

contrast, using a traditional batch-mode strategy for DCT computation, the complexity of the normal 3D-DCT algorithm

becomes O(N1N2N3(logN1 + logN2 + logN3)). To illustrate the computational efficiency of the incremental 3D-DCT

algorithm, Fig. 2 shows the computational time of the incremental 3D-DCT and normal 3D-DCT algorithms for different

values of N1, N2, and N3. Although the computation time of both algorithms increases with N3, the growth rate of the

incremental 3D-DCT algorithm is much lower.

IV. INCREMENTAL 3D-DCT BASED TRACKING

In this section, we propose a complete 3D-DCT based tracking algorithm, which is composed of three main modules:

• training sample selection: select positive and negative samples for discriminative learning;

• likelihood evaluation: compute the similarity between candidate samples and the 3D-DCT based observation model;

• motion estimation: generate candidate samples and estimate the object state.

Algorithm 2 lists the work-flow of the proposed tracking algorithm. Next, we will discuss the three modules in detail.

A. Training sample selection

Similar to [31], we take a spatial distance-based strategy for training sample selection. Namely, the image regions

from a small neighborhood around the object location are selected as positive samples, while the negative samples are

generated by selecting the image regions which are relatively far from the object location. Specifically, we draw a number

of samples Zt from Equ. (21), and then an ascending sort for the samples from Zt is made according to their spatial

distances to the current object location, resulting in a sorted sample set Zs
t . By selecting the first few samples from Z

s
t ,

we have a subset Z+
t that is the final positive sample set, as shown in the middle part of Fig. 3. The negative sample

set Z−
t is generated in the area around the current tracker location, as shown in the right part of Fig. 3.
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Fig. 3: Illustration of training sample selection. The left subfigure plots the bounding box corresponding to the current tracker location;
the middle subfigure shows the selected positive samples; and the right subfigure displays the selected negative samples. Different
colors are assoicated with different samples.
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Fig. 4: Illustration of the process of computing the reconstruction likelihood between test images and training images using the
3D-DCT and 3D-IDCT.

B. Likelihood evaluation

During tracking, each of positive and negative samples is normalized to N1×N2 pixels. Without loss of generality, we

assume the numbers of the positive and negative samples to be N+
3 and N−

3 . The positive and negative sample sequences

are denoted as F+ =
(
f+
III

(x, y, z)
)

N1×N2×N
+

3

and F− =
(
f−
III

(x, y, z)
)

N1×N2×N
−

3

, respectively. Based on F+ and F−,

we evaluate the likelihood of a candidate sample (τ(x, y))N1×N2
belonging to the foreground object. Since the appearance

of F+ and F− is likely to vary significantly as time progresses, it is not necessary for the 3D-DCT to use all samples

in F+ and F− to represent the candidate sample (τ(x, y))N1×N2
. As pointed out by [39], locality is more essential

than sparsity because locality usually results in sparsity but not necessarily vice versa. As a result, a locality-constrained

strategy is taken to construct a compact object representation using the proposed incremental 3D-DCT algorithm.

Specifically, we first compute the K-nearest neighbors (referred to as FK
+ ∈ RN1×N2×K and FK

− ∈ RN1×N2×K) of

the candidate sample τ from F+ and F−, sort them by their sum-squared distance to τ (as shown in the top-left part of

Fig. 4), and then utilize the incremental 3D-DCT algorithm to construct the compact object representation. Let F
′

+ and

F
′

− denote the concatenations of (FK
+ , τ) and (FK

− , τ), respectively. Through the incremental 3D-DCT algorithm, the

corresponding 3D-DCT coefficient matrices C
′

III+
and C

′

III−
can be efficiently calculated. After discarding the high-

frequency coefficients, we can obtain the corresponding compact 3D-DCT coefficient matrices C
∗
III+

and C
∗
III−

. Based

on Equ. (16), the reconstructed representations of F
′

+ and F
′

− are obtained as F∗
+ and F∗

−, respectively. We compute

the following reconstruction likelihoods:

