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Incremental Learning of Statistical Motion Patterns
With Growing Hidden Markov Models

Dizan Vasquez, Thierry Fraichard, and Christian Laugier

Abstract—Modeling and predicting human and vehicle motion
is an active research domain. Due to the difficulty of modeling
the various factors that determine motion (e.g., internal state and
perception), this is often tackled by applying machine learning
techniques to build a statistical model, using as input a collection
of trajectories gathered through a sensor (e.g., camera and laser
scanner), and then using that model to predict further motion.
Unfortunately, most current techniques use offline learning algo-
rithms, meaning that they are not able to learn new motion pat-
terns once the learning stage has finished. In this paper, we present
an approach where motion patterns can be learned incrementally
and in parallel with prediction. Our work is based on a novel
extension to hidden Markov models (HMMs)—called growing
hidden Markov models—which gives us the ability to incremen-
tally learn both the parameters and the structure of the model.

Index Terms—Hidden Markov models (HMMs), motion predic-
tion, pattern learning.

I. INTRODUCTION

PREDICTING the trajectories that vehicles and pedestrians
are going to follow in a given environment is fundamental

for effective autonomous navigation in cities, parking lots, and
highways. The main challenge lies in the fact that these objects
move according to a diversity of complex factors—such as their
intentions and internal state—which are very difficult to model
and parameterize. Thus, instead of explicitly modeling these
factors, the preferred approach in the literature assumes that
objects tend to follow typical motion patterns; hence, if those
patterns are known, it is possible to use them not only to predict
further motion but also, for example, to detect anomalous
behavior or improve visual tracking.

In practice, former knowledge about motion patterns is sel-
dom available a priori, and it should be obtained by applying
machine-learning techniques to motion data obtained through
some kind of sensor system. For example, Bennewitz et al. [1]
use the expectation–maximization algorithm to cluster trajec-
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tory data gathered with a laser scanner, and Hue et al. [2] apply
a two-pass hierarchical clustering algorithm to find patterns on
the output of a visual tracker.

Despite being quite diverse, most motion pattern learning
approaches share the significant drawback that they operate
offline, which implies the assumption that at least one example
of every possible motion pattern is contained in the learning
data set. Given the enormous variety of possible human behav-
iors, this assumption does not hold in practice, and the learned
motion models have, in the best case, only limited utility.

It would be better to incrementally learn motion patterns, so
that when a new motion pattern is observed, the system is able
to integrate it into its knowledge base. This paper describes such
an approach: it incrementally learns motion patterns and, at the
same time, uses its current knowledge to predict motion. Our
approach extends further our previous work [3] by proposing a
unified extension to hidden Markov models (HMMs) [4], which
is a probabilistic framework that is very popular in the motion
pattern learning literature (e.g., [1], [5], and [6]). This exten-
sion, named growing HMM (GHMM), enables incremental and
online learning of the parameters and the structure of the model.

The rest of this paper is structured as follows. Section II
provides an overview of motion pattern learning, focusing on
techniques based on HMMs. Section III presents GHMMs.
In Section IV, the application of GHMMs to our particular
problem is discussed. Our experimental results are outlined in
Section V. Finally, we present our conclusions in Section VI.

II. RELATED WORK

To learn motion patterns, it is necessary to define their mean-
ing and to decide how they are going to be represented. In the
first part of this section, we present an overview of approaches
in the literature, classifying them according to the answers they
provide to these questions. Then, on the second part, we provide
a more detailed explanation of HMM-based approaches, which
constitute the basis of our proposed approach.

A. Literature Overview

1) Behavioral Models: Approaches in this category con-
sider motion patterns in terms of behaviors having high-level
semantics: a person may be following a friend or fleeing from
an attacker, a car may be passing another car or waiting for a
green light, etc.

In general, these approaches deal with the evolution of the
intentional state of the objects, often disregarding their metric
or physical states (e.g., position and speed). This makes them
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better suited for applications like video surveillance or scene
understanding than for tracking or motion prediction.

A good example of this type of approaches is described in the
work of Oliver et al. [7]: they use coupled HMMs [8] to model
interactions (e.g., approaching, meeting, and fleeing) between
pairs of objects. These states are defined prior to learning, and
the model is trained on labeled data. Similar ideas have been
explored in [9] and [10], allowing for interactions between more
than two objects.

2) Descriptive Models: This family of approaches models
motion in terms of the physical state of the object without
taking the semantics into account. Often, motion patterns are
represented as sequences of points, describing the object’s state
at consecutive discrete time steps. Under this representation,
the learning problem is frequently addressed using some sort
of clustering algorithm to extract a number of “typical” motion
patterns (i.e., trajectory prototypes) from an input data set
consisting of raw trajectory data.

