
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011 1517

Incremental Learning of Concept Drift
in Nonstationary Environments

Ryan Elwell, Member, IEEE, and Robi Polikar, Senior Member, IEEE

Abstract— We introduce an ensemble of classifiers-based
approach for incremental learning of concept drift, characterized
by nonstationary environments (NSEs), where the underlying
data distributions change over time. The proposed algorithm,
named Learn++.NSE, learns from consecutive batches of data
without making any assumptions on the nature or rate of drift;
it can learn from such environments that experience constant or
variable rate of drift, addition or deletion of concept classes, as
well as cyclical drift. The algorithm learns incrementally, as other
members of the Learn++ family of algorithms, that is, without
requiring access to previously seen data. Learn++.NSE trains one
new classifier for each batch of data it receives, and combines
these classifiers using a dynamically weighted majority voting.
The novelty of the approach is in determining the voting weights,
based on each classifier’s time-adjusted accuracy on current
and past environments. This approach allows the algorithm to
recognize, and act accordingly, to the changes in underlying
data distributions, as well as to a possible reoccurrence of
an earlier distribution. We evaluate the algorithm on several
synthetic datasets designed to simulate a variety of nonstationary
environments, as well as a real-world weather prediction dataset.
Comparisons with several other approaches are also included.
Results indicate that Learn++.NSE can track the changing
environments very closely, regardless of the type of concept drift.
To allow future use, comparison and benchmarking by interested
researchers, we also release our data used in this paper.

Index Terms— Concept drift, incremental learning, learning in
nonstationary environments, multiple classifier systems.

I. INTRODUCTION

M
UCH of the recent history of machine learning research

has focused on learning from data assumed to be

drawn from a fixed yet unknown distribution. Learning in a

nonstationary environment (or learning concept drift), where

the underlying data distribution changes over time; however,

has received much less attention despite the abundance of

applications that generate inherently nonstationary data. While

algorithms for learning in such environments have recently

started to appear in the literature, many make restrictive

assumptions such as assuming slow or gradual drift, non-

cyclical environments, no new classes, partial availability of

old data, or have not been tested on meaningful and truly

Manuscript received July 31, 2010; revised January 7, 2011, and April 6,
2011; accepted June 4, 2011. Date of publication August 4, 2011; date of
current version October 5, 2011. This work was supported by the National
Science Foundation under Grant ECCS 0926159.

The authors are with the Signal Processing & Pattern Recognition Lab-
oratory, Electrical & Computer Engineering Department, Rowan University,
Glassboro, NJ 08028 USA [e-mail: ryan.elwell@gmail.com; (Corresponding
author: polikar@rowan.edu)].

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2011.2160459

nonstationary real world test beds. Yet, if the ultimate goal of

computational intelligence is to learn from large volumes of

data that come from real applications, then the need for a gen-

eral framework for learning from—and adapting to—a nonsta-

tionary environment can be hardly overstated. Given new data,

such a framework would allow us to learn any novel content,

reinforce existing knowledge that is still relevant, and forget

what may no longer be relevant, only to be able to recall, if and

when such information becomes relevant again in the future.

This paper describes such a framework and proposes an

incremental learning algorithm, Learn++.NSE, that does not

put restrictions on how slow, rapid, abrupt, gradual, local,

global, cyclical or otherwise changes in distributions may be,

whether new data introduce new concept classes or remove old

ones, or whether old data are still relevant or even available.

Learning new data in the absence of old data requires incre-

mental learning, which raises the so-called stability–plasticity

dilemma, where “stability” describes retaining existing (and

still relevant or recurring) knowledge and “plasticity” refers

to learning new knowledge [1]. We show that learning in such

an environment and obtaining a meaningful stability–plasticity

balance can be achieved by a strategic combination of an

ensemble of classifiers that use dynamically assigned weights.

Interestingly, we also show that the proposed framework

is consistent with the existing models of human learning,

such as the Schema [2], [3], and Scaffolding Theory [4].

Schema describes a body of knowledge that is continually

updated and modified as information is acquired through

new experiences, given that current and prior knowledge

may conflict. Scaffolding describes the role of a supervisor

in monitoring incoming data and learner’s performance to

improve the learning process.

We organize our discussion as follows. We introduce the

human learning theory in Section II, followed by an overview

of learning concept drift in Section III. The Learn++.NSE

algorithm is introduced in Section IV, followed by a descrip-

tion of real and synthetic datasets used to evaluate the algo-

rithm on various drift scenarios, as well as the comparative

results of Learn++.NSE and other approaches on these sce-

narios in Section V. Discussions and concluding remarks are

provided in Section VI.

II. HUMAN LEARNING

Knowledge acquisition is fundamental to both human and

machine learning, and since the brain is often confronted with

new environments containing information that may conflict

with its prior knowledge or experience, connections between

1045–9227/$26.00 © 2011 IEEE

1518 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

machine and human learning can provide guidelines for devel-

oping concept drift algorithms. In this section, we briefly

review the two main theories of human leaning, and point

out the similarities and connections to machine learning.

A. Schema Theory

Piaget asserts that an equilibrium, similar to that seen in

physical processes, also applies to human cognition, describ-

ing the learning process as a constant effort to maintain or

achieve balance between prior and new knowledge [5], [6].

The machine learning counterpart (henceforth indicated by

↔ notation) is of course the [↔ stability–plasticity dilemma]

[1]. Piaget’s model forms the basis of a foundational theory

for human learning, and has been extensively researched,

specifically with regard to the schema theory [2], [3].

Schema theory is a psychological model that describes

the process of human knowledge acquisition and memory

organization for future decision-making. Two properties of this

process are schemata construction [↔ incremental learning],

which is building and categorization of the knowledge base as

new information become available, and schemata activation,

[↔ evaluation/generalization], the utilization of schema to

interpret unknown or novel information.

Schemata construction is the process of building a knowl-

edge base that can adapt to new information, which may

or may not be consistent with the prior knowledge. The

conflicts between the two are the building blocks of human

(and computer) learning. Three terms are used to describe how

such conflicts are handled. Accretion occurs when information

is remembered or interpreted in the context of existing schema,

i.e., when new information is agreeable with the current body

of knowledge. Minor differences between incoming infor-

mation and prior knowledge often necessitate tuning of (or

assimilation into) the schema. When new knowledge cannot be

accommodated under existing schema because of severe con-

flict, the result is restructuring (or accommodation) to create

new schemata that supplements or replaces the prior knowl-

edge base. The machine learning counterpart of schemata

construction is [↔ incremental learning], which also needs

to address the same accretion, tuning and restructuring issues.

Schemata activation occurs for two reasons. First, schemata

are activated during the data acquisition process in order

to determine which type of schemata construction (tuning,

accretion, restructuring) should take place. Here, the current

knowledge base must be evaluated and compared to new

knowledge in order to make connections and determine its

adequacy to handle or understand the new information.

Second, schemata are activated for prediction and extrap-

olation, enabling the brain to interpret novel data and make

predictions; naturally, such predictions are based on current

schemas. Not only can the brain interpret novel information,

but it can also hypothesize about missing material within its

own knowledge base, hence the brain is quite robust in the

presence of structural damage that leads to memory loss.

The counterpart of activation in machine learning is evalu-

ation (validation) of the model performance to iteratively fine

tune the next step of learning as new data become available.

B. Scaffolding Theory

Scaffolding is a tutoring theory developed to enhance human

learning of complex data [4]. Scaffolding is a supervised

learning approach to build schemata by breaking up complex

information such that it is learned in chunks [↔ batch learn-

ing], and by periodically intervening to evaluate performance

within the scope of the most recent information. As we

describe in Section IV, this is precisely what Learn++.NSE

does as it updates the ensemble, one classifier at a time, based

on the current and previous errors on the current batch of data.

The goal of scaffolding is to provide a learner with

both feedback and guidance. Passive supervision provides

the learner with experience–consequence combinations [↔

features–correct labels] as knowledge [↔ data] become avail-

able; whereas active scaffolding enhances learning by com-

plexity reduction [↔ preprocessing, feature selection], prob-

lematizing [7], i.e., finding conflicts between current and

prior knowledge [↔ drift detecting], and fading [7], [8],

preventing redundancy when an environment has been learned

[↔ pruning].

III. CONCEPT DRIFT/NON-STATIONARY LEARNING

A. Definitions

Informally, concept drift refers to a change in the class

(concept) definitions over time, and therefore a change in

the distributions from which the data for these concepts are

drawn. An environment from which such data is obtained is a

non-stationary environment. Starting with the Bayes posterior

probability of a class that a given instance belongs, P(ω|x) =

P(x |ω)P(ω)/P(x), concept drift can be formally defined as

any scenario where the posterior probability changes over

time, i.e., Pt+1(ω|x) �= Pt (ω|x). An in-depth look at this

fundamental definition is important to understand the different

aspects of concept drift.

P(x) describes the feature-based probabilities (evidence) of

the data. Observing P(x) over time allows us to see general

changes in the environment that generates this data. Although

a change in overall distribution of the features often means that

the true decision boundaries are shifting as well, an observa-

tion of change in P(x) is insufficient to definitively indicate

concept drift because of its independence of the class labels.

P(x |ω) describes the likelihood of observing data point x

within a particular class. This likelihood measurement is a

class-dependent probability and is governed by the previously

seen data instances. A shift in likelihood would seem to

indicate that the class labels may also be changing. However,

we assert that it is not until the distribution of one class

shifts such that the true class boundaries are altered that we

can call this change a real concept drift. Class drift without

overlapping of true class boundaries is known as virtual

concept drift [9], and merely shows that the learner is being

provided with additional data from the same environment.

Virtual drift is the result of an incomplete representation of

the true distribution in the current data. The key difference

is that real drift requires replacement learning (where old

knowledge becomes irrelevant [restructuring]), whereas virtual

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1519

drift requires supplemental learning (adding to the current

knowledge [↔ tuning]).

Finally, P(ω), defines class prior probabilities, and

relates class balance to the overall distribution. Since there

is no relation to the features, observing P(ω) does not

reveal information about the decision boundaries between

classes. Yet it does reveal another fundamental aspect of

non-stationary environments dealing with class imbalance, as

class imbalance is known to negatively impact classification

performance [10], [11].