Lτ+ = exp
(

− 1
2γ2

+

‖τ − f∗
III+

(:, :,K + 1)‖2
)

,

Lτ− = exp
(

− 1
2γ2

−

‖τ − f∗
III−

(:, :,K + 1)‖2
)

,
(19)

where γ+ and γ− are two scaling factors, f∗
III+

(:, :,K + 1) and f∗
III−

(:, :,K + 1) are respectively the last images of

F∗
+ and F∗

−. Figs. 4 and 5 illustrates the process of computing the reconstruction likelihood between test samples and

training samples (i.e., car and face samples) using the 3D-DCT and 3D-IDCT. Based on Lτ+ and Lτ− , we define the

final likelihood evaluation criterion:

L∗
τ = ρ

(
Lτ+ − λLτ−

)
(20)
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where λ is a weight factor and ρ(x) = 1
1+exp(−x) is the sigmoid function.

To demonstrate the discriminative ability of the proposed 3D-DCT based observation model, we plot a confidence

map defined in the entire image search space (shown in Fig. 6(a)). Each element of the confidence map is computed by

measuring the likelihood score of the candidate bounding box centered at this pixel belonging to the learned observation

model, according to Eq. (20). For better visualization, L∗
τ is normalized to [0, 1]. After calculating all the normalized

likelihood scores at different locations, we have a confidence map which is shown in Fig. 6(b). From Fig. 6(b), we can

see that the confidence map has an obvious uni-modal peak, which indicates that the proposed observation model has a

good discriminative ability in this image.

C. Motion estimation

The motion estimation module is based on a particle filter [40] that is a Markov model with hidden state variables.

The particle filter can be divided into the prediction and the update steps:

p(Zt |Ot−1) ∝

∫

p(Zt|Zt−1)p(Zt−1|Ot−1)dZt−1,

p(Zt|Ot) ∝ p(ot|Zt)p(Zt|Ot−1),

where Ot = {o1, . . . , ot} are observation variables, p(ot|Zt) denotes the observation model, and p(Zt|Zt−1) represents

the state transition model. For the sake of computational efficiency, we only consider the motion information in translation

and scaling. Specifically, let Zt = (Xt,Yt,St) denote the motion parameters including X translation, Y translation, and

scaling. The motion model between two consecutive frames is assumed to be a Gaussian distribution:

p(Zt|Zt−1) = N (Zt;Zt−1,Σ), (21)

where Σ denotes a diagonal covariance matrix with diagonal elements: σ2
X , σ2

Y , and σ2
S . For each state Zt, there is a

corresponding image region ot that is normalized to N1×N2 pixels by image scaling. The likelihood p(ot|Zt) is defined

as: p(ot|Zt) ∝ L∗
τ where L∗

τ is defined in Equ. (20). Thus, the optimal object state Z
∗
t at time t can be determined by

solving the following maximum a posterior (MAP) problem:

Z
∗
t = argmax

Zt

p(Zt|Ot). (22)

V. EXPERIMENTS

A. Data description and implementation details

We evaluate the performance of the proposed tracker (referred to as ITDT) on twenty video sequences, which are

captured in different scenes and composed of 8-bit grayscale images. In these video sequences, several complicated

factors lead to drastic appearance changes of the tracked objects, including illumination variation, occlusion, out-of-plane

rotation, background distraction, small target, motion blurring, pose variation, etc. In order to verify the effectiveness of

Fig. 5: Example of computing the likelihood scores between test images and training images. The left part shows the training image
sequence; the top-right part displays the test images; the bottom-middle part exhibits the reconstructed images by 3D-DCT and
3D-IDCT; the bottom-right part plots the corresponding likelihood scores (computed by Equ. (19)).
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Fig. 6: Demonstration of the discriminative ability of the 3D-DCT based object representation used by our tracker. (a) shows the
original frame; and (b) displays a confidence map, each element of which corresponds to an image patch in the entire image search
space.

the proposed tracker on these video sequences, a large number of experiments are conducted. These experiments have

two main goals: to verify the robustness of the proposed ITDT in various challenging situations, and to evaluate the

adaptive capability of ITDT in tolerating complicated appearance changes.