A representative example is the approach proposed by
Bennewitz et al. [11], which uses expectation–maximization to
perform the clustering. Other algorithms include hierarchical
clustering [2], [12]–[14], graph cutting [15], and custom pair-
wise clustering algorithms [16].

To apply the obtained trajectory prototypes to perform track-
ing or motion prediction, a probabilistic framework is often
used. This allows one to explicitly represent the uncertainties
associated with sensor noise and to take into account the model
incompleteness. Since most of these approaches are based on
HMMs, we will review them in further detail in a separate
section.

Some alternatives to approaches based on probabilistic
frameworks exist in the literature: neural networks are prob-
ably the most popular one, starting with the seminal work
by Johnson and Hogg [17], which first proposed the use of
multilayer self-organizing networks, where one layer represents
the states, and another corresponds to the followed path. Similar
approaches have been proposed in [18] and [19], which, by
explicitly modeling time, obtained performance comparable to
that of probabilistic models. A different idea has been explored
by Stauffer and Grimson [20], which no longer represented
motion patterns as typical trajectories but as a co-occurrence
matrix for every different motion pattern, where every element
ci,j roughly corresponds to the probability that an object passes
through states i and j, given that it is engaged in the correspond-
ing motion pattern.

3) Hybrid Models: Of course, the intentional and physical
states of an object are not independent; the intentions of an
object condition depend on its physical state; conversely, infor-
mation about the position and speed of an object may be used
to infer the object’s intentions or the behavior in which it is
involved. A number of approaches model to a certain extent the
relationship between these two states.

The basic idea in this kind of approaches is to condition mo-
tion models on the behavior being executed. Often, the behavior
is represented as the object’s intention of reaching a particular
place in the environment (i.e., its goal). For example, Liao et al.

[21] have used a hierarchical extension to HMMs—abstract
HMMs (AHMMs) [22]—to learn and predict the motion of

pedestrians in cities, where the three layers in the AHMM
represented (top to bottom) goals, transportation modes, and the
physical state. The approach is able to learn the goal and trans-
portation mode structures using custom-tailored algorithms, but
the low-level physical structure is given a priori in the form of
a graph. Another AHMM-based approach has been proposed in
[23] for indoor environments, but the structure is given a priori.
Regarding AHMMs, it is worth mentioning that they are—with
respect to inference—equivalent to a Markov decision process
[24], which is a probabilistic planning technique that illustrates
the connection between planning and motion prediction.

Other goal-based approaches include [25]–[27]. The latest is
of particular interest because it represents the world from the
object’s perspective, which clearly contrasts with most other
approaches, which are based in some sort of global view.
However, these three approaches share a problem: the object’s
evolution toward the goal is modeled using overly simplistic
mechanisms (e.g., linear interpolation for [25]), leading to
unreliable physical-state estimations.

B. HMM-Based Approaches

In this section, we will focus on techniques based on HMMs
and, thus, closely related to the proposed approach. For the
sake of clarity, our discussion of HMMs will be just a brief
overview, heavily biased toward our application. The interested
reader may refer to the papers of Juang et al. [28] and Rabiner
[4] for a deeper introduction to the subject.

In the context of our problem, an HMM [see Fig. 1(a)] may
be seen as a graph whose nodes represent states attainable by
the object (e.g., places in the environment) and whose edges
represent transitions between states. The system is supposed to
be at a given state and to stochastically evolve at discrete time
steps by following the graph edges according to a transition
probability P (St|St−1). Moreover, the object’s state is not
directly observable; instead, it should be measured through
some kind of sensor reading (i.e., observation) that is related
to the actual state through an observation probability P (Ot|St).
Often, the initial state of the system is stochastically represented
with a state prior P (S1).

HMM learning is composed of two subtasks.
• Structure learning: This subtask determines the number of

nodes in the model—which will be called discrete states

henceforth—as well as the edge structure for the graph.
• Parameter learning: This subtask estimates the parameters

for the three probability distributions (state prior, transi-
tion, and observation probabilities) from the data.

Different algorithms for structure and parameter learning
exist in the literature, it is the choice of these algorithms
that distinguishes different HMM-based motion pattern learn-
ing approaches. For example, Walter et al. [5] assume that
the number of motion patterns is known a priori and de-
fine the structure using a different chain-link graph for every
motion pattern, and then, parameters are learned using the
expectation–maximization algorithm; Bennewitz et al. [1] learn
the HMM structure by clustering trajectory data with the
expectation–maximization algorithm and then manually set the
model’s parameters according to assumptions about the object’s
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Fig. 1. (a) Basic three-state HMM. (b) HMM structure embedded in a parking
lot (only a few motion patterns are displayed).

motion; and Makris and Ellis [6] learn the HMM structure in
a similar way but also incorporate parameter learning into the
algorithm.

