
Incremental Learning of NCM Forests for Large-Scale Image Classification

Marko Ristin1 Matthieu Guillaumin1 Juergen Gall2 Luc Van Gool1,3

1ETH Zurich 2University of Bonn 3KU Leuven

Abstract

In recent years, large image data sets such as “Ima-

geNet”, “TinyImages” or ever-growing social networks like

“Flickr” have emerged, posing new challenges to image

classification that were not apparent in smaller image sets.

In particular, the efficient handling of dynamically growing

data sets, where not only the amount of training images,

but also the number of classes increases over time, is a rel-

atively unexplored problem. To remedy this, we introduce

Nearest Class Mean Forests (NCMF), a variant of Random

Forests where the decision nodes are based on nearest class

mean (NCM) classification. NCMFs not only outperform

conventional random forests, but are also well suited for in-

tegrating new classes. To this end, we propose and compare

several approaches to incorporate data from new classes,

so as to seamlessly extend the previously trained forest in-

stead of re-training them from scratch. In our experiments,

we show that NCMFs trained on small data sets with 10

classes can be extended to large data sets with 1000 classes

without significant loss of accuracy compared to training

from scratch on the full data.

1. Introduction

The advent of large data sets such as “ImageNet” [7]

or “80 Million Tiny Images” [23] has introduced new

challenges compared to earlier data sets with far fewer

classes [10]. As the number of classes grows and their se-

mantic and visual distances shrink, conventional one-vs-all

classifiers become tedious to train and are outperformed by

nearest neighbour or multiclass approaches [1, 6, 14, 26].

A common hypothesis for multi-class learning is that the

number of classes is known when the training phase starts.

This implies that the aforementioned large datasets are typi-

cally conceived as static: the choice of classes is fixed, clas-

sifiers are trained for those, and any modification to the list

of classes (e.g., adding a new class) implies to retrain all the

models from scratch. Considering the ongoing explosion

of visual data in our daily lives and the dynamics of social

networks, this is unlikely to be a realistic real-life scenario:

new visual classes are bound to emerge and will eventually

justify their recognition by vision algorithms.
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Figure 1: Classification of an image (illustrated by the red

cross) by a single tree. (a) The feature vector is extracted,

(b) the image is assigned to the closest centroid (colors in-

dicate further direction), (c) the image is assigned the class

probability found at the leaf.

In this light, the static learning scheme which is prevalent

today seems particularly unfit. Indeed, not only would one

want to prevent re-training the entire system, but learning

to recognize a single new class should be much faster when

many classes are already known. We can thus observe, in

the context of large-scale classification, a nascent interest in

dynamic learning scenarios [14].

In this paper, we consider the large-scale multi-class

learning scenario where new classes gradually become

available. Rather than having to re-train our classifier from

scratch at each step (such as would be necessary for, e.g.,

multiclass SVMs [1]), we aim at a system that can grace-

fully integrate new classes while limiting the loss of accu-

racy compared to the same system trained from all classes

jointly. We refer to this problem as incremental learning.

As a baseline for incremental learning, one could for in-

stance consider training a new one-vs-all classifier for each

additional class. Not only does this come with a large com-

putational burden for each new class [6], but, ultimately, the

previously trained classifiers will also need to be updated to

improve their performance.

To address these challenges, the first contribution in this

paper is a new type of random forests [5]. Inspired by Near-

est Class Mean (NCM) classifiers [14], the decisions at each

node are based on the Voronoi cells formed by a small ran-

dom subset of the class means observed at that node, the

centroids. We illustrate the concept in Fig. 1 and explain it

in more detail in Sec. 3.3. The centroids partition the fea-

ture space and assign a sample either to the left or the right
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subtree. We name these forests Nearest Class Mean Forests

(NCMF). Our experiments show that such forests outper-

form conventional random forests and match the state-of-

the-art on the challenging large-scale ImageNet dataset [3].