The proposed ITDT is implemented in Matlab on a workstation with an Intel Core 2 Duo 2.66GHz processor and

3.24G RAM. The average running time of the proposed ITDT is about 0.8 second per frame. During tracking, the pixels

values of each frame are normalized into [0, 1]. For the sake of computational efficiency, we only consider the object

state information in 2D translation and scaling in the particle filtering module, where the particle number is set to 200.

Each particle is associated with an image patch. After image scaling, the image patch is normalized to N1 ×N2 pixels.

In the experiments, the parameters (N1, N2) are chosen as (30, 30). The scaling factors (γ+, γ−) in Equ. (19) are both

set to 1.2. The weight factor λ in Equ. (20) is set to 0.1. The number of nearest neighbors K in Algorithm 2 is chosen

as 15. The compression ratios (δu, δv, δw) are set as ([N1/2], [N2/2], [(N3 + 1)/2]). The parameter T (i.e., maximum

buffer size) in Algorithm 2 is set to 500. These parameter settings remain the same throughout all the experiments.

B. Competing trackers

We compare the proposed tracker with several other state-of-the-art trackers qualitatively and quantitatively. The

competing trackers are referred to as FragT1 (Fragment-based tracker [10]), MILT2 (multiple instance boosting-based

tracker [31]), VTD3 (visual tracking decomposition [18]), OAB4 (online AdaBoost [27]), IPCA5 (incremental PCA [1]),

and L1T6 (ℓ1 tracker [14]). Furthermore, IPCA, VTD, and L1T make use of particle filters for state inference while

FragT, MILT, and OAB utilize the strategy of sliding window search for state inference. We directly use the public source

codes of FragT, MILT, VTD, OAB, IPCA, and L1T. In the experiments, OAB has two different versions, i.e., OAB1

and OAB5, which utilize two different positive sample search radiuses (i.e., r = 1 and r = 5 selected in the same way

as [31]) for learning AdaBoost classifiers.

We select these seven competing trackers for the following reasons. First, as a recently proposed discriminant learning-

based tracker, MILT takes advantage of multiple instance boosting for object/non-object classification. Based on the

multi-instance object representation, MILT is capable of capturing the inherent ambiguity of object localization. In

contrast, OAB is based on online single-instance boosting for object/non-object classification. The goal of comparing

ITDT with MILT and OAB is to demonstrate the discriminative capabilities of ITDT in handling large appearance

variations. In addition, based on a fragment-based object representation, FragT is capable of fully capturing the spatial

layout information of the object region, resulting in the tracking robustness. Based on incremental principal component

analysis, IPCA constructs an eigenspace-based observation model for visual tracking. L1T converts the problem of visual

tracking to that of sparse approximation based on ℓ1-regularized minimization. As a recently proposed tracker, VTD uses

sparse principal component analysis to decompose the observation (or motion) model into a set of basic observation (or

1http://www.cs.technion.ac.il/∼amita/fragtrack/fragtrack.htm
2http://vision.ucsd.edu/∼bbabenko/project miltrack.shtml
3http://cv.snu.ac.kr/research/∼vtd/
4http://www.vision.ee.ethz.ch/boostingTrackers/download.htm
5http://www.cs.utoronto.ca/∼dross/ivt/
6http://www.ist.temple.edu/∼hbling
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Fig. 7: The tracking results of the eight trackers over the representative frames (i.e., the 197th, 237th, 275th, 295th, 311th, 347th,
376th, and 433rd frames) of the “trellis70” video sequence [41] in the scenarios with drastic illumination changes and head pose
variations.