Despite their differences, all these approaches have some
points in common: 1) Typical motion patterns are represented
with some sort of trajectory prototype; 2) structure learning
is independent of parameter learning; and 3) learning is first
performed offline, and then, the system switches to a utilization
stage where no further learning is performed. As we will see in
the following sections, our approach differently behaves with
respect to these points.

III. GROWING HIDDEN MARKOV MODELS

In this section, we present our proposed extension to HMMs,
i.e., GHMMs,1 which may be described as time-evolving
HMMs with continuous observation variables, where the num-
ber of discrete states, structure, and probability parameters
are updated every time that a new observation sequence is
available.

Our approach is designed for its utilization as a discrete
approximate inference tool for continuous-state spaces. It is
applicable to problems where the continuous-state space may
be discretized into a finite number of regions so that every such
region is represented by a discrete state in the GHMM.

1Since space is limited, we have opted to provide a general overview on
GHMMs, which omits some specific information on optimizations and data
structures. See [29] for more details.

Our approach relies on three main assumptions.

1) We assume that input observation sequences correspond
to complete examples (i.e., from beginning to end) of
the whole process or system being modeled (e.g., in
our application, this corresponds to complete pedestrian
trajectories).

2) The evolution of the state of the modeled system or
process is a continuous function.

3) The observation space is a subspace of the continuous-
state space. This implies that by finding a decomposition
of the observation space, a decomposition is also per-
formed on the continuous-state space.2

The key intuition behind GHMMs is that the structure of
the model should reflect the spatial structure of the state-space
discretization, where transitions between discrete states are
only allowed if the corresponding regions are neighbors. There-
fore, structure learning basically consists of estimating the best
space discretization from the data and identifying neighboring
regions. We have addressed this problem by building a topolog-

ical map using the instantaneous topological map (ITM) algo-
rithm [30]. For parameter learning, we have basically adapted
the incremental expectation–maximization approach proposed
by Neal and Hinton [31] to deal with the changing number of
discrete states and with continuous observations.

To avoid confusion, in the rest of this document, we will
make a strict difference between the nodes of the ITM algo-
rithm, the discrete states of a GHMM, the continuous state of
an object, and the observations provided by sensors.

A. Probabilistic Model

Structurally, GHMMs are identical to regular HMMs, except
for the fact that the number of states and the transition structure
are not constant but can change as more input observation se-
quences are processed. The other difference lies in the learning
algorithm, which is able to incrementally update the model. A
GHMM is defined in terms of three variables:

1) St and St−1, the current and previous states, which are
discrete variables with value St, St−1 ∈ {1, . . . , Nk},
where Nk is the number of states in the model after k
observation sequences have been processed3;

2) Ot, the observation variable, which is a multidimensional
vector.

The joint probability decomposition (JPD) for GHMMs is

P (St−1 St Ot) = P (St−1)
︸ ︷︷ ︸

stateprior

P (St|St−1)
︸ ︷︷ ︸

transition
probability

P (Ot|St)
︸ ︷︷ ︸
observation
probability

(1)

2It is worth noting that this assumption may be relaxed when the model is
not used for prediction but—for instance—just for recognition. In that case, the
only requirement is the existence of a weak topological equivalence between
the observation and state spaces; when the system goes through states that
are near each other, the corresponding observations will also be close to each
other.

3For the sake of notational simplicity, we will often omit the k hereafter;
nevertheless, it should be noted that the parameters and structure change with
every new observation sequence. Furthermore, notation O1:t will be used as a
shortcut for the variable conjunction O1, O2, . . . , Ot−1Ot.
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Fig. 2. Overview of the GHMM learning algorithm.

where the state prior is simply the posterior of the previous
time step

P (St−1) = P (St−1|O1:t−1). (2)

Both the observation and transition probabilities are assumed
to be stationary, that is, independent of time; thus, the paramet-
ric forms of the three probabilities in the JPD are the same,
irrespective of the value of the time variable.

1) P (S0 = i) = πi. The state prior will be represented as a
vector π = {π1, . . . , πN}, where each element contains
the prior probability for the corresponding discrete state.

2) P ([St = j]|[St−1 = i]) = ai,j . Transition probabilities
are represented with a set of variables A, where each
element ai,j represents the probability of reaching state
j in the next time step, given that the system is currently
in state i.

