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INCREMENTAL LEAST SQUARES METHODS AND THE
EXTENDED KALMAN FILTER*

DIMITRI P. BERTSEKAS

Abstract. In this paper we propose and analyze nonlinear least squares methods which process
the data incrementally, one data block at a time. Such methods are well suited for large data sets
and real time operation and have received much attention in the context of neural network training
problems. We focus on the extended Kalman filter, which may be viewed as an incremental version
of the Gauss-Newton method. We provide a nonstochastic analysis of its convergence properties, and
we discuss variants aimed at accelerating its convergence.
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1. Introduction. We consider least squares problems of the form

m

minimize f(x)= ilg(x)ll IIg (x)ll =
i=1

subject to x

where g is a continuously differentiable function with component functions gl,..., g,
where gi :n

_
r. Here we write Ilzll for the usual Euclidean norm of a vector z,

that is, Ilzll , where the prime denotes transposition. We also write Tgi for the
n ri gradient matrix of gi and Vg forthe n (rl +... + r,) gradient matrix of g.
Least squares problems very often arise in contexts where the functions gi correspond
to measurenents that we are trying to fit with a model parameterized by x. Motivated
by this context, we refer to each component gi as a data block, and we refer to the
entire function g (gl,..., gin) as the data set.

One of the. most common iterative methods for solving least squares problems is
the Gauss-Newton method, given by

where ak is a positive stepsize, and we assume that the n n matrix Vg(xk)Vg(xk)
is invertible. The case ak 1 corresponds to the pure form of the method, where
xk+ is obtained by linearizing g at the current iterate xk and mininizing the norm
of the linearized function, that is,

(3) xk+ arg min [Ig(xk) + Vg(xk)’(x xk)ll 2 if ak 1.

In problems where there are many data blocks, the Gauss-Newton method may
be ineffective because the size of the data set makes each iteration very costly. For
such problems it may be much better to use an incremental method that does not
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808 DIMITRI P. BERTSEKAS

wait to proCess the entire data set before updating x, as discussed in [Ber95]. Instead,
the method cycles through the data blocks in sequence and updates the estimate of x
after each data block is processed. A further advantage is that estimates of x become
available as data is accumulated, making the approach suitable for real time operation.
Such methods include the Widrow-Hoff least-mean-square (LMS) algorithm [WiH60],
[WiS85] for the case where the data blocks are linear, and other steepest-descent-like
methods for nonlinear data blocks that have been used extensively for the training of
neural networks under the generic name of backpropagation methods. A cycle through
the data set of a typical example of such a method starts with a vector xk and generates
xk+1 according to

Xk+l rn,
where rn is obtained at the last step of the recursion

1,...,m,

k is a positive stepsize, and 0 xk.
Backpropagation methods are often effective, and they are supported by stochas-

tic [PoT73], [Lju77], [KuC78], [Po187], [BeT89], [Whi89a], [Whi89b], [Gai93], [BeT96]
as well as deterministic convergence analyses [Luo91], [Gri93], [LuT93], [MaS94],
[Man93], [BeT96]. The main difference between stochastic and deterministic meth-
ods of analysis is that the former apply to an infinite data set (one with an infinite
number of data blocks) satisfying some statistical assumptions, while the latter apply
to a finite data set. There are also parallel asynchronous versions of backpropagation
methods and corresponding stochastic [Wsi84], [TBA86], [BeT89], [Gai93] as well as
deterministic convergence results [Tsi84], [TBA86], [BeT89], [MaS94]. However, back-
propagation methods typically have a slow convergence rate not only because they are
first-order steepest-descent-like methods, but also because they require a diminishing
stepsize ok O(1/k) for convergence. If k is instead taken to be a small constant,
an oscillation within each data cycle typically arises, as shown by [Luo91].