Fig. 8: The tracking results of the eight trackers over the representative frames (i.e., the 1st, 72nd, 146th, 285th, 291st, and 316th
frames) of the “tiger” video sequence [42] in the scenarios with partial occlusion, illumination change, pose variation, and motion
blurring.

motion) models, each of which covers a specific type of object appearance (or motion). Thus, comparing ITDT with

FragT, IPCA, L1T, and VTD can show their capabilities of tolerating complicated appearance changes.

C. Tracking results

Due to space limit, we only report tracking results for the eight trackers (highlighted by the bounding boxes in different

colors) over representative frames of the first twelve video sequences, as shown in Figs. 7–18 (the caption of each figure

includes the name of its corresponding video sequence). Complete tracking results and quantitative comparisons for all

the twenty video sequences can be found in the supplementary file7 and Tab. I.

As shown in Fig. 7, a man walks under a treillage. Suffering from large changes in environmental illumination and

head pose, VTD and OAB5 start to fail in tracking the face after the 170th frame while OAB1, IPCA, MILT, and FragT

7http://cs.adelaide.edu.au/users/xi/pami-demo.zip
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Fig. 9: The tracking results of the eight trackers over the representative frames (i.e., the 1st, 303rd, 335th, 362nd, 386th, and 388th
frames) of the “car11” video sequence [41] in the scenarios with varying lighting conditions and background clutters.

Fig. 10: The tracking results of the eight trackers over the representative frames (i.e., the 1st, 40th, 43rd, 56th, 57th, and 59th frames)
of the “animal” video sequence [43] in the scenarios with motion blurring and background distraction.

break down after the 182nd, 201st, 202nd, and 205th frames, respectively. L1T fails to track the face from the 252nd

frame. In contrast to these competing trackers, the proposed ITDT is able to successfully track the face till the end of

the video.

Fig. 8 shows that a tiger toy is shaken strongly. Affected by drastic pose variation, illumination change, and partial

occlusion, L1T, IPCA, OAB5, and FragT fail in tracking the tiger toy after the 72nd, 114th, 154th, and 224th frames,

respectively. From the 113th frame, VTD fails to track the tiger toy intermittently. OAB1 is not lost in tracking the tiger

toy, but it achieves inaccurate tracking results. In contrast, both MILT and ITDT are capable of accurately tracking the

tiger toy in the situations of illumination changes and partial occlusions.

As shown in Fig. 9, there is a car moving quickly in a dark road scene with background clutter and varying lighting

conditions. After the 271st frame, VTD fails to track the car due to illumination changes. Distracted by background

clutter, MILT, FragT, L1T, and OAB1 break down after the 196th, 208th, 286th, and 295th frames, respectively. OAB5

can keep tracking the car, but obtain inaccurate tracking results. In contrast, only ITDT and IPCA succeed in accurately

tracking the car throughout the video sequence.

Fig. 10 shows that several deer run and jump in a river. Because of drastic pose variation and motion blurring, FragT
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Fig. 11: The tracking results of the eight trackers over the representative frames (i.e., the 1st, 76th, 86th, 93rd, 106th, 120th, 133rd,
and 143rd frames) of the “Sub-three-persons” video sequence [44] in the scenarios with severe occlusions.

Fig. 12: The tracking results of the eight trackers over the representative frames (i.e., the 1st, 154th, 204th, 283rd, 330th, and 393rd
frames) of the “woman” video sequence [45] in the scenarios with partial occlusions and body pose variations.

fails in tracking the head of a deer after the 5th frame while IPCA, VTD, OAB1, and OAB5 lose the head of the deer

after the 13th, 17th, 39th, and 52nd frames, respectively. L1T and MILT are incapable of accurately tracking the head

of the deer all the time, and lose the target intermittently. Compared with these trackers, the proposed ITDT is able to

accurately track the head of the deer throughout the video sequence.

In the video sequence shown in Fig. 11, several persons walk along a corridor. One person is occluded severely by

the other two persons. All the competing trackers except for FragT and ITDT suffer from severe occlusion taking place

between the 56th frame and the 76th frame. As a result, they fail to track the person after the 76th frame thoroughly. On

the contrary, FragT and ITDT can track the person successfully. However, FragT achieves less accurate tracking results

than ITDT.