3) P (Ot|[St = i]) = G(Ot; μi,Σ). The observation proba-
bility density function will be represented by a Gaussian
distribution for every discrete state, having the same
covariance matrix Σ for all discrete states. The set of
all the Gaussians’ parameters will be denoted by b =
{Σ, μ1, . . . , μN}.

The full set of parameters for a GHMM is denoted by λ =
{π,A, b}.

In addition to its time-evolving nature, a GHMM is defined
by its learning algorithm, which processes complete obser-
vations sequences as they arrive. The general steps of the
algorithm are depicted in Fig. 2 and are detailed in the following
sections.

B. Updating the Topological Map

Our structure learning approach is based on the construction
of a topological map: a discrete representation of continuous
observation space in the form of a graph where nodes represent
regions of the space and edges connecting contiguous nodes.
Every node i has an associated vector wi, corresponding to the
region’s centroid. The nodes are added and adapted to minimize
the distortion of the model, i.e., the sum of the squared distances
between the input (i.e., observation) vectors and the centroid of
their closest node.

The topological map is updated for every available obser-
vation Ot using the ITM algorithm, which has the following
properties.

1) It minimizes the number of nodes while trying to keep the
same average distance between neighbors.

2) It has linear time and memory complexity with respect to
the number of nodes.

Fig. 3. Example ITM space decomposition. (a) Nodes and regions. (b) Edges.

3) Edges are a subset of the Delaunay triangulation, mean-
ing that they can exist only between nodes representing
adjacent Voronoi4 regions (see Fig. 3).

The ITM algorithm consists of the following steps (cf. [30]).

1) Matching: Find the nearest b and second nearest s nodes
to Ot. We use the Mahalanobis distance with the same Σ
as the observation probabilities.

2) Weight adaptation: Move wb toward Ot by a small
fraction ∆b = ǫ(Ot − wb).

3) Edge adaptation: a) Create an edge connecting b and s
unless that edge exists, and b) for every neighbor m of b,
check if Ot lies in the Thales sphere going through wm

and wb and delete the corresponding edge if that is the
case and also delete any node that has no neighbors.

4) Node adaptation: If Ot lies outside the Thales sphere
going through wb and ws and its distance from wb is
greater than a given threshold τ , create a new node n with
wn = Ot. Connect nodes b and n. Remove node s if its
distance from b is smaller than (τ/2).

4The Voronoi region associated with a node is defined by the set of all the
points that are closer to that node’s centroid than to any other centroid in
the graph. Delaunay edges link the centroids of Voronoi regions that have a
common border.
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A crucial part of the algorithm is that in addition to the
matching step, all the operations needed to maintain the
Delaunay triangulation depend only on nodes and edges in a
local neighborhood. There is a minor problem, however, since
node adaptation takes place after edge adaptation, it is possible
that some of the edges connected to b become non-Delaunay.
However, these edges are later deleted by the edge adaptation
step when new observations fall in the same region.

It is important to note that due to the assumption that the
observation space is actually a subspace of the continuous-state
space, the obtained ITM is also a representation of the latter.
This makes it possible to directly use it to update the GHMM
structure, as described in the following section.

C. Updating the Model’s Structure

During the topological map update, nodes and edges may
be added or deleted; these changes in the topological map are
reflected in the GHMM structure as follows.

1) For every new node i in the topological map, add a
corresponding discrete state in the GHMM, initializing
its prior to a preset value: πi = π0. Do the same for
the self-transition probability: ai,i = a0. Note that in this
and the two following steps, the values are not strictly a
probability because the corresponding sums do not add
up to one. This is corrected by a normalization step
that takes place at the beginning of parameter update
(cf. Section III-D).

2) For every new edge (i, j) in the topological map, initialize
the corresponding transition weights to ai,j = a0 and
aj,i = a0. As in the previous step, these values will later
be normalized to obtain true probabilities.

3) For every deleted node and edge in the topological map,
assign a value of zero (i.e., delete) to the corresponding
state prior and transition weights.

4) For every added or modified centroid wi, set the corre-
sponding Gaussian mean value: μi = wi.

D. Updating the Parameters

Parameter learning is immediately performed after struc-
ture learning. The GHMM learning algorithm reestimates the
parameters using an incremental version of the Baum–Welch
technique based on the work of Neal and Hinton [31], extending
it for continuous observation variables and an evolving number
of states. The basic idea of these algorithms is to use inference
to compute, for every state and transition, the likelihood that it
belongs to the state (or transition) sequence that best explains
the observation sequence. Then, these likelihoods are used as
weights to update the model.

A particularity of our approach is that all of the observation
probabilities’ mean values have been assigned during structure
update (see Section III-C) and that their covariance Σ is fixed.
Hence, only the state prior and transition probabilities need to
be reestimated. This is done in four steps.

