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ABSTRACT

We present an approach to teach incrementally human ges-
tures to a humanoid robot. The learning process consists of
first projecting the movement data in a latent space and en-
coding the resulting signals in a Gaussian Mixture Model

(GMM). We compare the performance of two incremen-
tal training procedures against a batch training procedure.
Qualitative and quantitative evaluations are performed on
data acquired from motion sensors attached to a human
demonstrator and data acquired by kinesthetically demon-
strating the task to the robot. We present experiments to
show that these different modalities can be used to teach
incrementally basketball officials’ signals to a HOAP-3 hu-
manoid robot.

1. INTRODUCTION
Robot Programming by Demonstration (RbD), also referred

to as Learning by Imitation, explores methods to teach a
robot new skills by user-friendly means of interaction [3, 4,
22, 17]. One of the key issue in RbD is to design a generic
system to the transfer of skills across various agents and sit-
uations [1, 13, 18, 23]. Instead of copying a single instance
of a demonstration, our approach aims at extracting what
are the relevant characteristics of the gesture that needs to
be reproduced. This can be achieved by observing the user
performing multiple demonstrations of the same task and
generalizing over the different demonstrations [6]. Classi-
cal approaches tend to perform the skill off-line in a batch
learning mode, but recent approaches proposed methods to
dynamically teach new skills to a humanoid robot [14, 21].
Indeed, it would be crucial to allow the robot to learn incre-
mentally gestures, as this would allow the teacher to refine
his/her teaching depending on the robot’s current perfor-
mance at reproducing the skill.

To transfer a skill between two human partners, differ-
ent ways of performing demonstrations can be used, de-
pending on the motor skill that must be transferred. For
example, several methods have been investigated for skill
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Figure 1: Illustration of the different teaching
modalities used in our system. Left: The user
performs a demonstration of a gesture while wear-
ing motion sensors recording his upper-body move-
ments (arms and head). Right: The user helps the
robot reproduce the gesture by kinesthetic teaching,
i.e. correcting the movement by moving physically
the robot’s limbs to their correct postures.

acquisition in sport, with the aim of providing advices to
sport coaches, i.e. to understand how to transfer a motor
skill in the most efficient way depending on the individual
capacities of the athletes. In [12], specific metrics are sug-
gested to evaluate the performance of a reproduced skill. In
outcome-defined tasks, the performance criteria are based
on outcomes without regard on the way of achieving them.
In contrast, process-defined tasks have no outcome outside
the technique, and can be practiced without the presence
of target or object. While outcome-defined tasks can be
easily transmitted using a symbolic representation such as
keywords, rules or verbal instructions, process-defined tasks
are more difficult to describe using such high-level features.

To transfer new motor skills to a humanoid robot, the
user faces a similar situation to the sport coach training an
athlete. In RbD, the ”human coach” must take into account
the individual specificities of the robot. He/she must com-
bine different modalities and provide appropriate scaffolds
to transfer relevant information about the task constraints
[16]. An efficient human-robot teaching process should en-
courage variability in the different demonstrations provided
to the robot, i.e. varied practiced conditions, varied demon-
strators or varied exposures. When a symbolic description
of the skill is available, i.e. when the behavior can be trans-
lated into symbolic codes, it is sometimes easier to describe
what is the purpose of the task verbally (e.g. pressing a



specific button). However, for generic gestures that do not
necessary involve object manipulation, verbalization of the
task constraints is more difficult. Indeed, language is more
limiting when describing complex movements. For these
situations, observation of an expert model showing how to
perform the gesture and refinement of the acquired gesture
through moulding behaviours are likely to facilitate the ac-
quisition of the skill.