Concept drift can also be viewed in a more abstract sense as

an obstacle caused by insufficient, unknown or unobservable

features in a dataset, a phenomenon known as hidden context

[12]. In such a case, there is an underlying phenomenon that

provides a true and static description over time for each class,

which, unfortunately, is hidden from the learner’s view. View-

ing the problem with the benefit of this (hidden) context would

remove the non-stationarity. Yet, the learner must cope with

the available information. Since we can never know the hidden

context, we use the aforementioned probabilistic definition of

concept drift to describe nonstationary environments.

Quinonero-Candela [11], Minku [13], and Kuncheva [14],

[15] also provided comprehensive summaries for characteriz-

ing different types of concept drift with respect to its speed,

randomness, and cyclical nature. Drift speed describes the

displacement rate in Pt (ω|x) from one time step to the next,

Pt+1(ω|x). Larger displacement within a step denotes fast

drift and usually results in high classifier error. Gradual drift,

however, appears in smaller displacements, results in lower

classification error, and as a result, is more difficult to detect.

Drift randomness is an important descriptor in discerning

between non-stationary and noisy data, and can be described

as the variance of a distribution over a short period time.

Randomness can be viewed in terms of its frequency and mag-

nitude: high variance between two periods of time indicates

a highly unstable environment which, as this level increases,

approaches a state where the environment cannot be learned.

The cyclical nature of drift is a phenomenon that can be

observed in many real-world applications such as climate or

electricity demand modeling. In such cases, class definitions

change in such a way that a previous environment may recur

after some period of time. This recurrence can be periodic or

random.

Finally, addition or deletion of new concepts is typically not

addressed by concept drift algorithms; as such events are char-

acterized more by concept change rather than concept drift.

Hence, we use the more general terminology of learning in

nonstationary environments or nonstationary learning (NSL)

to refer to any drift or change regardless of its nature. The

framework proposed in this paper addresses all issues of NSL,

not just those associated with concept drift.

B. Desired Properties of Concept Drift/NSL Algorithms

Combining schema and scaffolding theories, Kuncheva’s

suggested desiderata for learning concept drift [15], and the

generally accepted definitions of incremental learning [16],

[17], we use the following guidelines to develop a framework

for learning in non-stationary environments. 1) Any given

instance of data can only be seen once for the purpose of

training; therefore knowledge from each instance must be

generalized, summarized or stored in some way in the model

parameters for future use. This requires a truly incremental

(or one-pass) learning, where previous data may not be used

for future training. 2) Since the most recent dataset is a rep-

resentation of the current environment, knowledge should be

categorized based on its relevance to the current environment,

and be dynamically updated as new data become available.

3) The learner should have a mechanism to reconcile when

existing and newly learned knowledge conflict with each other.

More specifically, there should be a mechanism for monitoring

both the incoming data and the learner’s performance on

new and old data for the purpose of complexity reduction,

problematizing, and fading. 4) The learner should have a

mechanism to forget or discard information that is no longer

relevant, but preferably with the added ability to recall such

information if the drift or change follow a cyclical nature.

5) Knowledge should be incrementally and periodically stored

so that it can be activated to produce the best hypothesis for

an unknown (unlabelled) data instance at any time during the

learning process.

C. Review of Existing Approaches

NSL has recently been receiving increasing attention, in part

due to many practical applications, such as spam, fraud or

climate change detection, where data distributions inherently

change over time. Algorithms designed for concept drift can be

characterized in several ways, such as online versus batch algo-

rithms; single classifier versus ensemble-based approaches;

or active versus passive approaches, with active approaches

featuring a drift detection mechanism, learning only when drift

is detected. Passive approaches, on the other hand, assume

possibly ongoing drift and continuously update the model with

each new data(set).

Online algorithms learn one instance at a time, whereas

batch learning requires blocks of instances. Online learners

have better plasticity but poorer stability properties. They also

tend to be more sensitive to noise as well as to the order

in which the data are presented. Batch learners benefit from

the availability of larger amounts of data, have better stability

properties, but can be ineffective if the batch size is too

small, or if data from multiple environments are present in the

same batch. Most batch learners of concept drift typically use

some form of windowing to control the batch size. Earliest

examples of this—also called instance selection—approach

include single classifier, passive batch algorithms STAGGER

[18] and FLORA [12], which use a sliding window to choose a

block of (new) instances to train a new classifier. The window

size is modified via “window adjustment heuristic,” based on

how fast the environment is changing. FLORA has a built-

in forgetting mechanism with the implicit assumption that

those instances that fall outside the window are no longer

relevant, and the information carried by them can be forgotten.

More recently, there have been several additions to this

window-based approach, each introducing its own heuristics

1520 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

on drift detection [19], choice of classifier (such as decision

trees, fuzzy rules, kNN, etc.) [20], [21], or establishing error

thresholds [22]. The primary shortcoming of these approaches

is that they are often not incremental (they need access to

old data), or cannot handle cyclic environments. Other single

classifier active approaches typically include novelty (anom-

aly) detection to determine when changes occur, e.g., by using

control charts-based CUSUM [23], [24], confidence interval on

error [22], [25], other statistical approaches [26], treating NSL

as a prediction problem [27], or deriving online update rules

based on minimization of a penalty function for the perceptron

[28], [29]. Another group of approaches use information theo-

retic measures, e.g., entropy, mutual information or Hoeffding

bounds of individual features for detecting drift and updating a

decision tree [30]–[32]. Many of these approaches also include

a FLORA-like windowing mechanism, so do Hulten et al.’s

concept adapting very fast decision tree [33] or Cohen et al.’s

incremental online-information network [25], [34] algorithms.

Bayesian or Kalman filter-based approaches for online update

of model parameters have also been proposed, e.g., linearly

separable rules [28], for regression [35], or semi-supervised

learning problems [36].

The ensemble-based approaches that combine multiple clas-

sifiers constitute a new breed of NSL algorithms. Kuncheva

puts ensemble-based approaches into one of the three general

categories [15]: given new data, those that: 1) update the

combination rules or voting weights of a fixed ensemble, such

as [37], [38]; the origins of which can be traced to Littlestone’s

Winnow [39] and Freund and Schapire’s Hedge (a precursor of

AdaBoost) [40]; 2) update the parameters of existing ensemble

members using an online learner [22], [41], and/or 3) add new

members to grow an ensemble with each incoming dataset.

The latter category approaches typically use a passive drift

detection along with fixed ensemble size, where the oldest (as

in Street’s Streaming Ensemble Algorithm (SEA) [42], and

Chen and He’s Recursive Ensemble Approach (REA) [43]) or

the least contributing ensemble members are replaced with a

new one (as in Tsymbal’s Dynamic Integration [44], Kolter

and Maloof’s online algorithm, Dynamic Weighted Majority

(DWM) [45]). While most ensemble approaches use some

form of voting, there is disagreement on the type of voting

to be used. For example, Tsymbal relates classifier weight

to performance as well as a proximity factor, giving higher

weight to a classifier if its training data were in the same region

as the testing example [44], whereas Gao—indicating that

weights based on classifier error on data whose distribution

changes is uninformative for future datasets—prefers a simple

(unweighted) majority vote [46].

Other efforts that follow similar ensemble approaches

include [47]–[50], as well as hybrid approaches such as

random forests with entropy [51], and Bifet’s Hoeffding

tree with Kalman filter-based active change detection using

adaptive sliding window (ADWIN) [52], [53]. ADWIN is

also available within the WEKA-like software suite, massive

online analysis at [54]. Alternatively, Scholz and Klinkenberg’s

approach maintains two ensembles—one trained on the current

data, and one trained on a cache of previous data (hence

nonincremental), and chooses the better of the two ensem-

bles in each time step. Classifier weights are based on the

“LIFT” of each classifier, measuring the correlation between

the classifier’s decision and the true class based on conditional

probabilities. Varying LIFT values for a classifier across time

indicate the existence of drift [55]. The way in which the LIFT

values are computed, however, restricts the algorithm to binary

classification problems only.

D. Drift Detection

We conclude this section with a short discussion on drift

detection. Recall that the main goal of the supervisor in

scaffolding theory of human learning is to provide guidance

and feedback to the learner by: 1) problematizing data (deter-

mining and/or removing conflicts between incoming data and

the current knowledge base); 2) simplifying complex data;

and 3) fading, i.e., ceasing the learning process when an

environment has been learned. Each of these tasks requires

some level of feedback about the incoming data or the learner’s

performance at any given time. This feedback is used to

discern how the new information differs from previous data,

and determine the learner’s capability to grasp current con-

cepts. In computer learning of nonstationary environments, the

corresponding problem is to determine when the environment

has sufficiently changed such that the existing models can

no longer explain the current data. Determining when such

a change, i.e., whether concept drift has occurred, is known

as drift detection.

As mentioned above, concept drift algorithms can be active

or passive with respect to the drift detection mechanism. An

active drift detection method seeks to pinpoint the time and

severity of the drift, and allow the classifier to modify or con-

tinue learning accordingly. Hence, active learning integrates

all scaffolding techniques to fine-tune the learner’s plasticity.

A significant downside of active learning, however, is the risk

of having an imperfect detection mechanism which may—and

often does—yield false reports, an all too common occurrence

particularly for noisy datasets. In passive drift detection,

however, the learner acknowledges that the environment may

change at any time or may be continuously changing. The

algorithm then continually learns from the environment by

constructing and organizing the knowledge base. If change has

occurred, this change is learned. If change has not occurred,

existing knowledge is reinforced.

IV. LEARN++ .NSE

A. Background: The Learn++ Family of Algorithms

The proposed algorithm, Learn++.NSE, is a member of

the Learn++ family of algorithms. The common denominator

in all Learn++ algorithms is an ensemble of classifiers that

are incrementally trained (with no access to previous data)

on incoming batches of data, and combined with some form

of weighted majority voting. The distribution update rule for

choosing data for training subsequent ensemble members, and

the mechanism for determining the voting weights are the

distinguishing characteristics of different Learn++ algorithms.