In this paper we focus on methods that combine the advantages of backprop-
agation methods for large data sets with the often superior convergence rate of the
Gauss-Newton method. We thus consider an incremental version of the Gauss-Newton
method, which operates in cycles through the data blocks. The (k + 1)st cycle starts
with a vector xk and a positive semidefinite matrix Hk to be defined later, then
updates x via a Gauss-Newton-like iteration aimed at minimizing

A(x x)’Hk(x x) + Ilgl(x)ll 2,

where A is a scalar with
0<A_<I,

then updates x via a Gauss-Newton-like iteration aimed at minimizing

)2(x xk)’H(x xk) + AIIgl(x)ll 2 / IIg2(x) 2,

and similarly continues, with the ith step consisting of a Gauss-Newton-like iteration
aimed at minimizing the weighted partial sum
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EXTENDED KALMAN FILTER 809

In particular, given xk, the (k + 1)st cycle sequentially generates the vectors
(4)

{ }i arg min A(x- Xk)’gk(x-- Xk) + )-YlIgj(X,j-1)[[ 2 i 1,...,m,
xEn

j=l

and sets

(5) x +l

where j (x, j-1) are the linearized functions

(6) j(X, j--1) gj()j--1) + Vgj(j--1)t(X 2j--1)

and 0 is the estimate of x .at the end of the kth cycle:

(7) 0.

As will be seen later, the quadratic ninimizations above can be efficiently implemented
using the recursive Kalman filter formulas.

The most common version of the preceding algorithm is obtained when the ma-
trices Hk are updated by the recursion

m

(8) Hk+l
j=l

Then for A 1 and H 0, the method becomes the well-known extended Kalman
filter (EKF for short) specialized to the case where the state of the underlying dynam-
ical system stays constant and the measurement equation is nonlinear. The EKF was
originally conceived as a method for estimating parameters from nonlinear measure-
ments that are generated in real time. The basic idea of the method is to linearize
each new measurement around the current value of the estimate and treat the mea-
surement as if.it were linear (cf. eq. (4)). The estimate is then corrected to account
for the new (linearized) measurement using the convenient Kalman filter formulas (see
Lemma 1). The algorithm considered here cycles repeatedly through the data set and
is sometimes called the iterated extended Kalman filter. For the problem of estimat-
ing the state of a dynamic system, a cycle through the data set involves solving a
problem of smoothing the estimate of the state trajectory before starting a new cycle
(see, e.g., [Be194]). The matrix Hk has the meaning of the inverse of an approximate
error covariance of the estimate xk. In the case /k < 1, the effect of old data blocks
is discounted, and successive estimates produced by the method tend to change more
rapidly. In this way one may obtain a faster rate of progress of the method, and this
is the main motivation for considering A < 1.

The EKF has been used extensively in a variety of control and estimation applica-
tions (see, e.g., [AWT69], [Jaz70], [Meh71], [THS77], [AnM79], [WeMS0]) and has also
been suggested for the training of neural networks (see, e.g., [WaT90] and [RRK92]).
The version of the algorithm (4)-(8) with A < 1 has also been proposed by Davi-
don [Dav76]. Unaware of the earlier work in the control and estimation literature,
Davidon described the qualitative behavior of the method together with favorable
computational experience for problems with large data sets, but gave no convergence
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810 DIMITRI P. BERTSEKAS

analysis. The first convergence analysis of the EKF was given by Ljung [Lju79], who
assuming 1 used a stochastic formulation (i.e., an infinite data set) and the ODE
approach of [Lju77] to prove satisfactory convergence properties for a version of the
EKF that is closely related to the one considered here (Theorem 6.1 of [Lju79], which
assumes a stationary measurement equation and additive noise). Ljung also showed
that the EKF, when applied to more complex models where the underlying dynamic
system is linear but its dynamics depend on z, exhibits complex behavior, includ-
ing the possible convergence to biased estimates. For such models he suggested the
use of a different formulation of the least squares problem involving the innovations
process (see also [UrsS0]). The algorithms and analysis of the present paper apply
to any type of deterministic least squares problem, and thus also apply to Ljung’s
innovations-based formulation.