Fig. 12 shows that woman with varying body poses walks along a pavement. In the meantime, her body is occluded

by several cars. After the 127th frame, MILT, OAB1, IPCA, and VTD start to drift away from the woman as a result of

partial occlusion. L1T begins to lose the woman after the 147th frame while OAB5 fails to track the woman from the
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Fig. 13: The tracking results of the eight trackers over the representative frames (i.e., the 1st, 53rd, 70th, 72nd, 79th, and 83rd frames)
of the “soccer” video sequence [43] in the scenarios with partial occlusions, head pose variations, background clutters, and motion
blurring.

Fig. 14: The tracking results of the eight trackers over the representative frames (i.e., the 218th, 274th, and 314th frames) of the
“video-car” video sequence [46] in the scenarios with small target and background clutter.

205th frame. From the 227th frame, FragT stays far away from the woman. Only ITDT can keep tracking the woman

over time.

In the video sequence shown in Fig. 13, a number of football players assemble together and scream excitedly, jumping

up and down. Moreover, their heads are partially occluded by many pieces of floating paper. FragT, IPCA, MILT, and

OAB5 fail to track the face from the 49th, 52nd, 49th, and 87th frames, respectively. From the 48th frame to the 94th

frame, VTD and OAB1 achieve unsuccessful tracking performances. After the 94th frame, they capture the location of

the face again. Compared with these competing trackers, the proposed ITDT can achieve good performance throughout

the video sequence.

In Fig. 14, several small-sized cars densely surrounded by other cars move in a blurry traffic scene, Due to the influence

of background distraction and small target, MILT, OAB5, FragT, OAB1, VTD, and L1T fail to track the car from the

69th, 160th, 190th, 196th, 246th, and 314th frames, respectively. In contrast, both ITDT and IPCA are able to locate the

car accurately at all times.

As shown in Fig. 15, a driver tries to parallel park in the gap between two cars. At the end of the video sequence, the

car is partially occluded by another car. FragT, VTD, OAB1, and IPCA achieve inaccurate tracking performances after

the 122nd frame. Subsequently, they begin to drift away after the 435th frame, while OAB5 begins to break down from

the 486th frame. MILT and L1T are able to track the car, but achieve inaccurate tracking results. In contrast to these

competing trackers, the proposed ITDT is able to perform accurate car tracking throughout the video.

Fig. 16 shows that two balls are rolled on the floor. In the middle of the video sequence, one ball is occluded by

the other ball. L1T, FragT and VTD fail in tracking the ball in the 3rd, 5th, and 6th frames, respectively. Before the

8th frame, OAB1, OAB5, MILT, and IPCA achieves inaccurate tracking results. After that, IPCA fails to track the ball

thoroughly while OAB1, OAB5, and MILT are distracted by another ball due to severe occlusion. In contrast, only ITDT
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Fig. 15: The tracking results of the three best trackers (i.e., ITDT, MILT, and L1T for a better visualization) over the representative
frames (i.e., the 2nd, 46th, 442nd, 460th, 482nd, and 493rd frames) of the “pets-car” video sequence [47] in the scenarios with partial
occlusion and car pose variation.

Fig. 16: The tracking results of the eight trackers over the representative frames (i.e., the 1st, 8th, 9th, 11th, 13th, and 15th) of the
“TwoBalls” video sequence in the scenarios with severe occlusions and motion blurring.

can successfully track the ball continuously even in the case of severe occlusion.

In the video sequence shown in Fig. 17, a girl rotates her body drastically. At the end, her face is occluded by the

other person’s face. Suffering from severe occlusion, IPCA fails to track the face from the 442nd frame while OAB5

begins to break down after the 486th frame. Due to the influence of the head’s out-of-plane rotation, MILT, OAB1,

OAB5, FragT, and L1T obtain inaccurate tracking results from the 88th frame to the 265th frame. VTD can track the

face persistently, but achieves inaccurate tracking results in most frames. On the contrary, the proposed ITDT can achieve

accurate tracking results throughout the video sequence.