The original Learn++ [16] is an AdaBoost-like algorithm for

learning from a stationary distribution from which data are

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1521

incrementally acquired in batches. Learn++.NC [17] was later

developed for learning New Classes (NC), with new data from

existing classes assumed to remain stationary. Learn++.NC

employs a dynamically weighted consult-and-vote mechanism

to determine which classifiers should or should not vote for

any given instance based on the (dis)agreement among clas-

sifiers trained on different classes. In Learn++.MF, ensemble

members are trained on different subsets of the features, so that

Missing Features (MF) can be accommodated by combining

ensemble members trained on the currently available features

[56]. While all former Learn++ algorithms do some form of

incremental learning, none of them is capable of learning from

a nonstationary environment, and Learn++.NSE is developed

specifically to fill this gap.

Preliminary versions of Learn++.NSE and its early results

have appeared in conference proceedings, such as [57]–[60].

These efforts primarily investigated the impact of: 1) the

type of base classifier [MLP versus SVM. versus Naïve

Bayes(NB)]; 2) the rate of drift (e.g., slow versus rapid);

and 3) pruning (whether age or error-based pruning improve

performance). Based entirely on synthetic data experiments,

we found that the Learn++.NSE is generally independent of

the base classifier, works best if no pruning is used (particu-

larly for recurrent environments), and as expected, the slower

the drift, the better the environment can be tracked. In this

paper, we formally introduce the algorithm in detail, show

that it works on a variety of concept drift scenarios, including

variable drift and class addition/removal, provide a very infor-

mative analysis of voting weights, and compare Learn++.NSE

to several existing popular approaches on carefully designed

synthetic as well as real world data.

B. Algorithm Overview

Learn++.NSE is an ensemble-based batch learning algo-

rithm that uses weighted majority voting, where the weights

are dynamically updated with respect to the classifiers’ time-

adjusted errors on current and past environments. It employs

a passive drift detection mechanism, and uses only current

data for training. It can handle a variety of nonstationary

environments, including sudden concept change, or drift that

is slow or fast, gradual or abrupt, cyclical, or even variable

rate drift. It is also one of the few algorithms that can handle

concept addition (new class) or deletion of an existing class.

The algorithm is provided with a series of training datasets

D
t = x t (i)ǫX; yt(i)ǫY , i = 1, . . . , mt , where t is a time

index. Hence, x t (i) is the i th instance of the dataset (environ-

ment), drawn from an unknown distribution P t (x, y), which

is the current snapshot of a possibly drifting distribution at

time t . At time t + 1, we obtain a new batch of data drawn

from P t+1(x, y). At each time step there may or may not have

been a change in the environment, and if there was, the rate

of this change is also not known, nor assumed to be constant.

Furthermore, we presume all previously seen data—whether

any of it is still relevant or not—is no longer available, or

storing previous data is not possible or not allowed. Hence,

we ask the algorithm to work in a truly incremental fashion.

Any information previously provided by earlier data must

i=1

Input: For each dataset Dt t = 1,2, ...
Training data {xt (i) ∈ X; yt (i) ∈ Y = {1, ... , c}}, i = 1, ... , mt

Supervised learning algorithm BaseClassifier

Sigmoid parameters a (slope) and b (infliction point)
Do for t = 1,2, ...

If t = 1, Initialize D1 (i) = wt(i) = 1/m1, ∀i,
Go to step 3. Endif

1. Compute error of the existing ensemble on new data

 Et = �mt 1/mt . �Ht−1 (xt (i)) ≠ yt (i)�
2. Update and normalize instance weights

 wt = . Et, Ht−1 (xt (i)) = yt (i)

 1, otherwise

 Set Dt = wt/�mt wt(i) ⇒ Dt is a distribution

3. Call BaseClassifier with Dt, obtain ht: X →Y
4. Evaluate all existing classifiers on new data Dt

 εt = �m
t Dt (i) �h

k
(xt (i)) ≠ yt (i)� for k = 1, ..., t

 If εt >1/2, generate a new h
t
.

 If εt >1/2, set εt = 1/2,

 βt = εt

5. Compute the weighted average of all normalized
 errors for kth classifier h

k
: For a,b ∈ R

 ωt = 1/(1 + e−a(t−k−b)), ω t = ωt /�t−k ωt−j

 βt = �t−k ωt−j βt−j, for k = 1, ..., t

6. Calculate classifier voting weights

 Wt = log(1/βt

7. Obtain the final hypothesis
 Ht (xt (i)) = arg max

c
�

k
Wt

i=1

i

1

mt

i=1

k

k=t

k<t k

k k
), for k = 1, ..., t → 0 ≤ βt

k
≤ 1

k
/(1 − εt

k k k j=0 k

k j=0 k k

k k
), f or k = 1, ..., t

k
. �h

k
(xt (i)) = c�

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

{

Fig. 1. Learn++.NSE algorithm.

necessarily be stored in the parameters of the previously

generated classifiers.

Depending on the nature of drift/change, Learn++.NSE

retains [↔ accretion], constructs or (temporarily) discards

knowledge [↔ tuning, restructuring], so that it can be properly

categorized [↔ activation] when asked to identify new data.

The knowledge base is initialized by creating a single clas-

sifier on the first available batch of data. Once prior knowledge

is available, the current ensemble [↔ the knowledge base] is

evaluated on the new data (Step 1 in Fig. 1). In Step 2, the

algorithm identifies which examples of the new environment

are not recognized by the existing knowledge base [↔ prob-

lematizing]. The knowledge base is updated [↔ restructuring]

in Step 3, by adding a new classifier trained on the current

training data. In Step 4, each classifier (including the one

that has just been created) is evaluated on the training data.

As previously unknown data have been identified in Step 2,

the penalty for misclassifying such data is reduced in the

error calculation. In other words, more credit is given to clas-

sifiers capable of identifying previously unknown instances,

while classifiers that misclassify previously known data are

penalized. In Step 5, classifier error is weighted with respect

to time so that recent competence (error rate) is considered

more heavily for categorizing knowledge. Voting weights are

determined in Step 6 as log-normalized reciprocals of the

weighted errors: if a particular classifier’s knowledge does not

match the current environment, that classifier receives little or

no weight, and is effectively—but only temporarily—removed

1522 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

from the knowledge base. The classifier is not discarded: if

its knowledge becomes relevant again, it is recalled through

higher voting weights it receives on the then current envi-

ronment. Learn++.NSE will only forget temporarily, which is

particularly useful in cyclical environments. The final decision

is obtained in Step 7 as the weighted majority voting of the

current ensemble members.

C. Algorithm Description

As Dt becomes available at time t , Learn++.NSE is pre-

sented with x t (i), i = 1, . . . , mt instances and corresponding

class labels yt (i) At t = 1, instance specific error weights of

the first batch of data, wt (i), and a penalty distribution D1(i)

are initialized to be uniform [as in (1)]. For all subsequent

time steps, these quantities are initialized based on the error

of the existing ensemble on the then current data. At each time

step t , a new classifier is generated, called the t th hypothesis ht

(we use the terms classifier and hypothesis interchangeably).

The ensemble obtained by all hypotheses generated up to and

including time t , is then referred to as the composite hypothesis

H t . With the arrival of each new dataset, Learn++.NSE starts

with computing the error E t of the existing composite hypoth-

esis (H t−1) on the current data in Step 1, which is proportional

to the sum of misclassifications of H t−1 (2). The normalization

factor of 1/mt ensures that 0 ≤ E t ≤ 1 is satisfied. The

instance error weights and the penalty distribution are then

updated in Step 2 using (3) and (4), respectively. The error

weight of instance x t(i) is reduced by a factor of E t < 1

if it is correctly classified by H t−1. Normalizing the error

weights by their sum then provides us with the updated penalty

distribution.

Unlike most other ensemble algorithms, the instance error

weights (i.e., the penalty distribution) in Learn++.NSE are not

used for data (re)sampling or instance selection, but rather

to weigh and assign error (later in Step 4). In fact, since

the environment may change at any time, and that data are

received in (possibly small) batches, all training data in are

D
t used for training, returning the hypothesis ht in Step 3.

In Step 4, the error εt of each existing classifier—and not

just the most recent ht —is evaluated on the training data from

the current environment. Since classifiers are generated at dif-

ferent times, each receives a different number of evaluations: at

time t , ht gets its first evaluation; whereas h1 gets its t th eval-

uation. We use εt
k, k = 1, . . . , t to denote the error of hk—the

classifier generated at time step k—on dataset (environment)

D
t . Henceforth, where applicable, the superscript represents

the time index for the current environment, and the subscript

is the time the relevant classifier is generated.

Each misclassification does not contribute equally to the

error εt
k , however, and the penalty distribution Dt is used

to weigh these errors: for each misclassified instance i , i.e.,

when hk(x t(i)) �= yt(i), the associated penalty weight Dt (i)

is added to those of other misclassified instances to obtain

the error of classifier hk on dataset Dt [(5) in Step 4]. Such

an instance error weighting approach ensures that previously

misclassified instances are given a higher penalty weight than

those correctly classified by the ensemble. More specifically,

the relativity of penalties is based on the overall error of the

ensemble. When the ensemble does well on the new data—

indicating that there has been little or no change in the under-

lying distributions—misclassified points add higher relative

penalty weight (since they should have been learned previ-

ously). When the ensemble performs poorly on the new data—

indicating that the environment has changed substantially—

misclassified data add less relative penalty, since there is little

reason to punish unknown instances of a new environment.

Hence, classifiers that perform well on novel data are deemed

more relevant than others. The goal in this formulation is

to allow the ensemble to learn the new knowledge, while

reinforcing existing and still relevant knowledge.

If the newest classifier is unable to obtain a weighted error

less than 1/2, i.e., if εt
k=t ≥ 1/2, it is discarded since this

classifier is not likely to have a positive contribution to the

ensemble, and a new classifier is trained in its place. Any

other (earlier) classifier, whose error εt
k<t is greater than 1/2,

has its error saturated at 1/2. When normalized, such that

the normalized error β [in (6)] is mapped to [0 1] interval

(where 0 represents perfect classification, and 1 represents

worst-case classification), an error of εt
k = 1/2, is mapped

to β t
k = 1. A classifier with β t

k = 1 receives a final voting

weight of zero (9)—but only when evaluated at time t . This

process effectively removes classifiers whose performance on

the current dataset is poor [by assigning a (near) zero voting

weight], and is equivalent to forgetting (discarding) the knowl-

edge carried by that classifier. Note, however, the classifier

itself is not removed, and the forgetting is only temporary. A

recurring environment can make an earlier classifier relevant

again, triggering a normalized error β t
k<t < 1, and hence a

positive voting weight.