In this work, we take the perspective that the demonstra-
tions can be provided in various modalities. We focus on
the scenario where: 1) The robot observes a human user
demonstrating the gesture while wearing motion sensors, 2)
The robot tries to reproduce the skill while the coach detects
the motion parts that need further refinements and 3) The
coach helps the robot move correctly its limbs by kinesthetic
teaching. The use of motion sensors allows the user to pro-
vide a complete model of the skill with complex upper-body
motion. Then, similarly to moulding behaviours, moving
kinesthetically the robot in its own environment provides a
social way of feeling the robot’s capacities and limitations
of its body when interacting with the environment.

Extracting the constraints of a movement is important to
determine which parts of the motion are important, which
ones allow variability, and what kind of correlations among
the different variables are required, allowing to find out
which motion does and does not fulfill the skill requirements.
When designing such a learning framework, extracting not
only a generalized movement from the demonstrations, but
also the variability and correlation information, may permit
to the robot to use its experience in changing environmental
conditions [7]. For scaling-up issue, this should be set-up
in an adaptive way, without increasing drastically the com-
plexity of the system when new experiences are provided.
Thus, the model should not use historical data to update
the model of the gestures. It means that the system should
be flexible enough to adapt itself when new demonstrations
are provided.

In [6], we presented an approach based on Principal Com-

ponent Analysis (PCA) and Gaussian Mixture Model (GMM)
to build a probabilistic representation of the movement. This
compact representation has classification and regression prop-
erties used by the robot to discriminate gestures and repro-
duce a smooth generalized version of the movement. The
model also encapsulates the properties of the gesture, i.e.
it extracts what are the relevant features to reproduce and
what are the correlations across the different variables. A
disadvantage of this approach is that training was performed
in a batch mode. Thus, refinement of the model was possible
only by keeping all the previous movements in a database,
which is not efficient.

To get rid of this drawback, we present in this paper two
incremental training approaches used to update the mod-
els parameters when new demonstrations are available. A
probabilistic model based on PCA and GMM is first learned
using joint angles trajectories collected by the motion sen-
sors, and is progressively refined using data collected by the
kinesthetic teaching process.

2. SYSTEM ARCHITECTURE
Fig. 1 and 2 present the principles of the system. The

projection of the data in the latent space of motion, the
classification of existing motion models, the encoding of the
gestures in mixture models and the retrieval process are fully
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Figure 2: Information flow across the complete sys-
tem.

described in [6]. We only briefly summarize the principles
here.

2.1 Data acquisition
The joint angle trajectories collected are defined by

{θj}
N
j=1 = {θt,j , θs,j}

N
j=1, which consists of N datapoints

of dimensionality d. Each datapoint consists of a tempo-
ral value θt,j ∈ R (time elapsed from the beginning of the

demonstration) and a posture vector θs,j ∈ R
(d−1).

2.2 Projection in a latent space
We are looking for a latent space of motion onto which we

project the original centered postures {θs,j}
N
j=1 to find an

optimal representation for the given gesture. We are using
PCA that finds analytically a mixing matrix A projecting
{θs,j}

N
j=1 onto uncorrelated components {ξs,j}

N
j=1, with the

criterion of preserving as much variance as possible. ξs,j ∈
R

(D−1), where (D−1) is the minimal number of eigenvectors

and associated eigenvalues λ needed to obtain a ”satisfying”
representation of the original dataset, i.e. such that the
projection of the data onto the reduced set of eigenvectors

covers at least 98% of the data’s spread:
∑(D−1)

i=1 λi > 0.98.
The projection in the latent space is then defined by ξs,j =
Aθs,j , with projection matrix A ∈ R

((D−1)×(d−1)).