1) Normalize the state prior and transition values. This is
necessary because the structure update does not guarantee

that the corresponding probabilities add up to one, as
explained in Section III-C.

2) Precompute αi (forward probabilities), βi (backward
probabilities), and pO (joint observation probability) for
the observation sequence O1:T (see the Appendix).

3) For every discrete state i in the GHMM, reestimate the
state prior

π̂i ←
α1(i)β1(i)

PO
(3)

πi ←
(k − 1)πi + π̂i

k
(4)

where k is the number of observation sequences that have
been observed so far.

4) Reestimate every nonzero transition probability in the
GHMM using

âi,j ←

∑T
t=2 αt−1(i)ai,jP (Ot|[St = j]) βt(j)

∑T
t=2 αt−1(i)βt−1(i)

(5)

ai,j ←
(k − 1)ai,j + âi,j

k
. (6)

The reason for using (4) and (6) is that they are equivalent to
dividing the sum of the weight by the number of trajectories to
obtain an average weight value.

For the sake of comparison, we also performed early tests
with straightforward Baum–Welch, i.e., using only (3) and (5)
to make the update, but the learned parameters were too heavily
biased toward recent observation sequences.

IV. LEARNING AND PREDICTING MOTION WITH GHMMS

Having presented GHMMs, this section focuses on their
concrete application to learning and predicting the motion of
vehicles and pedestrians. This application is based on the key
observation that often, objects move as a function of their
intention to reach a particular state (i.e., their goal). Accord-
ingly, we model the object’s motion in terms of an augmented
continuous-state vector, composed of two sets of variables de-
scribing its current and intended (i.e., goal) states, respectively.

Due to the fact that our model is goal oriented, in our
approach, a motion pattern is no longer a trajectory prototype
but a directed graph indicating all the possible ways in which a
goal may be reached (see Fig. 4).

A. Notation and Basic Assumptions

We assume that tracking data are available as a collection
of observation sequences (i.e., trajectories). Every individual
sequence Ok

1:T k = {O1, . . . , OT k} corresponds to the tracker’s
output for a single object, and its observations are evenly spaced
in time. Different observation sequences may have different
lengths T k.

In the rest of this section, we assume that the state of
an object is defined by its position (x, y) and, thus, that the
augmented state of the object consists of its current and goal
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Fig. 4. Pattern representations generated from input data. (a) Input trajecto-
ries. (b) Trajectory-based prototypes. (c) Goal-based directed graph (the goal is
the rightmost node).

positions (x, y, x′, y′). It should be noted, however, that our
approach is applicable to spaces of arbitrary dimensions, for ex-
ample, in our experiments, we have included the instantaneous
velocities of the vehicle in the continuous-state vector.

We assume that observations are available in the form of
estimates of the object’s coordinates Ot = (xt, yt)—although,
as in the case of the continuous state, they can also include
other variables such as velocities estimated by a tracking sys-
tem. Since learning is performed on the basis of complete
observation sequences, we assume that the last observation
OT = (xT , yT ) of each sequence corresponds to the object’s
goal. Hence, it is possible to build an augmented observation
sequence, which constitutes the actual input to our algorithm

Ō1:T = {(x1, y1, xT , yT ), (x2, y2, xT , yT )

. . . , (xT , yT , xT , yT )} .

B. Intended State

To gain a better understanding of the effect of including the
intended state in our model, we will discuss the example of a
simple 1-D environment in which objects can only move from
point A to point B or vice versa, as depicted in Fig. 5(a).

We will first analyze what happens with trajectories that go
from A to B. From our definition, the extended state is 2-D
and consists of the current and intended coordinates (x, x′). Let
us suppose that A = −5 and B = 5; then, the extended state
trajectories will go from (−5, 5) to (5, 5). After training several
A → B trajectories, we could expect to have a topological map
like the one depicted in Fig. 5(b). Notice that although the ITM
does not explicitly represent the direction of motion, this notion
is somehow implicit in the x′ coordinate. The corresponding

GHMM is shown in Fig. 5(c). In it, the left–right transition
probabilities are high, the self-transition probabilities are much
lower, and the right–left transitions probabilities are negligible
(but never zero).

If we now train on the B → A trajectories, we will obtain
something similar to the lower part of Fig. 5(d). The first
thing to notice is that the extended state trajectories now go
from (5, −5) to (−5, −5) and belong to a different 1-D
manifold than the A → B trajectories. Second, the dominant
transition probabilities on that manifold correspond to right–left
motion.

Thus, it can be seen that the effect of the inclusion of
the intended state is the appearance of distinctive manifolds
describing how objects move to reach the intended state. Of
course, this is useful in the measure where there are only a lim-
ited number of typical final states or goals in the environment,
which, in practice, is often the case.