In order to reduce the effects of wide swings in errors,

possibly due to outliers or inherent noise in the data, the

final voting weight of each classifier is further weighted

to emphasize their recent performance, using a sigmoidal

weighting function (Step 5). The sigmoid-based weights ωt
k

are computed and normalized in (7), using two parameters:

parameter a defines the slope and b defines the halfway

crossing point of the sigmoid, collectively controlling the

number of prior time steps to be considered. These parameters

allow averaging classifier decisions over smaller or larger

number of time steps, depending on whether the environment

is changing slowly or rapidly, respectively. The sigmoidal

weights ωt
k are applied to normalized classifier errors β t

k to

obtain the weighted errors in (8) of Step 5. Fig. 2 illustrates

this error weighting mechanism. We emphasize that under

this sigmoidal weighting strategy, any classifier containing

relevant knowledge about the current environment, regardless

of the classifier’s age, can receive a high voting weight.

Classifier age itself has no direct effect on voting weight, but

rather it is the classifier’s performance on recent environments

that determine its “time adjusted” voting weight.

The final voting weights are computed as the logarithm of

the reciprocals of the time-adjusted weighted classifier errors

in Step 6 (9). The final decision of the ensemble (the com-

posite hypothesis H t) on an unlabelled data point is then the

dynamically weighted [as determined in (9)] majority voting

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1523

Time, t

E
rr

or
 o

f
th

e
K

th
 c

la
ss

if
ie

r
h

k
t
kε

1/2

1

t-4

C
u

rr
en

t e
rr

o
r
o
f

th
e

k
th

cl
as

si
fi

er
 i

s
w

ei
g
h
te

d
m

o
st

 h
ea

v
il

y

k

Classifier h
k
 had its lowest error

when it was first generated

Error truncated to ½ when

si
g
m

o
id

al
 e

rr
o
r

w
ei

g
h
ti

n
g
 f

u
n
ct

io
n

actual error exceeded this threshold

Errors of h
k
 on past environments

are weighted less heavily

E
rr

o
r

w
ei

g
h
ti

n
g

1

1

2

0

ω t
k

t-3 t-2 t-1 t

Fig. 2. Sigmoidal error weighting in Learn++ .NSE.

of all classifiers [(10) of Step 7]. Classifiers with larger voting

weights—determined based on their average performance on

recent environments—provide the most support for the class

chosen by the ensemble.

Two issues are worth addressing before we discuss the

experiments. First, since Learn++.NSE continuously adds

classifiers, one may be concerned about proliferation of clas-

sifiers. This can be addressed by assigning a cap on ensemble

size and removing additional classifiers based on their age or

error. We do not recommend this, however, as such pruning

reduces the ability of the algorithm to remember recurring

environments as well as its stability during stationary periods.

Our preliminary work showed that performance benefits of

retaining the ensemble far outweighs the additional—and

modest—computational and memory costs [59]. Second, one

may ask whether weaker classifiers should be used to add

diversity to the ensemble. We note that the premise of weak-

learnability [61] does not apply here, as the fixed distribution

assumption is violated in a nonstationary environment. In fact,

since such an environment naturally provides diversity, and

since the classifiers must learn the new knowledge from lim-

ited data in one-pass, we recommend using strong classifiers

in the ensemble.

V. EXPERIMENTAL RESULTS

Several datasets simulating different scenarios of nonstation-

ary environments, such as abrupt, gradual, cyclical or variable

rate drift, addition or removal of a class, etc. have been

generated to determine the behavior of Learn++.NSE, as well

as how it compares to other existing approaches. All datasets

used in this effort can be downloaded from our site at [62].

The following structure is used in all simulations: exper-

iments begin at t = 0 and end at some arbitrary time

t = 1. Within this interval, T consecutive batches of data

are presented for training, where each batch is drawn from a

possibly drifting environment, whose rate or nature of drift is

assumed unknown. Thus, the number T determines the number

of time steps, or snapshots, taken from the data throughout the

period of drift. A large T corresponds to a low rate of drift,

whereas a small T corresponds to a high effective drift rate,

since the algorithm sees fewer snapshots of the data over the

same time period. Preliminary results of Learn++.NSE using

various effective drift rates (i.e., T values) can be seen in [57].

As one would expect, the ability of the algorithm to track the

changing environment is inversely proportional to the rate of

drift. Sigmoid parameters were fixed as a = 0.5 and b = 10. If

desired, an active drift detection can be integrated (our future

work) to determine these parameters dynamically, though these

values worked well on all scenarios we tried.

The Learn++.NSE algorithm is implemented using different

base classifiers [NB, SVM, and classification and regression

tree (CART)] and compared to other ensemble-based con-

cept drift approaches, such as SEA, DWM, and AdaBoost

weighting, which use different learning, weighting and pruning

strategies.

SEA is an ensemble-based incremental batch learner

employing simple majority voting and classifier pruning (to

discard old knowledge) to ensure that the ensemble tracks

new environments. Ensemble weights are determined based

on classifiers’ performance, and weights are also used as the

criterion for pruning. The weakest classifier is discarded when

the ensemble size exceeds a threshold. Our implementation of

SEA is consistent with that in [42], using default ensemble

size (25). Both SVM and CART were used as base classifiers

in SEA versus Learn++.NSE comparison.

DWM is an online learner that utilizes different weighted

majority and ensemble pruning schemes: DWM ensemble

is updated periodically only when necessary by adding a

classifier or pruning a classifier when its weight drops below

a certain performance threshold. DWM pruning is error-based

with no upper limit on ensemble size. In this paper, we

implement the DWM algorithm using an update period of

ρ = 5, pruning threshold of θ = 0.5, and a base classifier

of NB, consistent with the recommended values in [45]. For

a fair comparison, the same NB (and not the stronger SVM)

was used with Learn++.NSE.

We also tried Learn++.NSE with an alternative AdaBoost

based weighting approach as used in Adaptive Classifier

Ensemble-(ACE) [48] and Recursive Adaptive Ensemble (REA)

[43], which uses a classifier’s most recent error (hence no prior

performances considered) in determining voting weight. ACE

uses a temporary pruning strategy, with only top-performing

classifiers selected for voting, while the rest are ignored, but

not discarded. A 95% confidence interval of the top performing

classifier is used as the basis, classifiers with weights that

lie inside this interval maintain their weights, while others

receive a weight of 0 (i.e., they are ignored). Note that this

comparison tells us whether the sigmoidal weighting of past

errors in Learn++.NSE is beneficial. For brevity, we refer to

this weighting scheme as “AdaBoost,” though this notation

does not refer to the Adaboost algorithm itself.

Finally, we also compare Learn++.NSE to a single classifier

trained only on the most recent data. Such comparisons are not

trivial, as a single classifier trained on the latest data has the

best plasticity to track drift, and does not need to be concerned

with “classifier baggage.” Single classifier comparisons tell us

whether using an ensemble of classifiers to weigh in existing

knowledge is beneficial in a nonstationary environment.

1524 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

t > 0

2

2

5

5

8

8

2

2

5

5

8

8

2

2

5

5

8

8

2

2

5

5

8

8

2

2

5

5

8

8

2

2

5

5

8

8

1/5 < t < 2/5

3/5 < t < 4/52/5 < t < 3/5

4/5 < t < 1 t = 1

Fig. 3. Gaussian drift data with class addition/removal.

Essentially, we make three comparisons: comparing batch-

based Learn++.NSE to: 1) an online learner DWM, using

online learning capable base classifier NB; 2) other batch

learners SEA and AdaBoost/ACE using SVMs and CART

(strong and weaker learners, respectively); and 3) to a con-

tinuously updated single classifier of each of NB, SVM, and

CART.

A. Gaussian Drift Data with Class Addition/Removal

This dataset features multiclass data, each drawn from a

Gaussian distribution. Such a dataset allows us to control the

drift environment, while comparing Learn++.NSE to Bayes

classifier. Each class experiences gradual but independent drift,

with class means and variances changing according to the

parametric equations given in Table I. To make this experiment

more challenging, class addition and removal are added to the

drifting scenario. Fig. 3 shows six snapshots of the underlying

data distributions in the t = [0 1] period during which

T = 300 time steps were seen by the algorithm. At each time

step, we select a mere 15–20 samples (only five from each

class) to serve as the current training data Dt . At time t = 2/5,

a new class, C4 appears (and immediately starts drifting), and

class 1, C1, disappears at time t = 4/5. The arrows in Fig. 3

indicate the direction of drift for each class. A movie of the

entire scenario is provided in [62]. The results are shown in

Fig. 4, where we compare the results of Learn++.NSE using

NB and SVM (polynomial kernel, order 6) as base classifiers,

to DWM with its default base classifier NB, the SEA algorithm

 0 60 120 180 240 300

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

t

A
cc

u
ra

cy

Time Step

Bayes Rule

L++.NSE (SVM)

L++.NSE (NB)

Single (SVM)

Single (NB)

DWM (NB)

SEA (SVM)

Adaboost W.

Fig. 4. Comparative results on the Gaussian data.

with SVM, Learn++.NSE with AdaBoost- based (non time-

averaged) error weighting, the standard Bayes classifier (the

best classifier that can be built on this data), as well as single

classifiers.

All results in Fig. 4 are averages of 50 independent trials,

whose 95% confidence intervals are provided as shading

around the performance curves. Each set of results aver-

aged over all times (for this and all other datasets) are

summarized in Table II, which also includes Learn++.NSE,

SEA, AdaBoost and single classifier using CART as the base

classifier (for figure clarity, CART results are not included in

the figures).

We make the following observations. First, the Bayes

classifier performs best, as expected, followed by algorithms

using the NB (also expected due to uncorrelated features).