As shown in Fig. 18, a car is moving in a highway. Due to the influence of both shadow disturbance and pose variation,

OAB5 and OAB1 fail to track the car thoroughly after the 241st and 331st frames, respectively. In contrast, VTD is able
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Fig. 17: The tracking results of the three best trackers (i.e., ITDT, L1T, and VTD for a better visualization) over the representative
frames (i.e., the 112th, 194th, 237th, 312th, 442nd, 460th, 464th, and 468th frames) of the “girl” video sequence [42] in the scenarios
with severe occlusion, in-plane/out-of-plane rotation, and head pose variation.

Fig. 18: The tracking results of the eight trackers over the representative frames (i.e., the 237th, 304th, 313th, 324th, 485th, and 553rd
frames) of the “car4” video sequence [41] in the scenarios with shadow disturbance and pose variation.

to track the car before the 240th frame. However, it tracks the car inaccurately or unsuccessfully after the 240th frame.

MILT begin to achieve inaccurate tracking results after the 323rd frame. In contrast, ITDT can track the car accurately

in the situations of shadow disturbance and pose variation throughout the video sequence, while both IPCA and L1T

achieve less accurate tracking results than ITDT.

D. Quantitative comparison

1) Evaluation criteria: For all the twenty video sequences, the object center locations are labeled manually and used

as the ground truth. Hence, we can quantitatively evaluate the performances of the eight trackers by computing their

pixel-based tracking location errors from the ground truth.

In order to better evaluate the quantitative tracking performance of each tracker, we define a criterion called the tracking

success rate (TSR) as: TSR = Ns

N
. Here N is the total number of the frames from a video sequence, and Ns is the

number of the frames in which a tracker can successfully track the target. The larger the value of TSR is, the better

performance the tracker achieves. Furthermore, we introduce an evaluation criterion to determine the success or failure

of tracking in each frame: TLE
max(W,H) , where TLE is the pixel-based tracking location error with respect to the ground
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Fig. 19: Quantitative tracking performances using different cases of “temporal ordering” (obtained by small-scale random permutation)
on the four video sequences. The error curves of the four video sequences in this figure have the same y-axis scale as those of the
four video sequences in Fig. 22.

Fig. 20: Quantitative tracking performances using different choices of K on the three video sequences. The error curves of the three
video sequences in this figure have the same y-axis scale as those of the three video sequences in Fig. 22.

truth, W is the width of the ground truth bounding box for object localization, and H is the height of the ground truth

bounding box. If TLE
max(W,H) < 0.25, the tracker is considered to be successful; otherwise, the tracker fails. For each

tracker, we compute its corresponding TSRs for all the video sequences. These TSRs are finally used as the criterion for

the quantitative evaluation of each tracker.

2) Investigation of nearest neighbor construction: The K nearest neighbors used in our 3D-DCT representation are

always ordered according to their distances to the current sample (as described in Sec. IV-B). In order to examine the

influence of sorting such K nearest neighbors, we randomly exchange a few of them and perform the tracking experiments

again, as shown in Fig. 19. It is seen from Fig. 19 that the tracking performances using different ordering cases are close

to each other.

In order to evaluate the effect of nearest neighbor selection, we conduct one experiment on three video sequences using

difference choices of K such that K ∈ {9, 11, 13, 15, 17, 19, 21}, as shown in Fig. 20. From Fig. 20, we can see that

the tracking performances using different configurations of K within a certain range are close to each other. Therefore,

our 3D-DCT representation is not very sensitive to the choice of K which lies in a certain interval.

3) Comparison of object representation and state inference: From Tab. I, we see that our tracker achieves equal

or higher tracking accuracies than the competing trackers in most cases. Moreover, our tracker utilizes the same state

inference method (i.e., particle filter) as IPCA, L1T, and VTD. Consequently, our 3D-DCT object representation play a

more critical role in improving the tracking performance than those of IPCA, L1T, and VTD.