2.3 Gaussian Mixture Model (GMM)
The motion dataset in the latent space is then defined

by {ξj}
N
j=1 = {ξt,j , ξs,j}

N
j=1, with ξt,j = θt,j . The dataset

consists of N datapoints of dimensionality D. The dataset
is modelled by a mixture of K components, defined by a
probability density function:

p (ξj) =

K
∑

k=1

p(k) p (ξj |k) (1)

where p(k) is the prior and p(ξj |k) the conditional probabil-
ity density function. For a mixture of K Gaussian distribu-
tions of dimensionality D, the parameters in (1) are defined



as:

p(k) = πk

p(ξj |k) = N (ξj ; µk, Σk) (2)

=
1

√

(2π)D|Σk|
e
− 1

2 ((ξj−µk)T Σ−1
k

(ξj−µk))

The parameters of a Gaussian Mixture Model Θ are then
described by {πk, µk, Σk, Ek}

K
k=1, defining respectively the

prior probability, mean vector, covariance matrix and cu-
mulated posterior probability1 Ek =

∑N

j=1 p(k|ξj), com-

puted using Bayes theorem p (k|ξj) =
p(k)p(ξj |k)

∑

K
i=1 p(i)p(ξj |i)

. The

optimal number of components K is determined by Bayesian

Information Criterion (BIC). Classification is performed us-
ing the average log-likelihood of a model Θ when testing a
set of N datapoints {ξj}

N
j=1:

LΘ =
1

N

N
∑

j=1

log (p(ξj)) (3)

where p(ξj) is the probability that ξj is generated by the

model, computed using (2) and p(ξj) =
∑K

k=1 p(k)p (ξj |k).
Training of the GMM parameters is traditionally per-

formed in a batch mode (i.e. using the whole training set)
using the iterative Expectation-Maximization (EM) algorithm
[9]. This simple local search technique guarantees monotone
increase of the likelihood of the training set during optimiza-
tion. Starting from a rough estimation of the parameters by
k-means segmentation, parameters {πk, µk, Σk, Ek} are es-
timated iteratively until convergence:

E-step:

p
(t+1)
k,j =

π
(t)
k

N (ξj ;µ
(t)
k

,Σ
(t)
k

)
∑

K
i=1 π

(t)
i

N (ξj ;µ
(t)
i

,Σ
(t)
i

)

E
(t+1)
k =

∑N

j=1 p
(t+1)
k,j

M-step:

π
(t+1)
k =

E
(t+1)
k

N

µ
(t+1)
k =

∑N
j=1 p

(t+1)
k,j

ξj

E
(t+1)
k

Σ
(t+1)
k =

∑N
j=1 p

(t+1)
k,j

(ξj−µ
(t+1)
k

)(ξj−µ
(t+1)
k

)T

E
(t+1)
k

The iteration stops when L(t+1)

L(t) < C1, with the log-likelihood

L defined in (3). The threshold C1 = 0.01 is used in our ex-
periments.

2.4 Gaussian Mixture Regression (GMR)
Gaussian Mixture Regression (GMR) is used to recon-

struct a general form for the signals [8]. In a generic re-
gression problem, one is given a set of predictor variables
X ∈ R

p and response variables Y ∈ R
q. The aim of the

regression is to estimate the conditional expectation of Y

given X on the basis of a set of observations {X, Y }. In our
case, we use regression to retrieve smooth trajectories which
are generalized over a set of observed trajectories. Thus, on
the basis of a set of observations ξ = {ξt, ξs}, where ξs rep-
resents a spatial vector at time step ξt, regression aims at

1Note that Ek is mandatory to describe the model but it
simplifies the notation for the training algorithms.

estimating the conditional expectation of ξs given ξt. Then,
by computing the conditional expectation of ξs at each time
step, the whole expected trajectory is extracted.

GMR is based on the theorem of Gaussian conditioning
and on the linear combination properties of Gaussian dis-
tributions. From a set of trajectories ξ = {ξt, ξs}, the joint
probability distribution p(ξt, ξs) is first modeled by a GMM.
A generalized version of the trajectories is then computed
by estimating E[p(ξs|ξt)]. The constraints of the gesture are
extracted by estimating2 E[cov (p(ξs|ξt))].