All classifiers see a performance drop at t = 0.4, when a new

class is added, and a jump at t = 0.6, when a class is removed,

corresponding to increase and decrease in the complexity of

the decision boundaries. There is a major drop in performance

in all classifiers at t = 0.7, where the most class overlap

occurs, representing the most difficult classification problem.

DWM and Learn++.NSE (with NB) are best performers

(with no significant difference between the two); both provid-

ing quick recovery for abrupt changes thanks to online nature

of DWM, and the specific weighting strategy of Learn++.NSE.

Among batch learners, Learn++.NSE outperformed both

AdaBoost (with significance) and SEA (both with SVM

and CART), despite this dataset, not including any recur-

ring environment, favoring the other two algorithms. These

results indicate that Learn++.NSE can consistently employ

past classifiers recognizing those parts of the feature space

previously seen. We believe AdaBoost type weighting suffers

from non-optimal weighting (discarding past performance)

especially as the ensemble grows, and SEA suffers from slow

reaction to change due to uniform voting. Finally, we observe

that Learn++.NSE always outperformed–with significance–a

single classifier trained on the same (NB, SVM or CART)

base classifier (see Table II), indicating that past knowledge is

indeed being successfully utilized by Learn++.NSE.

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1525

TABLE I

PARAMETRIC EQUATIONS FOR GAUSSIAN DRIFT DATA

C1

0 < t < 1/5

2 5

8

2

2

N/A

N/A N/A N/A

N/A

5

8

8

2

N/A

5 − 5t

5 − 5t

2

2

1.5

1.5

1.5

N/A

1.5

1.5

1.52

5

8

8

8 − 10t 1 + 10t

1

1

1

1

1

2

N/A

3 − 10t

6 − 20t

8 − 30t

8 − 30t

8 − 30t

3 − 7.5t

2 − 2.5t

5 − 15t 2 − 5t

1 + 5t

1

1

2 − 5t

8 − 20t

5 + 15t

3 − 10t

2 + 5t

5 + 15t

4 + 20t

4 + 20t 1 + 2.5t

1 + 2.5t

1 + 2.5t1 + 2.5t

2 + 30t

2 + 30t

4 + 20t

N/A

1

1

3 − 5t

N/A

1

1

1 + 5t

N/AN/A

N/A N/A N/A N/A

1/5 < t < 2/5

4/5 < t < 1

3/5 < t < 4/52/5 < t < 3/5

μ
x

σ
x

σ
y

μ
y

μ
x

σ
x

σ
y

μ
y

C2

C3

C4

C1

C2

C3

C4

C1

C2

C3

C4

μ
x

σ
x

σ
y

μ
y

α � 0 α � π/8

α � πα � π7/8

α � π/4

α � π/2

STATIC
SAMPLING
WINDOW

AXIS OF
ROTATION

STATIC
SAMPLING
WINDOW

AXIS OF
ROTATION

STATIC
SAMPLING
WINDOW

AXIS OF
ROTATION

STATIC
SAMPLING
WINDOW

AXIS OF
ROTATION

STATIC
SAMPLING
WINDOW

AXIS OF
ROTATION

STATIC
SAMPLING
WINDOW

AXIS OF
ROTATION

Fig. 5. Snapshots from a 1/2 rotation of the checkerboard data.

B. Rotating Checkerboard Dataset: Variable Rate Drift

A non-Gaussian data set is derived from the canonical XOR

problem, which resembles a rotating checkerboard. As shown

in Fig. 5, the rotation makes this deceptively simple-looking

problem particularly challenging, as the angle and location

of the decision boundaries change drastically every few time

steps. Fig. 5 shows half a rotation (α = 0 to π), indexed to the

parameter α, where the axis of rotation is the lower left corner

of the sampling window. After half a rotation, data are drawn

from a recurring environment, as the [π 2π] interval creates

an identical distribution drift to that of the [0 π] interval. In

order to prevent training on identical snapshots of data and

to increase complexity, 10% random noise was introduced.

Each training dataset is kept particularly small, consisting of

a mere 25 samples (total from both classes) drawn from the

sampling window, making this data further challenging to the

learner. Test data are composed of 1024 data points uniformly

sampled from the current distribution’s entire grid at a 32-

by-32 resolution, sufficient enough to evaluate the learner’s

ability to approximate the sharp angles of the true decision

boundary.

Perhaps the most challenging and unique aspect of this

experiment, however, is the variability introduced in the drift

rate. Fig. 6 shows the four drift rate scenarios designed to

determine the algorithms’ behavior under variable rate drift.

All using 400 time steps from t = 0 to t = 1, these are:

1) constant drift rate of 2pi/400 = 0.016rad/time step; 2) expo-

nentially increasing drift rate (the board rotates increasingly

faster); 3) sinusoidally varying drift rate; and 4) Gaussian pulse

shaped (slow–fast–very fast–fast–slow) drift rate. The data and

movie files describing these scenarios can be found at [62].

Fig. 7 shows result of 50 independent trials on test data

(entire grid as shown in Fig. 5). Each performance curve is

enclosed by its 95% confidence interval to determine statistical

significance of the performance differences. Generalization

performances averaged across all time steps are also pro-

vided in Table II. We make the following observations. First,

Learn++. NSE, using the strong learner SVM, outperforms

all other algorithms, including the single SVM classifier or

other SVM-based ensemble approaches, usually with wide

significance. Second, as expected, algorithms that use NB as

base classifier perform poorly, due to the nature of these data

whose features are class conditionally correlated. Third, when

the environment is changing slowly, for example, during early

and late sections of pulse drift [Fig. 7(b)] and mid sections

of the sinusoidal drift [Fig. 7(d)], the ensemble performances

increase rapidly, and better track the environment compared

to when the rate of change is accelerating (e.g., t = 0.2 − 0.5

s on pulse drift, t = 0.7 − 1 s on exponential drift). We

should mention that the sharp performance peaks in all Fig. 7

plots are simply due to the periodic nature of the problem,

with decision boundaries becoming perpendicular (and hence

simpler) for every π/2 radians. Of course, the number of time

steps the board takes to reach multiples of π/2 radians varies

1526 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

Constant Exp Increase Sinusoidal Pulse

 0 80 160 240 320 400

Time Step

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

R
ad

ia
n

s
p

er
 t
im

e
st

ep

Fig. 6. Variable drift rate controlled by the rate at which α parameter is
updated for rotating checkerboard dataset.

time step

A
cc

u
ra

cy

0

0.5

0.6

0.7

0.8

0.9

1
80 160 240 320 400

0 0.2 0.4 0.6 0.8 1

(a) (b)

(c) (d)

t

A
cc

u
ra

cy

0

0.5

0.6

0.7

0.8

0.9

1
80 160 240 320 400

0 0.2 0.4 0.6 0.8 1
t

time step

0

0.4

0.6

0.5

0.7

0.8

0.9

1
80 160 240 320 400

0 0.2 0.4 0.6 0.8 1
t

α�π/2 π 3π/2 2π

α�π/2 π 3π/2 2π

0

0.5

0.6

0.7

0.8

0.9

1
80 160 240 320 400

0 0.2 0.4 0.6 0.8 1
t

α�π/2 π 3π/2 2π

α�π/2 π 3π/2 2π

L++.NSE (SVM)

L++.NSE (NB)

Single (SVM)

Single (NB)

DWM (NB)

SEA (SVM)

Adaboost Weighting

Fig. 7. Performances on checkerboard data with (a) constant, (b) gaussian
pulse, (c) exponential, and (d) sinusoidal drift rate.

according to drift scenario: for constant drift [Fig. 7(a)], they

are at t = [0 100 200 300 400]; for pulse drift Fig. 7(b)], at

t = [0 180 200 220 400], etc.

One of the more interesting observations is the behavior of

the algorithm after α = π , This happens at t = 200, 200, 275,

and 200 for the constant, pulse, exponential and sinusoidal

drifts, respectively, after which the distribution repeats itself

in the α = [π ∼ 2π] interval, creating a cyclic environment.

Learn++.NSE shows a significant increase in performance

after this interval, compared to α = [0 ∼ π] interval,

indicating the ability of the algorithm to make effective use

of its prior knowledge, by reactivating early classifiers during

the recurring environments. This is particularly striking in

Fig. 7(a), and even more so in Fig. 7(c), where the performance

improvement due to reactivating old classifiers outweighs the

performance drop due to rapidly accelerating rate of drift that

also occurs at around t = 275(α = π). The second half per-

formances in Fig. 7(b) and (d) are also higher than those of the

first half. Among all comparisons, only Learn++.NSE showed

C
la

ss
if

ie
r

400

400

350

300

300

250

200

200

150

100

100

(3)

(1)

(2)

50

0
0

C
la

ss
if

ie
r

400

400

350

300

300

250

200

200

Time Step Time Step

150

100

100

50

0
0

400

400

350

300

300

250

200

200

(a) (b)

(c) (d)

150

100

100

(5)

(5)

(4)

50

0
0

400

400

350

300

300

250

200

200

150

100

100

50

0
0

Fig. 8. Weight distribution (max in red, min in blue) over time for
checkerboard dataset with (a) constant, (b) pulsing, (c) exponential, and
(d) sinusoidal drift rate.

such an improvement. DWM is limited by the use of an online

classifier that cannot sufficiently update to learn the complex

decision boundary, SEA loses all prior knowledge and thus

shows no improvement over the recurring environment, and

Adaboost weighting is inconsistent in assigning appropriate

weight to the most relevant knowledge at a given time step

even in the presence of recurring data.

In summary, we note that in all base-classifier matched

comparisons, Learn++.NSE provides the best performance:

in online learner comparison, Learn++.NSE with NB signif-

icantly outperforms DWM with NB, as well as single con-

tinuously updated NB; among batch learners, Learn++.NSE

outperforms SEA and AdaBoost, either with SVM or CART

(see Table II for CART results), and Learn++.NSE ensemble

always outperforms, with significance, any single classifier

trained on the same base classifier (NB, SVM or CART).

Furthermore, these results apply regardless of the type of drift

scenario.