C. Probabilistic Model

Since our approach is based on GHMMs, it uses the same
probabilistic model that has been described in Section III-A.
Nevertheless, we also need to distinguish between the current
and intended components of the state. Thus, we will decompose
the augmented observation variable into its current O′

t and its
intended O′′

t component: Ot = [O′
t, O

′′
t ].

To define the JPD, we will assume that the current and
intended components of observations are conditionally inde-
pendent given the current state, enabling us to rewrite the
observation probability as

P (Ot|St) = P (O′
t O′′

t |St) = P (O′
t|St) P (O′′

t |St) (7)

and the whole JPD as

P (St−1 St O′
t O′′

t )

= P (St−1)P (St|St−1)P (O′
t|St) P (O′′

t |St) . (8)

Since the observation probability is now written as a product
of probabilities P (O′

t O′′
t |St) = P (O′

t|St)P (O′′
t |St), we need

to define their parametric forms

P (O′
t|[St = i])=G (O′

t;μ
′
i,Σ

′) (9)

P (O′′
t |[St = i])=

{
UO′′

t
, if O′′

t is not available
G (O′′

t ;μ
′′
i ,Σ

′′) , otherwise

(10)

where UO′′

t
is a uniform distribution over the goal domain, μ′

i

and μ′′
i are the mean values of the current and goal components

for discrete state i, and Σ′ and Σ′′ are the respective values of
the covariance matrix for all the states.

By noting that P (Ot|St) is either a product of Gaussians or
a product of a constant and a Gaussian, we may rewrite this
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Fig. 5. Example of our motion learning algorithm in a 1-D environment. x and x′ axes do not have the same scale. (a) Example 1-D environment. Objects move
from A to B (top arrow) or from B to A (bottom arrow). (b) Extended observation sequence plot and Voronoi diagram. The Voronoi region’s borders are depicted
in blue, and Delaunay links are in green. (c) Learned GHMM after processing one kind of observation sequence. The size and color of the arrows represent the
probability. (d) Learned GHMM after processing the two kinds of observation sequences. The size and color of the arrows represent the probability.

probability as a single Gaussian

P (Ot|[St = i]) =
1

Z
G(Ot;μi,Σ) (11)

where μi = [μ′
i, μ

′′
i ], and Σ is a block diagonal matrix having

the form

Σ =

[
Σ′ 0
0 Σ′′

]

(12)
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Fig. 6. Data sets. (a) Real data. (b) Synthetic data.

and Z is a normalization variable, which enables computation
of the uniform on the goal component using the same Gaussian
representation. Since during prediction, the intended part of the
augmented observation is not available. This is done by setting5

O′′
t = 0.

D. Prediction

We have not yet discussed prediction, which can be per-
formed using the same algorithms that are used for standard
HMMs, without interfering with learning. This is possible
because learning immediately takes place after an observed
trajectory has finished, and thus, it does not affect prediction
in any way. For our particular case, we have chosen to apply
exact inference.

For every new observation, the current belief state for the
object is reestimated using

P (St|O1:t) =
1

Z
P (Ot|St)

∑

St−1

[P (St|St−1)P (St−1|O1:t−1)]

(13)

where P (St−1|O1:t−1) comes from the state estimation for the
previous time step (or from the state prior in the case of the
first observation in a sequence). Then, prediction is performed
by propagating this estimate H time steps ahead into the future
using

P (St+H |O1:t)=
∑

St+H−1

P (St+H |St+H−1)P (St+H−1|O1 : t).

(14)

Sometimes, we are interested in knowing the probability
of the continuous-state probability distribution—as opposed
to the discrete space, which is shown above. Since, in our
case, observations are expressed in terms of the state variable,
the continuous-state probability can be approximated by the
probability that a given state is observed in the future, which
may be computed from the predicted discrete state as follows:

P (Ot+H |O1:t)=
1

Z

∑

St+H

P (St+H |O1:t)P (Ot+H |St+H). (15)

5It is easy to show that this is equivalent to a multiplication by a con-
stant and—when normalized—effectively becomes equivalent to the uniform
on (10).

Fig. 7. Projection on the image of the learned structure after 100 trajectories
have been processed (Leeds data set).

V. EXPERIMENTAL RESULTS

We have implemented our approach and conducted extensive
experiments using several real and synthetic data sets. In this
section, we will discuss some of the results we have obtained
on two of these data sets (see Fig. 6): 1) real data obtained
through a visual tracker in a parking environment, wherein
tracking errors have been corrected by humans when necessary
by inspecting the original video sequence, as described in [32],
and 2) synthetic data, which is generated by a simulator. As
mentioned in Section IV, we have included velocity informa-
tion in the simulation and accordingly extended the state and
observation vectors. This allows, for example, inferring that the
probability that a car is going to park is higher if it starts to slow
down near a parking place.