For a GMM model Θ encoding the set of trajectories ξ =
{ξt, ξs}, the temporal and spatial values of the Gaussian
component k are separated, i.e. we define:

µk = {µt,k, µs,k} , Σk =

(

Σtt,k Σts,k

Σst,k Σss,k

)

For each component k, the expected distribution of ξs,k

given ξt is defined by:

p(ξs,k|ξt, k) = N (ξs,k; ξ̂s,k, Σ̂ss,k) (4)

ξ̂s,k = µs,k + Σst,k(Σtt,k)−1(ξt − µt,k)

Σ̂ss,k = Σss,k − Σst,k(Σtt,k)−1Σts,k

ξ̂s,k and Σ̂ss,k are mixed according to the probability that
the component k has of being responsible for ξt:

p(ξs|ξt) =
K

∑

k=1

βk N (ξs; ξ̂s,k, Σ̂ss,k) (5)

βk =
p(k)p(ξt|k)

∑K

i=1 p(i)p(ξt|i)
=

πkN (ξt; µt,k, Σtt,k)
∑K

i=1 πiN (ξt; µt,i, Σtt,i)

Finally, for a mixture of K components, an estimation of
the conditional expectation of ξs given ξt is computed using
(4), (5) and:

ξ̂s =
K

∑

k=1

βk ξ̂s,k , Σ̂ss =
K

∑

k=1

β
2
k Σ̂ss,k

Thus, by evaluating {ξ̂s, Σ̂ss} at different time steps ξt, a

generalized form of the motions ξ̂ = {ξt, ξ̂s} and associated
covariance matrix are used to reproduce the movement.

Note that {ξ̂s, Σ̂ss} are expressed in the latent space of
motion but can be projected back in the original data space
by using the linear transformation property of a Gaussian
distribution:

ξj ∼ N (µk, Σk)

⇒ Aξj ∼ N (Aµk, AΣkA
T ) (6)

2.5 Incremental training procedure
The traditional GMM learning procedure starts from an

initial estimate of the parameters and uses Expectation- Max-

imization (EM) algorithm to converge to an optimal local
solution. In its basic version, this batch learning procedure
is not optimal for a Programming by Demonstration frame-
work where new incoming data should permit to the robot
to refine its model of the gesture, without keeping the whole
training data in memory.

The problem of incrementally updating a GMM by taking
into account only the new incoming data and the previous

2We use the standard notations E[·] and cov(·) to express
expectation and covariance.



estimation of the GMM parameters has been proposed for
on-line data stream clustering. Song and Wang in [19] sug-
gested to create a new GMM (by evaluating multiple GMMs
and using a BIC criterion to select the optimal GMM) with
the new incoming data, and to create a compound model
by merging the similar components of the old GMM with
the new GMM. The suggested algorithm is computation-
ally expensive and tends to produce more components than
the standard EM algorithm. Arandjelović and Cipolla sug-
gested in [2] to use the temporal coherence properties of
data streams to update GMM models. They assumed that
data were varying smoothly in time to adjust the GMM
parameters when new data were observed. They proposed
a method to update the GMM parameters for each newly
observed datapoint by allowing splitting and merging opera-
tions on the Gaussian components when the current number
of Gaussian components did not represent well the new dat-
apoint.

In a RbD framework, the tackled issue is different in the
sense that we do not need to model on-line streams. Nev-
ertheless, we need to adjust an already existing model of a
stream when a new stream is observed and recognized by the
model. We suggest two approaches to update the model’s
parameters: 1) The direct update method takes inspiration
from [2], and re-formulates the problem for a generic obser-
vation of multiple datapoints. 2) The generative method

uses Expectation-Maximization performed on data gener-
ated by Gaussian Mixture Regression. The two methods
are described next.