Perhaps a more dramatic proof of Learn++.NSE’s ability

to reactivate old classifiers, precisely when they would be

most beneficial, can be seen in Fig. 8, which provides pseudo

color images of member classifier weights at each time step

after their creation. The main diagonal [Arrow (1)] represents

the average weight of each classifier at the time it is created

(averaged over 50 trials), a vertical cross-section at some

t = t∗ shows the average weights of all classifiers at time t∗,

whereas a horizontal cross-section for any classifier (starting

at the diagonal and moving left) indicates the average weights

of that classifier since its creation at each subsequent time

step. The off-diagonal or curved patterns (starting at some

time step t∗∗ on the horizontal axis and moving toward the

vertical axis) indicate the average weight of all classifiers

t∗∗ steps after their creation. For example, Fig. 8(a) shows

that each classifier receives a very high weight, (i.e., it gets

reactivated), exactly 200 steps after its creation [the red off-

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1527

 0 40 80 120 160 200

0 0.2 0.4 0.6 0.8 1

0.8

0.85

0.9

0.95

1

t

A
cc

u
ra

cy

Time Step

L++.NSE (SVM)

L++.NSE (NB)

Single (SVM)

Single (NB)

DWM (NB)

SEA (SVM)

Adaboost Weighting

Fig. 9. Comparative performances on SEA dataset (SVM polynomial kernel,
order: 2).

diagonal, starting at t = 200, Arrow (2)]. This is a very

satisfying observation, as in the constant drift rate experiment,

each classifier experiences a recurring environment exactly

200 steps after its creation. The (blue) off-diagonals (Arrow

3) starting at steps 100 and 300 show reduced weights (i.e.,

classifiers are de-activated), precisely when the checkerboard

pattern is reversed (class definitions flip), and during which

we would expect each classifier to be least useful. The curved

patterns in Fig. 8(b)–(d) shows similar behavior, with the

curves indicating the precise time-varying nature of the drifts.

For example, the red curve (Arrow 4) starting at t = 275 in

Fig. 8(c) indicates that the first classifier (created at t = 0)

waits 275 time steps to be reactivated; whereas classifiers

generated later are activated increasingly sooner: e.g., classifier

created at t = 200 gets reactivated at time step 350. This

makes sense, as in this experiment the board rotates (and the

environment recurs) increasingly faster with each time step

and hence later classifiers get reactivated faster compared to

earlier classifiers. Another interesting observation is the high

weights subsequent classifiers receive when the environment

is near stationary (Arrow 5). Similar patterns can be seen in

other figures where the weight distributions closely follow the

change in drift rate which directly controls how quickly the

distributions repeat themselves.

C. SEA Concepts

The SEA Concepts is developed by Street [42] and has

been used by several algorithms as a standard test for concept

change. This is the dataset on which SEA algorithm was

originally tested. The dataset is characterized by extended

periods without any drift with occasional sharp changes in

the class boundary, i.e., sudden drift or concept change. The

dataset includes two classes and three features, with only two

features being relevant, and the third being noise. Class labels

are assigned based on the sum of the relevant features, and

are differentiated by comparing this sum to a threshold that

separates a 2-D hyper-plane: an instance is assigned to class

1 if the sum of its (relevant) features (f1 + f2) fall below

the threshold, and assigned to class 2, otherwise. At regular

intervals, the threshold is changed, creating an abrupt shift in

the class boundary. Data are uniformly distributed between 0

and 10, and the threshold θt is changed three times throughout

0 117 233 350 466

1950 1960 1970 1980 1990 1999

0.6

0.7

0.8

0.9

1

Years

A
cc

u
ra

cy

Time Step

583

(t � 1)(t � 1)

L++.NSE (SVM)

L++.NSE (NB)

Single (SVM)

Single (NB)

DWM (NB)

SEA (SVM)

Adaboost Weighting

Fig. 10. Comparative performances on weather dataset (SVM polynomial
kernel, order: 2).

the experiment with increasing severity (8→9→7.5→9.5).

Training procedure is identical to that described in [42]: 50 000

points are introduced as training data (25 000 points per class),

in 200 time steps, 250 points/time step. Also as per [42], 10%

class noise is added to the training data. A separate set of

50 000 data points from each environment (with no noise) are

used for testing. The results are shown in Fig. 9 and Table II.

We make the following observations from these results.

DWM has the best recovery rate after concept change in

comparison with Learn++.NSE (with NB), yet a relatively low

convergence in stationary environments, presumably due to

throwing out recent and relevant classifiers during slow or no

change periods. Conversely, the batch-learning Learn++.NSE

provides a higher convergence (final performance) but with

a slower (than DWM) recovery rate. These results point to

a tradeoff between recovery rate and convergence. Among

batch classifiers, SEA has the best convergence in a stationary

environment, yet very poor recovery after concept change

even on its own benchmark dataset. Adaboost weighting also

provides slow recovery and poor convergence after concept

drift, indicating that too much weight is being assigned to old

classifiers. Learn++.NSE (both with NB and SVM), provides

a very good balance between recovery (plasticity) during rapid

changes, and the ability to reach and sustain high performance

(stability) during slow or no drift scenarios. We believe that

this is due to its unique error weighting strategy. Note that

single classifiers do not experience any dip in the performance

as they do not have any baggage; however, they are also

unable to match the performance of ensemble approaches. We

should add that, when averaged across time, Learn++.NSE

does outperform all other base-classifier matched algorithms,

and with significance in most cases (Table II).

D. Nebraska Weather Prediction Data

The U.S. National Oceanic and Atmospheric Administration

has compiled weather measurements from over 9000 weather

stations worldwide [63]. Records date back to the 1930s,

providing a wide scope of weather trends. Daily measure-

ments include a variety of features (temperature, pressure,

1528 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

TABLE II

TIME AVERAGED PERFORMANCE COMPARISONS

L
+

+
.N

S
E

 v
er

su
s

b
as

e-
cl

as
si

fi
er

 m
at

ch
ed

si
n

g
le

 c
la

ss
if

ie
r

CB (sinusoid)CB (constant) CB (pulse) CB (exp)

L
+

+
.N

S
E

O
n

li
n

e

L
+

+
.N

S
E

v
er

su
s

O
th

er
 B

at
ch

 A
lg

.

69.9 +/− 1.3

56.6 +/− 1.7

59.6 +/− 1.6

81.9 +/− 0.9

71.6 +/− 0.7

77.8 +/− 1.7

76.6 +/− 1.5

77.3 +/− 1.1

69.3 +/− 0.9

71.6 +/− 1.7

67.8 +/− 1.9

L++.NSE (NB)

Single (NB)

DWM (NB)

L++.NSE (SVM)

SEA (SVM)

Adaboost (SVM)

Single (SVM)

L++.NSE (CART)

SEA (CART)

Adaboost (CART

Single (CART)

70.5 +/− 1.6

54.3 +/− 1.7

56.4 +/− 1.7

84.0 +/− 0.7

78.5 +/− 0.6

83.7 +/− 1.1

79.9 +/− 1.5

81.2 +/− 1.0

77.2 +/− 0.8

80.1 +/− 1.4

69.3 +/− 2.6

69.1 +/− 1.4

56.5 +/− 1.7

59.6 +/− 1.7

81.6 +/− 0.9

73.0 +/− 0.7

78.0 +/− 1.4

76.6 +/− 1.5

77.0 +/− 1.1

70.6 +/− 0.9

72.2 +/− 1.6

67.7 +/− 1.9

71.1 +/− 1.5

55.3 +/− 1.7

57.9 +/− 1.7

83.5 +/− 0.9

75.4 +/− 0.6

80.9 +/− 1.2

78.6 +/− 1.5

79.4 +/− 1.0

73.2 +/− 0.8

75.9 +/− 1.6

68.7 +/− 2.3

L
+

+
.N

S
E

v
er

su
s

O
nl

in
e

L
+

+
.N

S
E

 v
er

su
s

O
th

er
 B

at
ch

 A
lg

.

Bayes 88.1 +/− 0.0

L++.NSE (NB) 84.0 +/− 0.5 96.6 +/− 0.2 75.9 +/− 0.7

DWM (NB) 84.8 +/− 0.4 96.6 +/− 0.6 71.3 +/− 1.8

Single (NB) 82.3 +/− 1.2 94.7 +/− 0.6 69.4 +/− 1.4

L++.NSE (SVM) 81.0 +/− 0.9 96.8 +/− 0.2 78.8 +/− 1.0

SEA (SVM) 81.3 +/− 0.5 95.7 +/− 0.2 77.8 +/− 1.1

Adaboost (SVM) 78.6 +/− 1.7 96.6 +/− 0.3 70.2 +/− 1.9

Single (SVM) 74.6 +/− 2.4 95.6 +/− 0.4 67.8 +/− 2.0

L++.NSE (CART) 82.8 +/− 0.7 95.8 +/− 0.5 75.7 +/− 1.1

SEA (CART) 81.7 +/− 0.5 95.6 +/− 0.3 72.8 +/− 1.0

Adaboost (CART) 81.3 +/− 1.3 87.8 +/− 0.9 68.5 +/− 1.9

Single (CART) 77.7 +/− 1.9 86.7 +/− 1.0 66.8 +/− 2.0

L
+

+
.N

S
E

 v
er

su
s

ba
se

-c
la

ss
if

ie
r

m
at

ch
ed

si
ng

le
 c

la
ss

if
ie

r

Gaussian SEA Weather

0 200 400 600
0

0.05

0.1

0.15

0.2

0.25

Time Step

0 50 100 150 200
0

0.5

1

1.5

2

2.5

Time Step

0 100 200 300
0

0.02

0.04

0.06

0.08

0.1

Time Step

Gaussian SEA Weather

T
im

e
(s

)

Learn++.NSE DWM AdaBoostSEA

Fig. 11. Timing diagrams for Gaussian, SEA and weather datasets (with NB classifier).

wind speed, etc.) and indicators for precipitation and other

weather-related events. As a meaningful real world dataset,

we chose the Offutt Air Force Base in Bellevue, Nebraska,

for this experiment due to its extensive range of 50 years

(1949–1999) and diverse weather patterns, making it a long-

term precipitation classification/prediction drift problem.