Both data sets are sampled at 10 Hz, and the tests have
been executed in a 512-MB Athlon XP 2800 computer running
Linux.

A. Qualitative Results

As a result of the learning step, the GHMM’s structure and
parameters are updated. Fig. 7 shows the resulting structure
after applying the learning step for 100 trajectories of the Leeds
data set.

Fig. 8 shows a typical example of the prediction process
on the real data set. It consists of a set of images arranged in
columns and rows. Rows correspond to different values of t.
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Fig. 8. Example of a sequence of predictions for an obstacle moving in the Leeds environment. See Section V-A for details. (a) t = 10. (b) t = 30. (c) t = 82.
(d) t = 110.

In each row, the left image shows an actual picture of the
parking lot featuring different overlays, as shown in Fig. 9(a):
1) the current and previous observations, depicted as red dots;
2) the current state estimation approximated by a Gaussian

indicated with a red ellipse; 3) the current goal estimation also
approximated by a Gaussian, represented by a golden ellipse;
and 4) the mean value of the predicted states for different time
horizons going from H = 1 to H = 15, where H represents the
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Fig. 9. Explanation of Fig. 8; see Section V-A as well. (a) Left column. (b) Center column. (c) Right column.

number of time steps to look ahead in the future. These mean
values are displayed as points colored from blue (for H = 1) to
green (for H = 15).

The center and right images are 2-D projections in the image
space of the state and goal estimations. As depicted in Fig. 9(b)
and (c), they display—in addition to the previously mentioned
overlays—the probability distribution for the predicted position
for H = 15 and the final goal in the environment, respectively.
Higher probabilities are indicated with “warmer” tones (closer
to red).

The state prediction probability displayed in the center row
has been computed by applying (15) to the cells of a regular
grid. Since the augmented state is 4-D, we have chosen to
project the probability over the current position plane, thus not
showing the predicted goal.

For the right column, we have applied (15) to the cells of a
regular grid, much like that for the center column, but this time,
we have projected the probability over the intended position
(goal) plane.

An interesting feature of our environment is that it includes
two types of moving objects (i.e., pedestrians and vehicles).
Since these objects follow different motion patterns, this has
considerable influence in the prediction process. For example,
for t = 10, we may see that there are two highly probable goals.
This is interesting because they correspond to a pedestrian’s
destination (the building entrance) and a vehicle’s destination
(a lane’s end). As the vehicle moves further, it quickly becomes
associated with a vehicles’ goal, and by t = 82, the only two
goals with a significant probability correspond to the vehicles’
destinations.

It is also noteworthy that predicted states at H = 15 seem
to be considerably close from the current object position. The
reason is that in this data set, objects very slowly move with
respect to the size of the image, particularly when they are
far from the camera. This effect is much less noticeable on
simulated data (not shown here), because all its coordinates are
referred to the ground plane.

B. Measuring Prediction Accuracy

We have evaluated our prediction results using the aver-
age error for a complete data set containing K observation
sequences. This has been computed as the expected distance

between the predicted position for a time horizon H and the
effective observation Ot+H

〈E〉 =
1

K

K∑

k=1

1

T k − H

T k−H∑

t=1

∑

i∈S

P
(
[St+H = i]|Ok

1:t

)

×
∥
∥Ok

t+H − μi

∥
∥

1/2
. (16)

C. Model Size versus Prediction Accuracy

Fig. 10(a) and (c) shows the model size (number of edges)
and the average prediction error as a function of the total
number of processed trajectories for the real and simulated en-
vironments, respectively. As one could expect, the average error
decreases as more trajectories have been processed, and at the
same time, the model’s growth quickly decelerates as existing
knowledge covers more of the observed motion patterns. In the
case of real data, it is also possible to see some sudden jumps in
the size of the model that correspond to the addition of motion
patterns that occur in regions where no motion has previously
been observed or that significantly differ from all the rest.

D. Model Size versus Processing Time

Fig. 10(b) and (d) plots the time taken by prediction (middle
line) and learning (lower line) with respect to the number of
processed trajectories. The model size (upper line) is also given
as a reference.

As may be expected, time seems to linearly depend on the
model size. Moreover, prediction times are below 16 ms per
observation for real data and 35 ms for simulated data. This
is explained in part by the fact that the simulated environment
is much bigger than the real one. Even in this case, prediction
times are obtained at full camera frame rate.