As a matter of fact, Random Forests are very good can-

didates for incremental learning. First, they are naturally

multi-class and simply updating the class statistics of the

leaves is already a reasonable way of adding new classes.

Second, thanks to their hierarchical structure, deeper mod-

ifications to the forest can be made locally, and therefore

impact only a fraction of the data at a fraction of the com-

putational cost. The second contribution of this work is the

introduction of efficient approaches for updating the forest

structure in order to integrate new classes so as to main-

tain high accuracy at the lowest possible cost. We present

an extensive experimental comparison of those approaches,

studying the influence of all parameters (including the num-

ber of initial classes) on the classification accuracy and on

the computational cost of training and testing the NCMF.

2. Related work

Image classification on large data sets has been widely

studied [6, 13, 20], also exploiting Random Forests [5, 28].

In [28], the authors use strong SVM classification for the

splitting nodes, leading to a very powerful method able to

address fine-grained classification.

To address the problem of large data, there has been a

wide use of online learning methods, such as stochastic

gradient descent [13, 20]. These methods can learn from

one data instance at a time, hence remain frugal in terms of

memory. The assumption of online learning is that samples

are provided in a uniformly random sequence, but the num-

ber of classes and the class labels are known beforehand.

Online learning has also been explored in the context of

Random Forests. This is typically done by extending the

trees as more samples are available. The approach of [11]

first trains the trees in an extremely random fashion and sub-

sequent updates are performed only at the leaves. [9, 18, 25]

lazily split the nodes or destroy the (sub)tree after a suffi-

cient number of samples have been observed or a certain

threshold on information gain has been passed. In [27], a

Hough Forest is trained incrementally with user feedback,

in an active learning scenario. Leaves are refined at each

step. Like most existing classifiers (e.g., SVM or [28]) or

other active or online learning methods, these works do not

consider observing new classes in the data stream, and are

typically not straightforward to adapt to this scenario.

Incremental learning, as we define it in this paper, is pre-

cisely interested in data streams where classes are provided

in sequence. Typically, a few classes are available to start

with, and new classes are added thereafter. In that vein, the

approach of [14] consists in learning a discriminative met-

ric on the initial set of classes, and classifies samples sim-

ply based on the nearest class mean. Adding a new class

consists in inserting its mean in the pool of classes, leading

to a near-zero cost. However, the metric itself is not up-

dated as new classes appear, which will ultimately lead to

suboptimal performance. Instead, we propose to update the

structure of our forests to integrate new classes.

Incremental learning is also related to transfer learning,

where the goal is to reduce the amount of labelled data re-

quired to learn a new class. It can be implemented via ad-

ditional SVM constraints [22], regularizers [2], transferred

features [21], shared deformable parts [16] or iteratively

learned object localization based on global annotations [12].

It is also possible to exploit given or computed class hier-

archies [8, 17, 19]. This is relevant here given the implicit

class hierarchy that random trees provide. We differ from

these approaches in that we want to add a new class ef-

ficiently rather than trying to exploit the knowledge from

previous classes to reduce the amount of annotation neces-

sary for good performance. Moreover, transfer learning is

typically restricted to one-vs-all classification.

The structure of our random forests is similar to that of

vocabulary trees [15] and its online kin [29], which are un-

supervised clustering forests. However, where vocabulary

trees use the k-means algorithm to learn the splitting nodes,

we exploit class information. Following [14], the simple

use of class means as centroids makes it extremely efficient

to train our forests, and results in discriminative leaves and

state-of-the-art performance.

3. NCM Forests

Before introducing the concept of Nearest Class Mean

Forests (NCMFs), we briefly describe image classification

based on NCM, which has been used for large-scale image

classification in [14], and Random Forests (RF), which are

commonly used for image classification, e.g., in [4].