Furthermore, we make a performance comparison between our particle filter-based method (referred to as “3D-DCT

+ Particle Filter”) and a simple state inference method (referred to as “3D-DCT + Sliding Window Search”). Clearly,

Fig. 21 shows that the tracking performances of two state inference methods are close to each other. Besides, Tab. I

shows that our “3D-DCT + Particle Filter” obtains more accurate tracking results than those of MILT and OAB, which

also use a sliding window for state inference. Therefore, we conclude that the 3D-DCT object representation is moslty

responsible for the enhanced tracking performance relative to MILT and OAB.

4) Comparison of competing trackers: Fig. 22 plots the tracking location errors (highlighted in different colors)

obtained by the eight trackers for the first twelve video sequences. Furthermore, we also compute the mean and standard

deviation of the tracking location errors for the first twelve video sequences, and report the results in Fig. 23. Besides,

the tracking location error plots (as well as the mean and standard deviation of the tracking location errors) for the other

eight video sequences can also be found in the supplementary file7.
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Fig. 21: Quantitative tracking performances of different state inference methods, i.e., sliding window search-based object tracking
(referred to as “3D-DCT + Sliding Window Search”) and its comparison with particle filter-based tracking (referred to as “3D-DCT +
Particle Filter”) on the three video sequences. The error curves of the three video sequences in this figure have the same y-axis scale
as those of the three video sequences in Fig. 22 and the supplementary file. Clearly, their tracking performances are almost consistent
with each other.

TABLE I: The quantitative comparison results of the eight trackers over the twenty video sequences. The table reports their tracking
success rates (i.e., TSRs) over each video sequence.

❳
❳

❳
❳
❳
❳
❳
❳
❳
❳

Video

sequence

Algorithm

FragT VTD MILT OAB1 OAB5 IPCA L1T ITDT

trellis70 0.2974 0.4072 0.3493 0.2295 0.0339 0.3593 0.3972 1.0000

tiger 0.1672 0.5205 0.9495 0.2808 0.1767 0.1104 0.1451 0.9495

car11 0.4020 0.4326 0.1043 0.3181 0.2799 0.9211 0.5700 0.9898

animal 0.1408 0.0845 0.6761 0.3099 0.5352 0.1690 0.5352 0.9859

Sub-three-persons 1.0000 0.4610 0.4481 0.4610 0.2662 0.4481 0.4481 1.0000

woman 0.2852 0.2004 0.2058 0.2148 0.1859 0.2148 0.2509 0.9530

soccer 0.1078 0.3824 0.2941 0.3725 0.4118 0.4902 0.9510 1.0000

video-car 0.4711 0.6353 0.1550 0.4225 0.0578 1.0000 0.9058 1.0000

pets-car 0.2959 0.4062 0.8801 0.1799 0.1199 0.4081 0.6983 1.0000

TwoBalls 0.1250 0.2500 0.3125 0.3125 0.3750 0.5625 0.1250 1.0000

girl 0.6335 0.9044 0.2211 0.1773 0.1633 0.8466 0.8845 0.9741

car4 0.4139 0.3783 0.4849 0.4547 0.2327 0.9982 1.0000 1.0000

shaking 0.1534 0.2767 0.9918 0.9890 0.8438 0.0110 0.0411 0.9973

pktest02 0.1667 1.0000 1.0000 1.0000 0.2333 1.0000 1.0000 1.0000

davidin300 0.4545 0.7900 0.9654 0.3550 0.4762 1.0000 0.8528 1.0000

surfer 0.2128 0.4149 0.9894 0.3112 0.0399 0.4069 0.2766 0.9761

singer2 0.9304 1.0000 1.0000 0.3783 0.2087 1.0000 0.6739 1.0000

seq-jd 0.8020 0.7723 0.5545 0.5446 0.3168 0.6634 0.2277 0.8020

cubicle 0.7255 0.9020 0.2353 0.4706 0.8627 0.7255 0.6863 1.0000

seq-simultaneous 0.6829 0.3171 0.2927 0.6829 0.6585 0.3171 0.5854 0.9756

Mean 0.4234 0.5268 0.5555 0.4233 0.3239 0.5826 0.5629 0.9802

Std 0.2817 0.2768 0.3382 0.2315 0.2438 0.3360 0.3126 0.0449

Moreover, Tab. I reports all the corresponding TSRs of the eight trackers over the total twenty video sequences. From