2.5.1 Direct update method

The idea is to adapt the EM algorithm presented in Sec-
tion 2.3 by separating the parts dedicated to the data al-
ready used to train the model and the one dedicated to the
newly available data, with the assumption that the set of
posterior probabilities {p(k|ξj)}

N
j=1 remain the same when

the new data {ξ̃j}
Ñ
j=1 are used to update the model. This

is true only if the new data are close to the model, which
is often expected in our framework since the novel obser-
vation is first recognized by the model as being part of it,
i.e. the novel observation consists of a similar gesture than
the ones encoded in the model. Thus, the model is first
created with N datapoints ξj and updated iteratively dur-
ing T EM-steps, until convergence to the set of parameters

{π(T )
k , µ

(T )
k , Σ

(T )
k , E

(T )
k }K

k=1. When a new gesture is recog-

nized by the model (see Section 2.3), T̃ EM-steps are again

performed to adjust the model to the new Ñ datapoints ξ̃j ,
starting from the initial set of parameters

{π̃(0)
k , µ̃

(0)
k , Σ̃

(0)
k , Ẽ

(0)
k }K

k=1 = {π(T )
k , µ

(T )
k , Σ

(T )
k , E

(T )
k }K

k=1. We

assume that the parameters {Ẽ(0)
k }K

k=1 remain constant dur-
ing the update procedure, i.e. we assume that the cumulated
posterior probability does not change much with the inclu-
sion of the novel data in the model. We then rewrite the

EM procedure as:

E-step:

p̃
(t+1)
k,j =

π̃
(t)
k

N (ξ̃j ;µ̃
(t)
k

,Σ̃
(t)
k

)
∑

K
i=1 π̃

(t)
i

N (ξ̃j ;µ̃
(t)
i

,Σ̃
(t)
i

)

Ẽ
(t+1)
k =

∑Ñ

j=1 p̃
(t+1)
k,j

M-step:

π̃
(t+1)
k =

Ẽ
(0)
k

+Ẽ
(t+1)
k

N+Ñ

µ̃
(t+1)
k =

Ẽ
(0)
k

µ̃
(0)
k

+
∑ Ñ

j=1 p̃
(t+1)
k,j

ξ̃j

Ẽ
(0)
k

+Ẽ
(t+1)
k

Σ̃
(t+1)
k =

Ẽ
(0)
k

(

Σ̃
(0)
k

+(µ̃
(0)
k

−µ̃
(t+1)
k

)(µ̃
(0)
k

−µ̃
(t+1)
k

)T
)

Ẽ
(0)
k

+Ẽ
(t+1)
k

+
∑ Ñ

j=1 p̃
(t+1)
k,j

(ξ̃j−µ̃
(t+1)
k

)(ξ̃j−µ̃
(t+1)
k

)T

Ẽ
(0)
k

+Ẽ
(t+1)
k

The iteration stops when L(t+1)

L(t) < C2, where the threshold
C2 = 0.01 is set in our experiments.

2.5.2 Generative method

An initial GMM model {πk, µk, Σk}
K
k=1 is created using

the classic EM algorithm, see Section 2.3. When new data
are available, regression is used to generate stochastically
new data by considering the current GMR model {µ̂j , Σ̂j}

T
j=1.

Using this generated dataset and the new observed data
{ξ̃j}

T
j=1, the GMM parameters are then refined by the clas-

sic EM algorithm. We define α ∈ [0; 1] as the learning rate,
n = n1 + n2 as the number of samples used for the iterative
learning procedure, with n1 ∈ N and n2 ∈ N the number of
trials duplicated from the new observation and generated by
the current model. The new training dataset is then defined
by:

ξi,j = ξ̃j if 1 < i ≤ n1

ξi,j ∼ N (µ̂j , Σ̂j) if n1 < i ≤ n
∀j ∈ {1, . . . , T}

with:

n1 = [n α]

where [·] is the notation for the nearest integer function. The
training set of n trials is then used to refine the model by
updating the current set of parameters {πk, µk, Σk}

K
k=1 using

EM algorithm. α ∈ [0, 1] can be set to a fixed learning rate
or can depend on the current number of demonstrations used
to train the model. In this case, when a new demonstration
of Ñ datapoints is available and when N datapoints from
previous demonstrations were used to train the model, α is

set to Ñ

Ñ+N
. Identically, when all demonstrations have the

same number of datapoints, we can start with α(0) = 1 and
set α recursively for each newly available demonstration:

α
(t+1) =

α(t)

α(t) + 1

This recursive learning rate is used in the experiments re-
ported here. The number of samples n = 5 and the number
of time steps T = 100 are fixed experimentally.