3.1. Nearest Class Mean classifier

With an image I being represented by a d-dimensional

feature vector ~x ∈ R
d, we first compute the class centroid

cκ for each class κ ∈ K:

cκ =
1

|Iκ|

∑

i∈Iκ

~xi, (1)

where Iκ is the set of images labeled with class κ. Since

there is a centroid for each class, the set of centroids C =
{cκ} has cardinality |C| = |K|.

Nearest Class Mean (NCM) classification of an image I

is then formulated as searching for the closest centroid in

feature space:

κ∗(I) = argmin
κ∈K

‖~x− cκ‖ , (2)



where ~x is the feature vector of I . Without additional re-

finements, the classification of one image implies |K| com-

parisons in R
d. To improve the classification accuracy and

speed, [14] replaces the Euclidean distance in Eq. (2) with a

low-rank Mahalanobis distance optimized on training data.

3.2. Random Forests

Random forests [5] consist of T independently trained

decision trees. At each node n of each tree, the training

data Sn arriving at that node is divided by a splitting func-

tion fn : ~x 7→ {0, 1} into two subsets Sn
fn=0 and Sn

fn=1.

Commonly used splitting functions are axis-aligned [5] or

linear splitting functions [4]. For training, a random set of

splitting functions Fn is generated and the best one, fn, is

selected according to the information gain U :

U(f) = H (Sn)−
∑

i∈{0,1}

|Sn
f=i|

|Sn|
H(Sn

f=i)

H(Sn) = −
∑

κ∈K

P (κ|Sn) lnP (κ|Sn)

fn = argmax
f∈Fn

U(f)

(3)

where H denotes class entropy and P (κ|Sn) the fraction

of Sn belonging to the class κ. The left and right children

nodes are then trained on Sn
fn=0 and Sn

fn=1, respectively,

and the training continues recursively.

Given a pre-defined constant µ, the splitting stops when

no f ∈ Fn satisfies

∣

∣

∣
Sn
f=0

∣

∣

∣
> µ and

∣

∣

∣
Sn
f=1

∣

∣

∣
> µ. At

each leaf node l of a tree t, we store the distribution over

classes observed during the training, i.e., P t
l (κ). For clas-

sification, the feature vector of the image is extracted and

passed through each tree until it arrives at leaf l(~x). The

class probabilities of all trees are averaged and classifica-

tion is defined by:

κ∗(~x) = argmax
κ

1

T

∑

t

P t
l(~x) (κ) . (4)

3.3. Combining NCM and Random Forests

Random Forests are efficient to train since each tree and

each node at the same depth can be trained independently.

Their performance heavily depends on the chosen splitting

functions. In this section, we propose to use a variation of

NCM classifiers as splitting functions, and we name the re-

sulting forests NCM Forests. NCM classifiers are modified

in two aspects. First, at any particular node, only a frac-

tion of the classes will be used, hence speeding up Eq. (2).

Second, the multiclass output of NCM is translated into a

binary output (left vs. right child) by assigning the classes

to either side.

The benefit of such an NCM Forest compared to NCM

classification is that only a few comparisons are required

at each node, implictly encoding a hierarchical structure of

classes. This results in state-of-the-art accuracy without re-

sorting to expensive metric learning. Compared to the most

common variants of Random Forests, NCM Forests also of-

fer non-linear classification at the node level.

More specifically, we perform the following procedure to

train a node n with the data Sn arriving at that node. First,

we denote by Kn a random subset of the classes observed

in Sn, and by Sn
κ the subset of Sn of class κ ∈ Kn. Then,

for each κ ∈ Kn, we compute the corresponding centroids

as in Sec. 3.1:

cnκ =
1

|Sn
κ |

∑

i∈Sn
κ

~xi. (5)

Then, each centroid cnκ is assigned randomly to a left or

right child node symbolized by a binary value eκ ∈ {0, 1}.