A deterministic analysis of the EKF method (4)-(8), where < 1, was given
in Pappas’s Master’s thesis [Pap82]. He considered only the special case where
minx IIg()ll 0 and showed that the EKF converges locally to a nonsingular so-
lution of the system 9(z) 0 at a rate that is linear with convergence ratio A’. He
also argued by example that when ,k < 1 and minx 119(x)l > 0, the iterates bi pro-
duced by the EKF within each cycle generally oscillate with a "size" of oscillation that
diminishes as A approaches 1.

The purpose of this paper is to provide a deterministic analysis of the convergence
properties of the EKF for the general case where minx IIg(x)ll is not necessarily zero.
Our analysis is complicated by the lack of an explicit stepsize in the algorithm. In the
case where A 1 we show that the limit points of the generated sequence {xk } by the
EKF are stationary points of the least squares problem. The idea of the proof is to
show that the method involves an implicit stepsize of order O(1/k) and then to apply
arguments similar to those used by Tsitsiklis [Tsi84] and Tsitsiklis, Bertsekas, and
Athans [TBA86] in their analyses of asynchronous distributed gradient methods, and
by Mangasarian and Solodov [MaS94] in their convergence proof of an asynchronous
parallel backpropagation method. To improve the rate of convergence of the method,
which is sublinear and typically slow, we suggest a convergent and empirically faster
variant where A is initially less than 1 and is progressively increased toward 1.

In addition to dealing more naturally with the case of a finite data set, a nice
aspect of the deterministic analysis is that it decouples the stochastic modeling of the
data generation process from the algorithmic solution of the least squares problem. In
other words, the EKF discussed here will (typically) find a least squares solution even
if the least squares formulation is inappropriate for the corresponding real parameter
estimation problem. This is a valuable insight because it is sometimes thought that
convergence of the EKF depends on the validity of the Underlying stochastic model
assumptions.

2. The EKF. When the data blocks are linear functions, it takes a single pure
Gauss-Newton iteration to find the least squares estimate. This iteration can be
implemented as an incremental algorithm, the Kalman filter, which we now describe.
Assume that the functions 9i are linear and of the form

(9) gi(x) zi Cix,

where zi N are given vectors and Ci are given ri x n matrices. Let us consider the
incremental method that generates the vectors

(10) 9i arg min E )i-JllzJ CjxlI2 1 m.
xE

j=l
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EXTENDED KALMAN FILTER 811

Then the method can be recursively implemented, as shown by the following well-
known proposition (see, e.g., [AnM79]).

PROPOSITION 1 (Kalman filter). Assuming that the matrix C[C1 is positive
definite, the least squares estimates

i arg min E/V-Y Ilzj Cjxl[
xN

j=l

i-- 1,...,m,

can be generated by the algorithm

(11) i i-1 -}- HlV(zi Cii-1), 1,...,

where o is an arbitrary vector, and the positive-definite matrices Hi are generated by

(12) Hi AHi- + CCi, 1,..., m,

with

More generally, for all < we have

Ho--O.

(13)
j=T+l

The proof of Proposition 1 is obtained by using the following lemma involving
two data blocks, the straightforward proof of which is omitted.

LEMMA l. Let 1, @ be given vectors and F1, F2 be given matrices such that

FF1 is positive definite. Then the vectors

(14) 1 arg min II FlxllxN

and

(15)

are also given by

(16)

and

(17) 2 1 - (Fir-, + r;r.)-lr;(

where o is an arbitrary vector.
The proof of eqs. (12) and (13) of Proposition 1 follows by applying Lemma 1

with the correspondences 0 0, /)1 ), 22 /)i, and

(18) 1 rl
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812 DIMITRI P. BERTSEKAS

z Ci
and by carrying out the straightforward algebra.