3. EXPERIMENTS
The incremental teaching procedures presented in the pre-

vious section are used to teach basketball officials’ signals to
a humanoid robot, using two different modalities.



3.1 Experimental set-up
The experiments are conducted with a Fujitsu HOAP-

3 humanoid robot with 28 degrees of freedom (DOFs), of
which only the 16 DOFs of the upper torso are required in
the experiments. The remaining DOFs of the legs are set to
a constant position, so as to support the robot in a standing
posture.

User’s movements are recorded by 8 X-Sens motion sen-
sors attached to the torso, upper-arms, lower-arms, on the
top of the hands (at the level of the fingers) and on the back
of the head. Each sensor provides the 3D absolute orienta-
tion of each segment, by integrating the 3D rate-of-turn, ac-
celeration and earth-magnetic field, at a rate of 100 Hz with
a precision of 1.5 degrees. For each joint, a rotation matrix is
defined as the orientation of a distal limb segment expressed
in the frame of reference of its proximal limb segment. The
kinematics motion of each joint is then computed by defin-
ing a Joint Coordinate System (JCS) and decomposing the
rotation matrix into joint angles, using a Cardanic conven-
tion (XYZ decomposition order). For each joint, the motion
sensors return orientation matrices R0→1 and R0→2, repre-
senting respectively the orientation of the proximal segment
and distal segment, both expressed in the static world refer-
ential. We define the orientation of the distal segment with
respect to the proximal segment as R1→2 using the relation
R1→2 = (R0→1)

−1R0→2. In the experiments reported here,
16 joint angles are recorded, i.e. θs,j ∈ R

16, corresponding
to the degrees of freedom (DOFs) of our robot (1 DOF for
the torso, 3 DOFs for the head, 2 × 3 DOFs for the shoul-
ders, 2 × 1 DOF for the elbows, 2 × 1 DOF for the wrists
and 2 × 1 DOF for the hands).

When using a kinesthetic teaching method, the robot mo-
tors are set in a passive mode, whereby each limb can be
moved by the human demonstrator. The kinematics of each
joint motion are recorded at a rate of 1000 Hz during the
demonstrations and are then re-sampled to a fixed number
of points T = 100. The robot is provided with motor en-
coders for every DOF, except for the hands and the head
actuators.

3.2 Experimental data
A dataset of 10 movements is selected, inspired from the

signals used by basketball officials to communicate various
non-verbal information such as scoring, clock-related events,
administrative notifications, types of violations or types of
fouls (see3 Fig. 7). Officials’ signals in basketball provide
a rich gesture vocabulary, characterized by non-linearities
at the level of the joint angles, which make them attractive
for researchers to use as test data [11, 20]. The robot first
observes the user performing the gesture and reproduces a
first generalized version of the motion, see Fig. 1. This mo-
tion is then refined by moving the robot’s limbs physically
while performing the gesture. The gesture can be refined
completely by grabbing the two arms of the robot, or par-
tially by conducting the desired DOFs of the robot while the
robot controls the remaining DOFs4. To do that, the user

3Images reproduced from [10] with permission.
4Note that the number of variables that the user is able to
control with his/her two arms is still lower than when using
the motion sensors. With kinesthetic teaching, the demon-
strator can only demonstrate a subset of joint angles (the
arms), while the robot is controlling the remaining joints
(the head).

Table 1: Automatic estimation of the dimensionality
(D − 1) of the latent space of motion and automatic
estimation of the number of components K in the
GMM, for the 10 gestures used in the experiment.