The corresponding splitting function f is then defined by:

f(~x) = eκ∗(~x) where κ∗(~x) = argmin
κ∈Kn

‖~x− cnκ‖ . (6)

We use Eq. (3) to select the optimal fn from the pool of

splitting functions corresponding to random centroids as-

signments {eκ}. We do not optimize over random choices

of Kn for two reasons. First, this would force us to store all

class means at all nodes. Second, we can exploit reservoir

sampling to add new classes to Kn in a principled manner.

With |Kn|≪ |K|, the forests will perform a low number of

the comparisons, and scale graciously as our experiments in

Sec. 5 demonstrate.

The experiments further show that the proposed NCM

splitting functions outperform standard ones for the task of

large-scale image classification. We also show that the clas-

sification accuracy of NCM Forests without metric learn-

ing is comparable to the performance of NCM with metric

learning, but the training of the random forest is intrinsi-

cally parallelizable and thus faster than the metric learning.

Moreover, the main benefit of the approach is the ease of in-

crementally adding new classes to an already trained multi-

class classifier as we discuss in the next section. Classifica-

tion with a tree of an NCM Forest is illustrated in Fig. 1.

4. Incremental learning

As discussed in Sec. 2, on-line learning of random

forests has been studied for vision applications such as

tracking, object detection, or segmentation [11, 18, 25, 27].

However, these works focus on problems where the number

of classes is known a-priori. In this work, we focus on in-

crementally adding new classes to the forest in the context

of large scale image classification. Without proper incre-

mental learning mechanism, a multi-class classifier would

need to be re-trained from scratch every time a new class is

added. This makes it potentially very expensive to add new

classes, especially as the dataset grows. Below, we devise

four approaches for incrementally learning an NCM Forest.



a) Update leaf statistics (ULS). Assuming that a multi-

class NCM Forest has been already trained for the classes

K, a new class κ′ is added by passing the training images of

the new class through the trees and updating the class prob-

abilities Pl(κ) stored at the leaves. This approach updates

only the leaves but does not change the splitting functions

or size of the trees.

b) Incrementally grow tree (IGT). Unlike ULS, IGT

continues growing the trees if enough samples of the new

class arrive at a leaf. The previously learned splitting func-

tions remain unchanged, but new splitting nodes can be

added. While the newly added splitting functions sample

centroids from K ∪ κ′, the old splitting functions are based

on centroids sampled from K.

c) Re-train subtree (RTST). In contrast to ULS and

IGT, which do not converge to a forest trained on K ∪ κ′

classes (since the tree structure learned for K classes is not

changed), RTST updates also previously learned splitting

functions. To this end, a subset of nodes in the trees trained

on K classes are marked and converted into leaves, de facto

removing all of their children. By storing references to the

training samples in leaves, it is efficient to collect them back

for the newly created leaf node and update statistics. As for

IGT, the cut trees are then grown again, which, in essence,

corresponds to re-training subtrees with samples from all

classes. The computational cost of re-training depends on

the size of the sub-trees, so we set the probability of a node

n to be marked as inversely proportional to the cardinality

of the subtree Tn with n as root:

p(n) ∝ (|Tn|+ 1)−1. (7)

To control the amount of re-training, only a fraction

π ∈ [0, 1] of the subtrees is selected by randomly sampling

without replacement. If π=1, the trees are completely re-

trained and the training is not incremental anymore. For

π=0, RTST is the same as IGT.

d) Re-use subtree (RUST). While RTST re-trains sub-

trees entirely, we also propose a fourth approach that re-uses

subtrees to reduce the training time. Instead of marking full

sub-trees, RUST updates single splitting nodes. The nodes

are selected for update as in RTST. The incremental train-

ing is then performed breadth-first. Each splitting node n

already stores a function fn where the |Kn| centroids have

been sampled from K. The splitting functions for K ∪ κ′

classes, however, would have been sampled from centroids

from the larger set of classes. We therefore use reservoir

sampling [24] to decide if the centroid cnκ′ is ignored, added

or replaces an element of Kn to form K′n, in which case the

splitting function is updated as well:

f ′n(~x) = enκ∗(~x) with κ∗(~x) = argmin
κ∈K′n

‖~x− cnκ‖ , (8)

where enκ′ is selected based on Eq. (3). Since updating

the splitting function might result in a re-distribution of the
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Figure 2: Illustration of our incremental approaches: a) Up-

date leaf statistics (ULS), b) Incrementally grow tree (IGT),

c) Re-train subtree (RTST), d) Re-use subtree (RUST). The

colors of the centroids (yellow, cyan) indicate the directions

associated with the Voronoi cells. The elements marked in

red are modifications to the structure of the tree. In c), the

centroids of the root’s right child are re-computed, while in

d) only a new centroid is added.

training samples from the classes K within the sub-tree of

the node, the samples with f ′n(~x) 6= fn(~x) are removed

from the leaves and passed through the subtree again. As

this might create leaves without samples, the trees are cut

such that each leaf contains a minimum number µ of sam-

ples. The impact of π and µ is evaluated in Sec. 5.

While ULS, IGT and RTST are general approaches that

work with any type of splitting functions, RUST uses the

advantage of NCM for incremental learning. Fig. 2 illus-

trates the four approaches for incremental learning.

5. Experiments

For evaluation, we use the challenging ImageNet

Large Scale Visual Recognition 2010 challenge benchmark

(ILSVRC10) [3]. There are 1k categories (between 660 and

3047 training images per class, 1.2M in total; 150 testing

images per category) organized in a class hierarchy based

on WordNet. The performance is measured using average

accuracy, i.e. the fraction of test samples correctly classi-

fied. We used densely sampled SIFT features clustered into

1k visual words provided by [3]. Although more advanced

features [13, 20] improve results, the design and evaluation

of feature sets is beyond the scope of this work. To evaluate

incremental learning, we fixed a random order of all cate-

gories and used it throughout all experiments. Each feature

was whitened by its mean and standard deviation over the

starting training subset. Test time of our forests is measured

as average number of comparisons ‖~x− cκ‖
2

per tree.
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Figure 3: Comparison of a) average classification accuracy

and b) test time for different sizes of Kn ⊂ K. While setting

|Kn| linear to the number of classes performs better than a

square root or logarithmic growth, it takes much longer at

the test time.
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Figure 4: The influence of the µ minimum samples at a leaf

for a) NCM forest and b) RUST with 3 initial classes.

5.1. Parameters of NCM Forest

We first evaluate the impact of some of the parameters

of the NCM Forests. Unless stated otherwise, we used 50
trees, sampled 1024 functions at each node without replace-

ment (i.e., |Fn| = 1024) and enforced at least µ=10 train-

ing samples at a leaf. One parameter of fn, cf . Eq. (6), is

the size of the sampled classes Kn out of all classes K. We

compared |Kn| ∈
{

log |K|,
√

|K|, 0.2|K|
}

and present the

results in Fig. 3. The standard deviation of the test time was

< 10% of the mean and was omitted for clarity. The results

show that |Kn| =
√

|K| gives a good trade-off between ac-

curacy and test time and is used for the rest of the paper.

The minimum number of samples at a leaf µ defines the

stopping criterion for growing the trees. The smaller the

number, the deeper the trees grow. Fig. 4a) shows that

a small number increases the accuracy, but induces more

comparisons at the test time. For the following experiments,

we constrained leaves to contain at least 10 samples.