Eight features were selected based on their availability,

eliminating those with a missing feature rate above 15%.

The remaining missing values were imputed by the mean of

features in the preceding and following instances. Class labels

are based on the binary indicator(s) provided for each daily

reading of rain with 18 159 daily readings: 5698 (31%) posi-

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1529

tive (rain) and 12 461 (69%) negative (no rain). Each training

batch consisted of 30 samples (days), with corresponding test

data selected as the subsequent 30 days. Thus, the learner is

asked to predict the next 30 days’ forecast, which becomes

the training data in the next batch. The dataset included 583

consecutive “30-day” time steps covering 50 years.

Fig. 10 and Table II show the comparative results, from

which we make following observations: Learn++.NSE out-

performs all other algorithms regardless of the base classifier

being used, with SVM providing the best performance; all

pair wise differences, i.e., Learn++.NSE versus DWM with

NB, Learn++.NSE versus SEA, Adaboost Weighting or single

classifier with SVM or CART (see Table II) are statistically

significant at all time steps with wide margins, except with

SEA where the difference is significant only at certain time

instances. Single classifiers, with SVM, NB or CART, per-

formed the worst.

We also observe a strong sinusoidal component in ensemble

performances; computing the Fourier transform revealed a very

strong spectral component corresponding to exactly 1 year,

demonstrating the cyclical drift inherent in the data.

Finally, comparing Learn++.NSE to itself on different base

classifiers, we observe that SVM outperforms CART as well as

NB (except when features are uncorrelated, when NB becomes

strong learner), confirming our belief that strong classifiers

should be preferred in concept drift problems.

We conclude this section with a brief discussion on com-

putational cost of the algorithms under study. Although this

paper is not specific to data-streams, and time and mem-

ory consumption are not primary concerns, such discussion

provides some insight into the algorithms’ behavior. Clearly,

computational efficiency is not a strong attribute of ensemble-

based approaches: by its very nature, when using an ensemble

system instead of a single classifier, we accept a higher

computational cost in return for qualities not possible with a

single classifier, e.g., ability to handle recurrent environments

and class addition or removal. Nevertheless, the complexity

of Learn++.NSE is only linear in the number of classifiers,

and since one classifier is generated per dataset, also linear

in the number of data batches. The actual complexity of the

algorithm depends on the complexity of the base model used

(e.g., SVM is costlier than NB). For SEA, computational order

is constant after reaching the max threshold, whereas that of

DWM depends on update rate, and pruning threshold.

Fig. 11 shows three examples of the average learning time

per time step for all algorithms. Learning time includes the

time to train new classifiers and re-weigh the ensemble mem-

bers. The learning time for Learn++.NSE increase linearly

since all classifiers are maintained and reweighted on the most

recent training data. SEA maintains a steady learning time

once the ensemble reaches a maximum size and then pruned.

The learning time for DWM is more unpredictable, since the

ensemble size is dynamic and classifiers may be added or

pruned, with no upper threshold for ensemble size. DWM’s

per-time-step computational time increases for large datasets,

particularly when old classifiers are not removed during slow

periods, as in the SEA data, for which DWM takes the longest

time (far exceeding that of other algorithms on this dataset).

TABLE III

ALGORITHM RUNTIME SUMMARY

Time Steps: 300 200 583 400

Samples (Train/Test): 20/1024 250/250 30/30 25/1024

Learn++.NSE (s): 50.32 17.21 117.08 71.35

SEA (s): 10.41 5.96 12.26 12.97

DWM (s): 21.11 317.54 53.84 33.17

Adaboost (s): 82.88 20.59 135.83 115.24

Whereas batch learners are capable of evaluating and training

on large amounts of new data at once, DWM must do so on

an instance-by-instance basis, a costly approach as the training

size increases. Table III provides total runtime averaged over

50 trials, from start (t = 0) to finish (t = 1). As expected, SEA

runs the fastest due to its fixed ensemble size, DWM runtime

depends on training size, and the Learn++.NSE and AdaBoost

weighting depends on the number of time steps. Memory wise,

SEA is again the most frugal algorithm, due to fixed ensemble

size, followed by DWM, and Learn++.NSE/AdaBoost. All

experiments were run on Intel Core i7 CPU at 2.67GHz.

VI. CONCLUSION

We described an ensemble of classifiers-based approach,

Learn++.NSE, for learning in nonstationary environments.

The novelty of Learn++.NSE is its strategic use of current

and past classifiers combined with dynamically updated voting

weights, based on their time adjusted errors on current and

recent environments. Such a weighting mechanism allows

Learn++.NSE to learn new knowledge by creating new clas-

sifiers, while using existing knowledge when such knowledge

is still relevant. The primary contribution of Learn++.NSE is

therefore its versatility as a general framework for learning in

nonstationary environments. While many algorithms perform

well on a particular type of drifting environment (e.g., SEA

performs well on concept change, DWM performs well on

relatively gradual drifts, etc.), Learn++.NSE can accommodate

a wide variety of drift scenarios, regardless of whether it

is gradual, abrupt, slow, fast or cyclical, or even variable

rate drift—the last two of which are not generally addressed

by other approaches. The weight analysis of the algorithm

demonstrates that the unique weight assigning strategy used by

Learn++.NSE makes very efficient use of existing knowledge

by reactivating early classifiers precisely when they are needed

the most, and by temporarily disabling them when they are

not relevant. This mechanism allows the algorithm to learn

new knowledge, temporarily forget irrelevant knowledge, and

then recall such knowledge when it becomes relevant again.

To the best of our knowledge, Learn++.NSE is the only

algorithm that has this unique capability. Experiments also

supported our assertion that strong learners are desired for

non-stationary datasets (e.g., NB for data with class con-

ditionally independent features, and SVM for other general

data). We have also shown that the learning mechanisms used

by Learn++.NSE are consistent with that of human learning

according to two well-established human learning theories,

schema and scaffolding. Our future work will focus on the

1530 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

statistical analysis of Learn++.NSE for possible performance

guarantees on different NSE scenarios.

ACKNOWLEDGEMENT

The authors would like to acknowledge M. Muhlbaier and

M. Karnick for their contributions to early stages of this paper,

and J. Kounios for discussions on Human Learning.

REFERENCES

[1] S. Grossberg, “Nonlinear neural networks: Principles, mechanisms, and
architectures,” Neural Netw., vol. 1, no. 1, pp. 17–61, 1988.

[2] F. C. Bartlett, Remembering: A Study in Experimental and Social
Psychology. Cambridge, U.K.: Cambridge Univ. Press, 1932.

[3] J. H. Flavell, “Piaget’s legacy,” Psychol. Sci., vol. 7, no. 4, pp. 200–203,
Jul. 1996.

[4] L. S. Vygotsky, Mind and Society: The Development of Higher Psycho-

logical Processes. Cambridge, U.K.: Harvard Univ. Press, 1978.
[5] J. Piaget, Six Psychological Studies. New York: Random House, 1967.
[6] M. H. Appel and L. S. Goldberg, Equilibration: Theory, Research, and

Application. New York: Plenum, 1977.
[7] B. J. Reiser, “Scaffolding complex learning: The mechanisms of struc-

turing and problematizing student work,” J. Learn. Sci., vol. 13, no. 3,
pp. 273–304, 2004.

[8] D. Wood, “Scaffolding, contingent tutoring and computer-based learn-
ing,” Int. J. Artif. Intell. Educ., vol. 12, no. 3, pp. 280–292, 2001.

[9] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, “Han-
dling local concept drift with dynamic integration of classifiers: Domain
of antibiotic resistance in nosocomial infections,” in Proc. 19th IEEE
Int. Symp. Comput.-Based Med. Syst., Salt Lake City, UT, Jul. 2006, pp.
679–684.

[10] J. Gao, W. Fan, J. Han, and P. S. Yu, “A general framework for mining
concept-drifting data streams with skewed distributions,” in Proc. SIAM
Int. Conf. Data Min., vol. 7. 2007, pp. 3–14.

[11] J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, Dataset Shift in Machine Learning. Cambridge, MA: MIT
Press, 2009.

[12] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Mach. Learn., vol. 23, no. 1, pp. 69–101, 1996.

[13] L. L. Minku, A. P. White, and Y. Xin, “The impact of diversity on online
ensemble learning in the presence of concept drift,” IEEE Trans. Knowl.

Data Eng., vol. 22, no. 5, pp. 730–742, May 2010.
[14] L. I. Kuncheva, “Classifier ensembles for detecting concept change in

streaming data: Overview and perspectives,” in Proc. Eur. Conf. Artif.

Intell., 2008, pp. 5–10.
[15] L. I. Kuncheva, “Classifier ensembles for changing environments,” in

Multiple Classifier Systems, vol. 3077. New York: Springer-Verlag, 2004,
pp. 1–15.

[16] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, “Learn++: An
incremental learning algorithm for supervised neural networks,” IEEE

Trans. Syst., Man Cybern. Part C: Appl. Rev., vol. 31, no. 4, pp. 497–
508, Nov. 2001.

[17] M. Muhlbaier, A. Topalis, and R. Polikar, “Learn++.NC: Combining
ensemble of classifiers with dynamically weighted consult-and-vote for
efficient incremental learning of new classes,” IEEE Trans. Neural Netw.,
vol. 20, no. 1, pp. 152–168, Jan. 2009.

[18] J. C. Schlimmer and R. H. Granger, “Incremental learning from noisy
data,” Mach. Learn., vol. 1, no. 3, pp. 317–354, 1986.

[19] R. Klinkenberg, “Learning drifting concepts: Example selection versus
example weighting,” Intell. Data Anal., vol. 8, no. 3, pp. 281–300, Aug.
2004.

[20] M. Nunez, R. Fidalgo, and R. Morales, “Learning in environments with
unknown dynamics: Toward more robust concept learners,” J. Mach.

Learn. Res., vol. 8, pp. 2595–2628, Nov. 2007.
[21] P. Wang, H. Wang, X. Wu, W. Wang, and B. Shi, “A low-granularity

classifier for data streams with concept drifts and biased class distrib-
ution,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 9, pp. 1202–1213,
Sep. 2007.