Gesture ID 1 2 3 4 5 6 7 8 9 10
(D − 1) 4 2 3 3 4 3 4 2 2 3
K 4 4 5 4 3 4 4 4 4 5
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Figure 3: Illustration of the direct update incremen-
tal learning processes, using the first component of
gesture 2. The graphs show the consecutive encod-
ing of the data in GMM, after convergence of the
EM algorithm. The algorithms only use the lat-
est observed trajectory represented (shown in black
points) to update the models.

first selects the DOFs that he wants to control by moving
the corresponding joints. The robot detects the motion and
set the corresponding DOFs to a passive mode. Then, the
robot reproduces the movement while recording the move-
ment of the limbs controlled kinesthetically by the user. For
each gesture, 3 demonstrations using motion sensors are pro-
vided, and 3 demonstrations using kinesthetic teaching. The
model is updated after each demonstration.

3.3 Experimental results
The dimensionality of the latent space and the number

of Gaussian components used to encode the data, estimated
automatically by the system, are presented in Table 1. Only
the first demonstration observed is used to find the optimal
number of components. The original data space of 16 DOFs
is then reduced to a latent space of 2−4 dimensions, which is
a suitable dimensionality to estimate the GMM parameters
using an EM algorithm. We see that 3−5 GMM components
are required to encode the different gestures.

Fig. 3 illustrates the encoding results of GMM for ges-
ture 2, when updating incrementally the parameters using
the direct update method (only the first variable of the 2 di-
mensional latent space is represented). We see that the first
group of three demonstrations using motion sensors and the
last group of three demonstrations using kinesthetic teach-
ing present similarities within each group, but are quite dif-
ferent across the groups. We see after the 6th demonstration
that the two incremental training processes still adapt effi-
ciently the model to represent the whole training set, with-
out using historical data to update the model.
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corresponding models. Results are presented for the
different gestures and for the different teaching ap-
proaches. B corresponds to the batch training pro-
cedure. IA and IB correspond to the incremental
training procedures using respectively the direct up-

date method and the generative method.
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Figure 6: Reproduction using Gaussian Mixture Re-
gression (GMR) in a latent space of motion, with
models trained with the different batch (B) and in-
cremental training methods IA and IB, represent-
ing respectively the direct update and generative
method. Here, data for gestures 1, 4 and 10 are
represented, in latent spaces of 4 or 3 dimensions.



Figure 7: Reproduction of the 10 gestures using
an incremental generative method, after having ob-
served 6 demonstrations for each gesture. The re-
sulting trajectories of the hands are represented
when the corresponding joint angle trajectories are
executed by the robot. All the gestures start with
the arms hanging along the body.

To compare the efficiency of the different training pro-
cesses, namely Batch (B), Incremental - direct update (IA)
and Incremental - generative (IB), we keep in memory each
demonstration and each model updated after having ob-
served the corresponding demonstrations. For each gesture,
we then compute the log-likelihood of the model when faced
with the different demonstrations (movements already ob-
served and remaining movements). Fig. 4 presents the av-
erage results for the 10 gestures. We see that after the 1st
demonstration, Model 1 describes very well Data 1 (−L is
low). This first model also describes partially Data 2-3,
but describes poorly Data 4-6. From the 4th demonstra-
tion, Model 4 begins to provide a good representation for
the whole training set, which is finally optimized in Model

6. We see that the different training methods do not show
significant differences. Particularly, we see that after the
6th demonstration, the log-likelihoods of Model 6 trained
with an incremental method are almost constant for Data

1-6. Thus, each data are well represented by the model, i.e.
there is no particular tendency to explain better old or new
data.

For each gesture, a closer look at the log-likelihoods of the
final model (Model 6 ) is presented in Fig. 5. The last inset
shows the average for the 10 gestures. It shows that the in-
verse log-likelihoods for the incremental methods IA and IB

are only a little bit higher than for the batch method B5, i.e.
the resulting GMM representations for IA and IB are quite
as good as for B. Thus, we see that both direct update and
generative methods are really good at refining the GMM
representation of the data. The loss of performance for the
incremental training procedures are negligible compared to
the benefit induced by the methodology. Indeed, a learn-
ing system that can forget historical data is advantageous
in terms of memory capacity and scaling-up issue. With the
proposed experiment, the differences of time computation
between the batch and incremental procedures are insignif-
icant (all the processes run in less than 1 second using a
Matlab implementation running on a standard PC).