5.2. Comparison to other methods

We compared NCM Forests with other multi-class clas-

sifiers using the same features. For comparison, we used

nearest class mean classifier (NCM), NCM with metric

learning [14] (MET+NCM), structured-output multi-class

SVM [1] (MC SVM), k-nearest neighbors (KNN), and Ran-

dom Forests with axis-aligned splitting functions [5] (RF),

which performed better than RF with random linear split-

ting functions in our case. For each approach, the param-

eters were optimized by cross-validation for the first 50

classes. The results in Fig. 10a) show that NCM Forests

perform comparable to NCM with metric learning [14] and

outperform the other methods. In particular, NCMF outper-

forms NCM (Sec. 3.1) and conventional Random Forests

(Sec. 3.2), by a margin of at least 10 points. The perfor-

mance drop of MC SVM for more than 200 classes is likely

due to the sensitivity of the parameters optimized for 50

classes.

5.3. Incremental learning

To evaluate the incremental learning approaches pre-

sented in Sec. 4, we train an NCMF on a pre-defined num-

ber k of initial classes and then incrementally add the other

classes one by one. The performance is measured when-

ever the method has learned to recognize a certain number

of classes. Since the goal is to match the performance of

the NCMF re-trained at every new class, we measure the

performance relatively to that baseline. The training time is

measured in seconds of wall time.

Comparison of the update strategies. Fig. 5 plots

the accuracy, test time, and training time for the baseline

and our approaches ‘Update leaf statistics’ (ULS), ‘Incre-

mentally grow tree’ (IGT), ‘Re-train subtree’ (RTST with

π = 0.8) and ‘Re-use subtree’ (RUST with π = 0.8) trained

from k = 3 initial classes up to 50 classes. As ULS does not

grow the trees, its test time is constant and the training time

very low, but the final relative performance at 50 classes

is poor (26.7%). IGT extends the trees, yielding higher test

and training times, but achieves 80.7% relative performance

while reducing training time of the baseline by a factor of 25
and test time by 3. IGT achieves 34.9% average accuracy,

outperforming NCM, KNN, and RF, cf . Fig. 10a). RTST re-

trains the nodes and achieves the best relative performance

(91.2%), but takes longest to train. RUST outperforms IGT

(88.1% relative performance), suggesting that re-using the

subtrees is indeed beneficial. It also speeds up the training

of the baseline by a factor of 5 and is 2x faster to train than

RTST. The gap in training times between RTST and RUST

widens with the number of classes.

Impact of π. RTST and RUST depend on the parameter

π, whose impact is shown in Fig. 6. If π = 0, RTST and

RUST are the same as IGT. As π increases, RTST converges

to the baseline. Although RTST with π = 1 is theoretically
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Figure 5: Measurements at variable number of classes starting with 3 initial classes. ‘Update leaf statistics’ (ULS) is faster to

train and test, but has inferior performance. ‘Incrementally grow tree’ (IGT) is slower than ULS both at train and test time,

but achieves 80.7% of the baseline’s performance at 50 classes. ‘Re-train subtree’ achieves the best performance (91.2%

at 50 classes), but takes longest to train. ‘Re-use subtree’ (RUST) is a good trade-off between training time and relative

performance (88.1% at 50 classes). The relative differences in training time increase with the growing number of classes.
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Figure 6: The influence of π on ‘Re-train subtree’ (RTST) and ‘Re-use subtree’ (RUST) on a) performance, b) test time and

c) training time. We started with 3 initial classes and measured at 50 classes. As π increases, the performance tends to the

baseline at cost of higher training time. π=0.8 appears as a good trade-off for both RTST and RUST.

the same as the baseline, the sampling of the node for re-

training creates an additional overhead. The performance

is also slightly below the baseline because the whitening

parameters are estimated on the initial training set, while

the baseline computes the feature normalization based on

all the data.

The impact of π on RUST is similar to RTST, but RUST

does not converge to the baseline. This is expected since the

stored centroids are re-used for RUST while re-computed

for RTST. This results in a slightly lower relative perfor-

mance than RTST, but also in lower training times.

Other parameters. We now focus on RUST and evalu-

ate the impact of different parameters for incremental learn-

ing. As in Sec. 5.1, we evaluated the impact of the stopping

criterion given by the minimum number of samples at a leaf.