Note that the positive definiteness assumption on CC1 in Proposition I is needed
to guarantee that the first matrix HI is positive definite and hence invertible; then
the positive definiteness of the subsequent matrices H2,..., Hm follows from eq. (12).
As a practical matter, it is possible to guarantee the positive definiteness of CCI
by lumping a sufficient number of measurements into the first data block (CI should
contain n linearly independent columns). An alternative is to redefine as

{ }(19) i arg min 5, illx Coil 2 +  i-JIIzj Cjxll 2 i 1 m,
j--1

where 5 is a small positive scalar. Then it can be seen that i is generated by the
same equations (II) and (12), except that the initial condition H0 0 is replaced by

(20) H0 z,

so that H 5I + C C1 is positive definite even if CC is not. Note, however, that
in this case the last estimate Cm is only approximately equal to the least squares
estimate x*, even if/ 1 (the approximation error depends on the size of 5).

Now consider the general case where the data blocks gi are nonlinear. Then the
EKF can be used, and its first cycle can be implemented by means of the Kalman
filter equations of Proposition 1. Using formulas (11) and (12) with the identifications

C -Vg(_)’,

the kth cycle of the EKF can be written in the incremental form

(21) i i- H(-lVgi(-l)gi(i-1), 1,..., m,

where the matrices Hi are generated by

(22) Hi =/kHi_ + Vgi(i-1)Vg(-l)’, i= 1,... ,m,

with

(23) H0 =0.

To contrast the EKF with the pure form of the Gauss-Newton method (unit
stepsize), note that a single iteration of the latter can be written as

(24) xk+ arg minE I[Oi(x xk)ll 2
xEn

i--1

Using the formulas of Proposition 1 with the identifications

z g(x) v(x)’x, c -Vg(x)’,
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EXTENDED KALMAN FILTER 813

we can generate xk+l by an incremental algorithm as

xk+ .2m

where

(25) i i--1 -’lVgi(xk)(gi(xk) - Vgi(xk)t(i-1 xk))’ i= 1,...,m,

0 xk, and the matrices Hi are generated by

(26) Hi H-I + Vg(xk)Vg(xk) ’, 1,..., m,

with

(27) H0 0.

Thus, by comparing eqs. (21)-(23) with eqs. (25)-(27), we see that, if/k 1, a

cycle of the EKF through the data set differs from a pure Gauss-Newton iteration
only in that the linearization of the data blocks g is done at the corresponding current
estimates

_
rather than at the estimate xk available at the start of the cycle. If the

data blocks are linear, the EKF with A 1 and the Gauss-Newton iteration coincide
and solve the problem in a single cycle through the data set.

3. Convergence of the EKF. We have considered so far a single cycle of
the EKF. To obtain an algorithm that cycles through the data set multiple times,
there are two basic approaches. The first approach is to reset the matrix H to some
fixed matrix H0 at the start of each cycle. Unfortunately, the convergence properties
of the resulting algorithm are questionable, and one can construct examples where
the method diverges, basically because the increments- -1 produced by the
method (cf. eq. (21)) may be too large. One may attempt to correct this behavior by
selecting H0 to be a sufficiently large multiple of the identity matrix, but this leads to
large asymptotic convergence errors (biased estimates), as can be seen through simple
examples where the data blocks are linear.

The second approach, which is followed in this paper, is to create a larger data
set by concatenating multiple copies of the original data set, that is, by forming what
we refer to as the extended data set

(28) (gl,g2,...,gm, gl,g2,...,gm, gl,g2,...).

The EKF is then applied to the extended data set and takes the form given in the
introduction (eqs. (4)-(8)). The algorithm has the form

Hkm+i AHk,+i- + Vgi(k,+i-1)Vgi(cm+i-)’, i 1,...,m,

-1Ckm+i Ckm+i- Hkm+iVgi(km+i-)gi(km+i-1), i 1,..., m,

where H0 0, 0 x is an arbitrary vector, and k indexes the current cycle through
the data set. Note that while in the above equations A is written as a constant,
we will later consider the possibility of changing in the course of the algorithm.
Also, we assume that the matrix g(x)Vg(x) is invertible, so that H- is well
defined. However, it can be shown that the convergence result to be given shortly
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814 DIMITRI P. BERTSEKAS

also holds when H0 is any positive-definite matrix, in which case the invertibility of
Vgl (x)Vgl (x) is unnecessary.