[22] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Advances in Artificial Intelligence (Lecture Notes
in Computer Science), vol. 3171. New York: Springer-Verlag, 2004, pp.
286–295.

[23] C. Alippi and M. Roveri, “Just-in-time adaptive classifiers—Part I:
Detecting nonstationary changes,” IEEE Trans. Neural Netw., vol. 19,
no. 7, pp. 1145–1153, Jul. 2008.

[24] C. Alippi and M. Roveri, “Just-in-time adaptive classifiers—Part II:
Designing the classifier,” IEEE Trans. Neural Netw., vol. 19, no. 12,
pp. 2053–2064, Dec. 2008.

[25] L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok,
“Real-time data mining of non-stationary data streams from sensor
networks,” Inf. Fus., vol. 9, no. 3, pp. 344–353, Jul. 2008.

[26] M. Markou and S. Singh, “Novelty detection: A review—Part 2: Neural
network based approaches,” Signal Process., vol. 83, no. 12, pp. 2499–
2521, Dec. 2003.

[27] L. Rutkowski, “Adaptive probabilistic neural networks for pattern clas-
sification in time-varying environment,” IEEE Trans. Neural Netw.,
vol. 15, no. 4, pp. 811–827, Jul. 2004.

[28] E. A. de Oliveira, “The Rosenblatt Bayesian algorithm learning in a
nonstationary environment,” IEEE Trans. Neural Netw., vol. 18, no. 2,
pp. 584–588, Mar. 2007.

[29] N. G. Pavlidis, D. K. Tasoulis, N. M. Adams, and D. J. Hand, “λ-
perceptron: An adaptive classifier for data streams,” Pattern Recognit.,
vol. 44, no. 1, pp. 78–96, Jan. 2011.

[30] P. Vorburger and A. Bernstein, “Entropy-based concept shift detection,”
in Proc. 6th Int. Conf. Data Min., 2006, pp. 1113–1118.

[31] S. Hoeglinger and R. Pears, “Use of Hoeffding trees in concept based
data stream mining,” in Proc. Int. Conf. Inf. Autom. Sustain., Melbourne,
Australia, Dec. 2007, pp. 57–62.

[32] C.-J. Tsai, C.-I. Lee, and W.-P. Yang, “Mining decision rules on data
streams in the presence of concept drifts,” Expert Syst. Appl., vol. 36,
no. 2, pp. 1164–1178, Mar. 2009.

[33] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proc. Conf. Knowl. Disc. Data, 2001, pp. 97–106.

[34] L. Cohen, G. Avrahami, M. Last, and A. Kandel, “Info-fuzzy algorithms
for mining dynamic data streams,” Appl. Soft Comput., vol. 8, no. 4, pp.
1283–1294, Sep. 2008.

[35] S. Srinivasan, J. Samuelsson, and W. B. Kleijn, “Codebook-based
Bayesian speech enhancement for nonstationary environments,” IEEE
Trans. Audio, Speech Lang. Process., vol. 15, no. 2, pp. 441–452, Feb.
2007.

[36] D. R. Lowne, S. J. Roberts, and R. Garnett, “Sequential non-stationary
dynamic classification with sparse feedback,” Pattern Recognit., vol. 43,
no. 3, pp. 897–905, Mar. 2010.

[37] A. Blum, “Empirical support for winnow and weighted-majority algo-
rithms: Results on a calendar scheduling domain,” Mach. Learn., vol. 26,
no. 1, pp. 5–23, Jan. 1997.

[38] Z. Xingquan, W. Xindong, and Y. Ying, “Dynamic classifier selection
for effective mining from noisy data streams,” in Proc. 4th IEEE Int.
Conf. Data Min., Nov. 2004, pp. 305–312.

[39] N. Littlestone, “Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm,” Mach. Learn., vol. 2, no. 4, pp. 285–
318, Apr. 1988.

[40] Y. Freund and R. E. Schapire, “Decision-theoretic generalization of on-
line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, 1997.

[41] N. Oza, “Online ensemble learning,” Ph.D. dissertation, Dept. Comput.
Sci., Univ. California, Berkeley, 2001.

[42] W. N. Street and Y. Kim, “A streaming ensemble algorithm (SEA) for
large-scale classification,” in Proc. 7th ACM SIGKDD Int. Conf. Knowl.
Disc. Data Min., 2001, pp. 377–382.

[43] S. Chen and H. He, “Toward incremental learning of nonstationary
imbalanced data stream: A multiple selectively recursive approach,”
Evolv. Syst., vol. 2, no. 1, pp. 35–50, 2011.

[44] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen,
“Dynamic integration of classifiers for handling concept drift,” Inf. Fus.,
vol. 9, no. 1, pp. 56–68, Jan. 2008.

[45] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: An
ensemble method for drifting concepts,” J. Mach. Learn. Res., vol. 8,
pp. 2755–2790, Dec. 2007.

[46] J. Gao, W. Fan, and J. Han, “On appropriate assumptions to mine data
streams: Analysis and practice,” in Proc. Int. Conf. Data Min., 2007,
pp. 143–152.

[47] H. Wang, W. Fan, P. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proc. ACM SIGKDD Int. Conf.

Knowl. Disc. Data Min., 2003, pp. 226–235.
[48] K. Nishida and K. Yamauchi, “Adaptive classifiers-ensemble system for

tracking concept drift,” in Proc. Int. Conf. Mach. Learn. Cybern., vol. 6.
Hong Kong, Aug. 2007, pp. 3607–3612.

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1531

[49] H. He and S. Chen, “IMORL: Incremental multiple-object recognition
and localization,” IEEE Trans. Neural Netw., vol. 19, no. 10, pp. 1727–
1738, Oct. 2008.

[50] J. Gao, B. Ding, F. Wei, H. Jiawei, and P. S. Yu, “Classifying data
streams with skewed class distributions and concept drifts,” IEEE

Internet Comput., vol. 12, no. 6, pp. 37–49, Nov.–Dec. 2008.
[51] H. Abdulsalam, D. B. Skillicorn, and P. Martin, “Classification using

streaming random forests,” IEEE Trans. Knowl. Data Eng., vol. 23,
no. 1, pp. 22–36, Jan. 2011.

[52] A. Bifet, “Adaptive learning and mining for data streams and frequent
patterns,” Ph.D. dissertation, Dept. Lleng. Sist. Inf., Univ. Politècnica
Catalunya, Barcelona, Spain, Apr. 2009.

[53] A. Bifet, E. Frank, G. Holmes, and B. Pfahringer, “Accurate ensembles
for data streams: Combining restricted Hoeffding trees using stacking,”
in Proc. 2nd Asian Conf. Mach. Learn., vol. 13. 2010, pp. 1–16.

[54] A. Bifet. (2010, Dec. 30). MOA: Massive Online Analysis [Online].
Available: http://moa.cs.waikato.ac.nz

[55] M. Scholz and R. Klinkenberg, “Boosting classifiers for drifting con-
cepts,” Intell. Data Anal., vol. 11, no. 1, pp. 3–28, Jan. 2007.

[56] R. Polikar, J. DePasquale, H. S. Mohammed, G. Brown, and L. I.
Kuncheva, “Learn++.MF: A random subspace approach for the missing
feature problem,” Pattern Recognit., vol. 43, no. 11, pp. 3817–3832, Nov.
2010.

[57] M. Karnick, M. Ahiskali, M. D. Muhlbaier, and R. Polikar, “Learning
concept drift in nonstationary environments using an ensemble of
classifiers based approach,” in Proc. Int. Joint Conf. Neural Netw., Hong
Kong, 2008, pp. 3455–3462.

[58] M. Karnick, M. D. Muhlbaier, and R. Polikar, “Incremental learning in
non-stationary environments with concept drift using a multiple classifier
based approach,” in Proc. 19th Int. Conf. Pattern Recognit., Tampa, FL,
Dec. 2008, pp. 1–4.

[59] R. Elwell and R. Polikar, “Incremental learning in nonstationary envi-
ronments with controlled forgetting,” in Proc. Int. Joint Conf. Neural

Netw., Atlanta, GA, Jun. 2009, pp. 771–778.
[60] R. Elwell and R. Polikar, “Incremental learning of variable rate concept

drift,” in Proc. Int. Workshop Multiple Class. Syst., vol. 5519. 2009, pp.
142–151.

[61] R. E. Schapire, “The strength of weak learnability,” Mach. Learn., vol. 5,
no. 2, pp. 197–227, Jun. 1990.

[62] R. Polikar and R. Elwell. (2011, Jun. 18). Benchmark Datasets for Eval-

uating Concept Drift/NSE Algorithms [Online]. Available: http://users.
rowan.edu/∼polikar/research/NSE

[63] U.S. National Oceanic and Atmospheric Administration. Federal Cli-
mate Complex Global Surface Summary of Day Data [Online]. Available
FTP: ftp.ncdc.noaa.gov/pub/data/gsod

Ryan Elwell (M’10) received the B.S. degree in
electrical and computer engineering from Rowan
University, Glassboro, NJ, in 2008, and the M.S.
degree in engineering from Rowan University
in 2009.

He is currently a Technical Leader of radar
applications in the U.S. Army Communications-
Electronics Research, Development, and Engineer-
ing Center, Aberdeen, MD. His current research
interests include neural networks, incremental learn-
ing, digital signal processing, and algorithm devel-

opment for airborne radar exploitation.

Robi Polikar (SM’08) received the B.Sc. degree
in electronics and communications engineering from
Istanbul Technical University, Istanbul, Turkey, in
1993, and the M.Sc. and Ph.D. degrees both in
electrical engineering and biomedical engineering,
from Iowa State University, Ames, in 1995 and 2000,
respectively.

He is currently a Professor of Electrical and Com-
puter Engineering at Rowan University, Glassboro,
NJ. His recent and current works are funded primar-
ily through National Science Foundation’s CAREER

and Energy, Power and Adaptive Systems Programs. His current research
interests include computational intelligence including ensemble systems,
incremental and nonstationary learning, and various applications of pattern
recognition in bioinformatics and biomedical engineering.

Dr. Polikar is a member of the American Society for Engineering Education,
Tau Beta Pi, and Eta Kappa Nu.