Fig 6 shows three examples of reproduction of motion us-
ing Gaussian Mixture Regression in the latent space, using
the different training methods. We see that there is no sig-
nificant qualitative difference in the trajectories generated
by the different models. The motion are then projected
back in a joint angle data space and run on the robot. Fig.
7 presents the corresponding hands paths in a Cartesian
space for the generative incremental training method. We
see that the essential characteristics of the motion are well
retrieved by the models.

4. DISCUSSION
The teaching scenario takes inspiration from the social

process used by an adult to teach gestures to a child by
first showing the gesture to reproduce and then by help-
ing the child refine his/her performance by moving his/her
own arms. By moving only selected limbs, the adult focuses
the child’s attention on specific parts of the motion while
the child still performs the skill by his/her own. A similar
strategy is achieved in our system by making use of differ-
ent modalities to let the robot acquire the gestures. In [5],
we explored the use of motion sensors attached to the body
of the demonstrator to convey information about human
body gesture. We demonstrated that they can present an
alternative to vision systems to record human motion data.
Although these motion sensors are attached to the user’s
body and are thus not directly related to a human-like sen-
sory system, they measure robust information about body
posture and can be used easily in different environment, in-
dependently of the sound, lighting and occlusion conditions.
They provide a robust orientation measure of the limbs and
allows to record a large number of degrees of freedom simul-
taneously. As the motion sensors are interfaced with the
computer by Bluetooth wireless communication, the user
can perform freely a large range of motion. It allows the
recording of natural movements with smooth velocity pro-
files characterizing human motion. Similar joint angle tra-
jectories recorded by kinesthetic teaching, using the motors
encoders of the robot, sometimes present sharper turns and
an unnatural decorrelation of the different DOFs. Indeed,
when displacing physically the hands of the robot, the mo-
tors of the arms tend to move sequentially in a decoupled
way.

By combining information from both the motion sensors
and kinesthetic teaching, it is possible to generate naturally
looking trajectories and tackle at the same time the corre-
spondence problem [15]. Indeed, due to the different em-
bodiment between the user and the robot, it is not possible

5Note that this is not systematic (see Gesture 2).



to directly copy the joint angle trajectories demonstrated by
the user. Transferring efficiently such gesture often requires
refinement of the trajectories with respect to the specific
robot capabilities in its specific environment. On the other
hand, demonstrating a gesture only by kinesthetic teach-
ing is limited by the naturalness of the motion and by the
number of limbs that the user can control simultaneously.
Combining both approaches provide a social way to teach
a humanoid robot new skills. The use of motion sensors
provide a model of the entire movement for the robot, while
kinesthetic teaching offer a way of refining this demonstrated
motion. It adds a social component to the interaction as the
user helps the robot acquire the skill by physically manip-
ulating its arms. By doing so, he/she implicitly feels the
characteristics and limitations of the robot in its own envi-
ronment.

5. CONCLUSION
We presented two incremental teaching approaches to trans-

fer gestures and associated constraints to a humanoid robot
without using historical data, and compared the results with
a batch training procedure. We showed that: 1) Both ap-
proaches performed well at encoding and reproducing hu-
man motion. 2) The loss of information due to the incre-
mental processes was acceptable and permitted to reproduce
successfully the essential characteristics of the motion. We
tested our approach in a human-robot teaching scenario us-
ing motion sensors and kinesthetic teaching to acquire ges-
tures. The presented experiments showed that the combi-
nation of these two means of recording movements can be
used in an efficient manner to teach incrementally new move-
ments to a humanoid robot.
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