We will show that when I, the EKF version just described typically converges
to stationary points of the least squares problem. The basic reason is that the EKF
asymptotically resembles a gradient method with diminishing stepsize of order O(I/k).
To get a sense of this, assume that the EKF is applied to the extended data set (28)
with A I. Let us denote by xk.the iterate at the end of the kth cycle through the
data set, that .is,

xk Ckm, k 1, 2,

Then, by using eq. (13) with i- (k + 1)m and -- kin, we obtain

(29)
m

xk+l xk H-
i----1

Now H(k+l)m grows roughly in proportion to k + 1 because, by eq. (12), we have

(30) H(k+)m
k m

j--0 i--1

It is therefore reasonable to expect that the method tends to make slow progress
when k is large, which means that the vectors m+i- in eq. (29) are roughly equal
to xk. Thus, for large k, the sum in the right-hand side of eq. (29) is roughly equal
to the gradient Vg(xk)g(xk), while from eq. (30), H(k+)m is roughly equal to (k +
l)Vg(xk)Vg(xk), where g (g,g2,... ,gin) is the original data set. It follows that
for large k, the EKF iteration (29) can be written approximately as

k+l

that is, as an approximate Gauss-Newton iteration with diminishing stepsize. Thus,
based on generic properties of gradient methods with diminishing stepsize (see, e.g.,
[Po187]), we can expect convergence to stationary points of the least squares problem
and a sublinear convergence rate.

When < 1, the matrix H/- generated by the EKF recursion (22) will typ-
ically not diminish to zero, and {xk} may not converge to a stationary point of

-m= )m_llg(x)ll2. Furthermore, as the following example shows, the sequences
{km+,} produced by the EKF using eq. (21) may converge to different limits for
different i.

Example 1. Consider the case where there are two data blocks, g (x) x- c
and g2(x)= x- c2, where c and c2 are given scalars. Each cycle of the EKF consists
of two steps. At the second step of the kth cycle, we minimize

k

i--1

which is equal to the following scalar multiple of A(x- c)2 + (x- c2) 2"

(1 + A2 +... + A2k-2) ((x cl)2 + (x c2)2).
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EXTENDED KALMAN FILTER 815

Thus, at the second step, we obtain the minimizer of A(x Cl)2 .. (x c2)2.

Ac -F c2

At the first step of the kth cycle we minimize

which is equal to the following scalar multiple of (x- cl)2 + A(x- c2) 2"

(1 -- )2 .... __
2k-4) ((X C1)2

_
(X C2)2),

plus the diminishing term ,2k-2(x- Cl) 2. Thus, at the first step, we obtain approxi-
mately (for large k) the minimizer of (x- cl) 2 + A(x- c2) 2"

)2k- c + Ac2

We see, therefore, that within each cycle there is an oscillation around the minimizer
(c +c2)/2 of (x-c)2+ (x-c2)2. The size of the oscillation diminishes as A approaches
1.

The preceding example suggests that each sequence {km+i}, where 1,..., m,
may converge to a stationary point of the function

m

f (x) Am-Yllgy/ (x)ll 
j=l

i 1,...,m,

where we use the definition

gj(x) gj mod(m)/l(X) if j > m.

This is readily shown when the data blocks gi are linear in view of the definition of
g’km+i as the minimizer of

kmri

j--1

which can also be written as

llv (x)ll = / (1 / +... /
j--1

Since the leftmost summation above vanishes as k --. cx, Ckm+i minimizes fi(x)
asymptotically. In the case of nonlinear data blocks, a related but more complex
analysis of the cyclic convergence behavior described above is possible, but this analysis
will not be attempted in this paper.

Generally, for a nonlinear least squares problem, the convergence rate tends to be
faster when A <: 1 than when A 1, essentially because the implicit stepsize does not
diminish to zero as in the case 1. For this reason, a hybrid method that uses a
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816 DIMITRI P. BERTSEKAS

different value of A within each cycle may work best in practice. One may start with
a relatively small/ to attain a fast initial rate of convergence, and then progressively
increase/ toward I to attain high solution accuracy. The following proposition shows
convergence for the case where/ tends to 1 at a sufficiently fast rate.