Tab. I, we can see that the mean and standard deviation of the TSRs obtained by the proposed ITDT is respectively

0.9802 and 0.0449, which are the best among all the eight trackers. The proposed ITDT also achieves the largest TSR

over 19 out of 20 video sequences. As for the “surfer” video sequence, the proposed ITDT is slightly inferior to the

best MILT (i.e., 1.33% difference). We believe this is because in the “surfer” video sequence, the tracked object (i.e., the

surfer’s head) has an low-resolution appearance with drastic motion blurring. In addition, the surfer’s body has a similar

color appearance to the tracked object, which usually leads to the distraction of the trackers using color information.

Furthermore, the tracked object’s appearance is varying greatly due to the influence of pose variation and out-of-plane

rotation. Under such circumstances, the trackers using local features are usually more effective than those using global

features. Therefore, the MILT using Haar-like features slightly outperforms the proposed ITDT using color features

in the “surfer” video sequence. In summary, the 3D-DCT based object representation used by the proposed ITDT is

able to exploit the correlation between the current appearance sample and the previous appearance samples in the 3D-

DCT reconstruction process, and encodes the discriminative information from object/non-object classes. This may have

contributed to the tracking robustness in complicated scenarios (e.g., partial occlusions and pose variations).

VI. CONCLUSION

In this paper, we have proposed an effective tracking algorithm based on the 3D-DCT. In this algorithm, a compact

object representation has been constructed using the 3D-DCT, which can produce a compact energy spectrum whose high-

frequency components are discarded. The problem of constructing the compact object representation has been converted
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Fig. 22: The tracking location error plots obtained by the eight trackers over the first twelve videos. In each sub-figure, the x-axis
corresponds to the frame index number, and the y-axis is associated with the tracking location error.

to that of how to efficiently compress and reconstruct the video data. To efficiently update the object representation during

tracking, we have also proposed an incremental 3D-DCT algorithm which decomposes the 3D-DCT into the successive

operations of the 2D-DCT and 1D-DCT on the video data. The incremental 3D-DCT algorithm only needs to compute

2D-DCT for newly added frames as well as the 1D-DCT along the time dimension, leading to high computational

efficiency. Moreover, by computing and storing the cosine basis functions beforehand, we can significantly reduce the

computational complexity of the 3D-DCT. Based on the incremental 3D-DCT algorithm, a discriminative criterion has

been designed to measure the information loss resulting from 3D-DCT based signal reconstruction, which contributes to

evaluating the confidence score of a test sample belonging to the foreground object. Since considering both the foreground

and the background reconstruction information, the discriminative criterion is robust to complicated appearance changes

(e.g., out-of-plane rotation and partial occlusion). Using this discriminative criterion, we have conducted visual tracking in

the particle filtering framework which propagates sample distributions over time. Compared with several state-of-the-art

trackers on challenging video sequences, the proposed tracker is more robust to the challenges including illumination
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Fig. 23: The quantitative comparison results of the eight trackers over the first twelve videos. The figure reports the mean and standard
deviation of their tracking location errors over the first twelve videos. In each sub-figure, the x-axis shows the competing trackers,
the y-axis is associated with the means of their tracking location errors, and the error bars correspond to the standard deviations of
their tracking location errors.

changes, pose variations, partial occlusions, background distractions, motion blurring, complicated appearance changes,

etc. Experimental results have demonstrated the effectiveness and robustness of the proposed tracker.
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