It is also interesting to note that in the case of learning,
times per observation are below 5 ms, which means that a 10-s
trajectory requires about slightly more than 1 s to be learned.

E. Modeling Motion With Cycles

An interesting question is to see if and how our approach
could deal with motion patterns containing cycles. As an
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Fig. 10. Error and computation times. First row: Real data. Bottom row: Synthetic data.

example, let us imagine an 800-m track running event, where
runners have to go twice around the racetrack to finish the
race. It is evident that the situations at 395 and 795 m are
very different; in the first one, the competitor will continue
to run for another turn, while in the second one, it will stop
after 5 m. Since our motion prediction approach as it is defined
only distinguishes discrete states in terms of their position and
speed, it is not able to deal with this situation, resulting in
equiprobable predictions of stopping and continuing at both
395 and 795 m.

Although this example may seem contrived, this situation
frequently arises for other kinds of motion, for example, for
gesture recognition. Here, we propose a simple solution to
this problem: including the time variable t in observations. To
illustrate this, we have prepared a synthetic data set consisting
of two symmetric motion patterns (see Fig. 11), where the
object describes one and a half big circles, interleaved with
two smaller cycles at the top and bottom. The only difference
between both patterns is that one always turns to the left, and
the other one always turns to the right.

Of course, including the time variable in observations
implies augmenting the observation covariance matrix to

Fig. 11. Examples of cyclic trajectories. One trajectory per motion pattern is
shown; the upper (gray) and lower (green) trajectories correspond to left and
right turns, respectively. See Section V-E for further details.
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Fig. 12. Prediction example for the cycle data set. (a) t = 1. (b) t = 20.
(c) t = 60. (d) t = 100.

include the time variable. Without going into the parame-
ter details, Fig. 12 illustrates our algorithm working in this
data set.

Notice how the object’s positions for t = 20, t = 60, and
t = 100 are very similar. Nevertheless, the predictions are

clearly different. At t = 20, the object has not even turned;
hence, the estimated probability for both goals are practically
the same. After one turn, at t = 20, the algorithm has identified
the left-turning motion pattern, and it predicts that the object
will still perform one more small turn. Finally, at t = 100, the
algorithm recognizes that the object has performed two small
turns and thus predicts that the object will continue to follow
the big one.

As our example shows, by simply redefining observations,
our algorithm is able to deal with cyclic motion patterns without
further modifications. Moreover, moderated temporal misalign-
ments may easily be dealt with by modifying the covariance
matrix.

VI. CONCLUSION

We have developed a novel extension to HMMs that is able to
incrementally learn both the model’s parameters and structure.
We have applied this extension to vehicle and pedestrian motion
by defining an augmented state that adds the intended goal
to the classic state variables. We have validated our approach
using real and synthetic data, and the obtained results show both
good prediction accuracy and real-time applicability. Moreover,
our approach improves upon other HMM-based techniques by
implementing a model of the object’s intentions.

In the medium term, future work includes applying our
approach to gesture recognition on video sequences, with the
intention of validating its applicability to higher dimensional
spaces. On the practical side, we will work on performing an
in-depth comparison with other motion-learning and prediction
approaches.

APPENDIX

FORWARD, BACKWARD, AND JOINT

OBSERVATION PROBABILITIES

For the sake of completeness, we include here the pseudo-
code for the computation of the forward (Algorithm 1) and
backward (Algorithm 2) probabilities.

Algorithm 1 Forward_probabilities(O1:T , λ)
input:
• An observation sequence O1:T

• HMM parameters λ = {π, b, A}
output: Forward Probabilities αt(i)
begin

for i = 1 to N do

α1(i) = P ([S1 = i])P (O1|[S1 = i])
end

for t = 2 to T do

for j = 1 to N do

αt(j) = [
∑N

i=1 αt(i)P ([St =j]|[St−1 = i])]P (Ot|
[St = j])

end

end

end

return all αt(i)
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Algorithm 2 Backward_probabilities(O1:T , λ)
input:
• An observation sequence O1:T

• HMM parameters λ = {π, b, A}
output: Backward probabilities βt(i)
begin

for i = 1 to N do

βT (i) = 1
end

for t = T − 1 down to 1 do

for i = 1 to N do

βt(i) =
∑N

j=1 P ([St+1 = j]|[St = i])P (Ot+1|
[St+1 = j])βt+1(j)

end

end

end

return all βt(i)

The joint observation probability (i.e., the probability of an
observation sequence given the model) is computed from the
forward probabilities using

P (O1:T |λ) =

N∑

i=1

P (O1:T , ST = i|λ)

=

N∑

i=1

αT (i). (17)
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