PROPOSITION 2. Assume that gi(X) has full rank for all x and 1,...,m,
and that for some L > 0 we have

(32) IIVgi(x)gi(x) Vgi(y)gi(y)ll <_ LIIx Yl] x,y e n, 1,...,m.

Assume also that there is a constant c > 0 such that the scalar used in the updating
formula (22) within the kth cycle, call it )k, satisfies

C
(33) 0_<1-<_ Vk-l,2,

Then if the EKF applied to the extended data set (28) generates a bounded sequence
of vectors i, the sequence (f(xk)} converges and each of the limit points of (xk) is
a stationary point of the least squares problem.

We develop the proof of Proposition 2 through a series of lemmas, all of which
implicitly assume the conditions of Proposition 2.

LEMMA 2. There exist positive scalars cl and c2 such that for all k, the eigen-
values of the matrices Hkm lie within the interval [clk, c2k].

Proof. We have, using the update formula (22), that

(34)
m

H(k+l)m /km+1Hkm -E ,rn-i,-,
k+l vgi

i=1

Let X be a compact set containing all vectors generated by the algorithm, and
let B and b be an upper bound and a lower bound, respectively, for the eigenvalues
of Vgi(x)g(x) as x ranges over X. From eq. (34), it is seen by induction that all
eigenvalues of Hkm are less than or equal to c2k with c2 rnB. Furthermore, if vk is
the smallest eigenvalue of Hkm, then from eqs. (33) and (34) it is seen by induction
that

((35) vk+

_
1

k+l vk + 1
k + l

Using this relation, we will prove that vk >_ k for a sufficiently small but positive
value of/. Indeed, let k be the minimal positive integer k such that c/k < 1, and let
/ be any positive scalar such that

<_ (k + l-c)mb
k+l+kc

From eq. (35), it is seen that ifv _> k, then

(k + 1 -c)rnb (k + 1 + kc)=/(k+ 1) +
k+l k+l

_>/(k + 1).
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EXTENDED KALMAN FILTER 817

Similarly, it is shown that vk >_/k for all k >_ k. Thus, by taking equal to the scalar
Cl given below,

cl=min
(k+l-c)mb

min vk

++c ’= T
we see that vk >_ clk for all k

We will use the notation

1
m

(3) y(x) II,(x)ll,
i=1

from which we have

m

(37) Vf(x) v(x)(x).
i---1

H-1The next lemma shows that the vector that is multiplied by (k+l)m to obtain the
direction used by the EKF (cf. eqs. (13) and (29)) differs from the gradient Vf(xk)
by a relatively small amount.

LEMMA 3. Let

(38)
m

vy(x) -’ )a,(+,_).+1 Vg(km+i-1
i--1

Then there exists a scalar such that for all k

Proof. We have, using eqs. (37) and (3S),

so from assumptions (32) and (33) we obtain

(40)

m m

i=1 i=1

cM m

-< k +----- + LE IIx Ckmwi-I II,
i=1

where M is a bound for -.m__ IlVg(x)g(x)ll. We also have, using eq. (21), for all k
and _> 2,

i--1

xk Ckm+i-ll} IIHII
j=l
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818 DIMITRI P. BERTSEKAS

Using the boundedness of i and Lemma 2, we see that for all i and some 5 > 0 we
have for k > 1

< 2
I1 -./-lll <

+ 1"
Combining this relation with eq. (40), we obtain the desired relation (39). H

Assumption (32) together with eq. (37) implies that

(41) IlVf(x) Vf(Y)II mZllx Yll x, y .
The next lemma is a well-known consequence of this relation. We include the proof
for completeness.

LEMMA 4. For all x and y, there holds

mL
(42) f(x + y) < f (x) + y’Vf (x) + --Ilyll 2.