Fig. 4b) shows that the impact is also limited for RUST.

The influence of the number of initial classes on RUST

is shown in Fig. 7. The method is quite insensitive to the

number of initial classes and already achieves good perfor-

mance with only a few. Starting with 3 and 20 initial classes

gives us the relative performance of 88.1% and 92.7%, re-

spectively, a difference of only about 4.5%.

So far we have used a single random permutation of the

classes for the experiments. Below, we evaluate ten random

permutations of the previously used 50 classes, to ensure

that the specific order that we have used does not bias our
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Figure 7: Comparison of a) relative performance and b) test

time of RUST with π = 0.8 starting with k initial classes

measured at 30, 40 and 50 classes. Increasing the number

of initial classes is beneficial, but has limited impact.

evaluation. The standard deviation never exceeded 10% of

the mean values of the measurements (cf . Fig. 8) indicating

little impact of the order of the classes, which is desirable

for incremental learning.

In practice, multiple classes can appear in batches, so

the number of simultaneous classes to add is an interesting

parameter to study. We initialized with 10 classes and ex-

perimented with step chunks of 1, 5, 10 or all classes (40).

While only large chunks increase the accuracy, the training

time is already reduced by training 5 classes at a time as

shown in Fig. 9.

While we compared NCM Forests with other approaches

in Fig. 10a), we now compare the incremental learning ap-

proaches on all 1k classes in Fig. 10b) and c). Since IGT al-
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Figure 8: Comparison of a) relative performance and b) test time of RUST with π = 0.8 starting with different number of

classes and measured at 50 classes and 10 random permutations of the classes. c) Training time for 3 initial classes over 10

random permutations of the classes. The small standard deviations indicate the limited impact of the order of the classes.
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Figure 9: Comparison of a) relative performance, b) test time and c) training time for RUST when several classes (s is the

chunk size) are added simultaneously, starting from 10 initial classes.

ready outperforms NCM, KNN, and RF, we focus on NCM

with metric learning [14], which performed slightly better

than NCM Forests, cf . Fig. 10a). We start with k=10 and

k=20 initial classes. The setting for the approaches based

on NCM Forests remains the same, i.e., the whitening is

estimated on the initial k classes. For METk+NCM, the

metric is only learned on the initial classes, and the model

is updated with projected centroids of the new classes. In

Fig. 10, RUST outperforms IGT showing that updating the

trees is beneficial. While it was shown in [14] that a metric

learned on 800 classes is applicable to the other 200 classes,

the learned metric on up to 20 classes does not generalize

well, making the method unsuitable for a small initial train-

ing set. In this case, the three approaches IGT, RUST and

RTST outperform METk+NCM. In different scenarios, bet-

ter accuracy (RTST) or faster training (RUST) may be pre-

ferred, cf . Fig. 5.

Finally, we report the total training times to reach 1k

classes for a tree initially trained on 20 classes on a single-

threaded machine: re-training NCMF baseline for each new

class takes 4 days, ULS 30s, IGT 15min, RUST 77min and

RTST 16h, respectively. Without feature extraction, a tree

processes an image in: NCMF 0.47ms, ULS 0.04ms, IGT

0.05ms, RUST 0.24ms and RTST 0.27ms, respectively.

6. Conclusion

In this paper, we have introduced Nearest Class Mean

Forests (NCMF), and shown that they outperform NCM

classification and RFs for large-scale image classification.

While the approach achieves competitive results in a setting

where all classes are known a-priori, efficient techniques

to incrementally add new classes to NCMF are also pro-

posed. In particular, the ability to re-use subtrees allows us

to add new classes at a fraction of the cost of re-training

a complete NCMF, while preserving the overall accuracy.

We have performed extensive experiments in the context of

classification when the number of classes grows over time.

Since NCMF are quite insensitive to the number of initial

classes and to the order in which the classes are added, they

are well suited for incremental learning.
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