Let t be a scalar parameter and let F(t) f(x + ty). Using eq. (41), weProof.
have

f01 f01f(x + y)- f(x) F(1)- F(0)
dF
-(t) dt y’Vf (x + ty) dt

< y’Vf(x) dt + y’ (Vf(x + ty) Vf(x)) dt

<_ y’Vf(x) dt+ IlYll" IlV/(x + ty) Vf(x)lldt

<_ y’Vf (x) + Ilyll Ltllyll dt

mL
CV/(x)+ -KIIII .. a

We are now ready to prove Proposition 2.

Proof of Proposition 2. We have, using the Kalman filter recursion (13) and the
definition (38) of ek,

--1 (--,-i.-.(k,+i_l)gi(km+i_l))_xk+dkXk+l Xk H(k+l)m Ak+ vgi

i=1

where

(43) dk _H-1(k+)m(Vf(xk)-e).
Using Lemmas 2 and 3 and the fact that

1 -1 1

c2(k + 1)
< IIH(k+l)ml[ < c(k + 1)

which follows from Lemma 2, it is seen that

dk,Vf(xk) _VI;k,H- Vf(xk)
_

ek! -1
\’ (k+l)m H(k+l)m7f(xk)

< IIV/()ll 2 Ilell IIV/(x)ll+cB(k + 1) Cl(k + 1)

< IlVf(x)ll 2 ( 1 )c2(k + 1) + o (k + 1)2 IIv/(x)ll
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EXTENDED KALMAN FILTER 819

and
(44)

/_/-1

0
(k+ )2 [[Vf(xk)][ +0 +i

-O
(k/l) 2 [[Vf(xk)l]2 /0 (k/l) 3 (1)/ 0

(] / 1)4

Using these relations in eq. (42), we obtain

mL
f(xk+l) <_ f(xk) + d’Vf(xk) + ---Ildkll 2

( i
<--f(xk)-- c2(k/l)

/O
(k/l) 2

( 1 ) ( 1 )+o
(+): IIv/(z)[+o (+)4

Thus, since ]]Vf(xk)[I is bounded, there exist constants fll > 0 and f12 > 0 and a
positive integer k such that

(45) f(xk+) <_ f(x) -IIVf(xa)ll 2 + - V k >_ k.

It is well known that if {u} and {dk} are nonnegative sequences such that uk+l <_
uk+6k for all k and 6k-k= < x, then {uk} converges; this is a special case of
the supermartingale convergence theorem (see, e.g., [PolS7, p. 49] or [BETS9, p. 677]).
Since f(x) >_ 0 for all x, it follows from eq. (45) that {f(xk)} converges.

From eq. (45) we have for all k >_ k

(46)
k

f(xk+ <_ f(x-#) fl
-#- []Vf(x*)

i--k i=k

Since -/= < c we also that there cannot exist an e > 0/=- 1/i oc and 1/i2 see

such that 117f(x)ll 2 > Vk >_ . Therefore, we must have liminfa_ IIVf(xk)ll O.
We will now show that ]lVf(xk)]] O. Indeed, assume the contrary, that is,

there exists an > 0 such that [[Vf(xk)[I > for all k in an infinite subset of integers
K:. For each k /C, let i(k) be the first index i such that i > k and 117f(x/)ll < /2,
so that
(4)
e_ < []Vf(xk)]] [[Vf(xi(k))[[

i--k

Since from eq. (44) we have ]ldkl[ O(1/k), eq. (47) implies that for some constant
B1 > 0,

/(k)-
1

2--
i-k
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820 DIMITRI P. BERTSEKAS

From eq. (46) we see that

(_ ()-i

i=k i=k

Since {f(xk)} converges and lim-.,o E(=kk)-i 2/i2 0, it follows that

i(k)-i
1

lim
k--, kEK

=0,

xi(k)-1contradicting the earlier conclusion that < Bi z_,i=k 1/i for all k E K:. Therefore,
IIV/(xk)ll -- 0, and it follows that every limit point of {xk} is a stationary point of
I. [l

Note that the proof of Lemma 2 carries through even if the initial matrix H0 is any
positive-definite matrix rather than H0 0. As a result, Proposition 2 also holds when
H0 is some positive-definite matrix, in which case it is unnecessary to assume that the
matrices Vg(x)Vg(x)’ have full rank, as long as enough alternative assumptions are
imposed to guarantee the validity of the crucial Lemma .2. More generally, our method
of proof shows that the convergence characteristics of the method are maintained by
any scheme that varies A and/or H in a way that Lemma 2 holds.

The boundedness assumption on the sequence of vectors i is a substantial weak-
ness of Proposition 2. It is not easy to remove this assumption because the algorithm
does not have an explicit stepsize mechanism to control the magnitude of the initial
iterates. On the other hand, one can employ the device of projecting the iterates i
on a compact set that is known to contain an optimal solution and use a projection
version of the EKF of the type introduced in [Ber82a] and [Ber82b, 1.5]. Projecting
the iterates on a compact set is a well-known approach to enhance the theoretical
convergence properties of the EKF (see [Lju79]).

In practice, the method seems to converge considerably faster if is initially
less than 1 and is progressively increased toward 1 in a judicious manner. On the
other hand, an implicit diminishing stepsize as indicated by Lemma 2 is essential for
the convergence of the method, and such a stepsize induces a generically sublinear
convergence rate. This characteristic is shared with the backpropagation method
where, to achieve a linear convergence rate, it is essential to use a stepsize that is
bounded away from zero, but when such a stepsize is used, the method tends to
converge to oscillate [Luo91].

We finally note that as a result of its sublinear convergence rate, the EKF will
typically become ultimately slower than the Gauss-Newton method, even though it
may be much faster in the initial iterations. The ultimate convergence rate of both
the EKF and the backpropagation method may be improved by modifications that
gradually change the incremental character of these methods and ultimately make
them identical to the pure Gauss-Newton method and the steepest-descent method,
respectively. In particular, as convergence is approached, one may adaptively combine
ever larger groups of data blocks together into single data blocks. When all data
blocks are combined into a single block, the EKF and the backpropagation method
will become equivalent to the pure Gauss-Newton method and the steepest-descent
method, respectively.
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4. Conclusions. In this paper we have considered EKF algorithms for least
squares problems, which consist of repeated cycles through the data set. The com-
putational significance of these algorithms is well known from the control theory lit-
erature and has been documented by Davidon [Dav76] in the optimization literature.
The algorithms are incremental in nature and bear a similar relation to the Gauss-
Newton method as incremental backpropagation methods bear to the steepest-descent
method. Because of their incremental character, EKF methods seem particularly well
suited for neural network training problems. However, there has been no convergence
analysis of these methods for the case of a finite data set, and the present paper fills
this gap.

REFERENCES

[AWT69] M. ATHANS, R. P. WISHNER, AND A. BERTOLINI, Suboptimal state estimation for con-

tinuous time nonlinear systems from discrete noisy measurements, IEEE Trans. Automat.
Control, AC-13 (1968), pp. 504-514.

[AnM79] B. D. O. ANDERSON AND J. B. MOORE, Optimal Filtering, Prentice-HM1, Englewood
Cliffs, NJ, 1979.

[BeT89] D.P. BERTSEKAS AND J. N. TSITSIKLIS, Parallel and Distributed Computation: Numerical

Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[BeT96], Neuro-Dynamic Programming, Athena Scientific, Belmont, MA, 1996.

[Bel94] B.M. BELL, The iterated Kalman smoother as a Gauss-Newton method, SIAM J. Optim.,
4 (1994), p. 626.

[Ber82a] D.P. BERTSEKAS, Projected Newton methods for optimization problems with simple con-

straints, SIAM J. Control Optim., 20 (1982), pp. 221-246.
[Ber82b] , Constrained Optimization and Lagrange Multiplier Methods, Academic Press,

New York, 1982.
[Ber95] Nonlinear Programming, Athena Scientific, Belmont, MA, 1995..

[Dav76] W. C. DAVIDON, New least squares algorithms, J. Optim. Theory Appl., 18 (1976), pp.
187-197.

[Gai93] A. A. (AIVORONSKI, Convergence Analysis of Parallel Backpropagation Algorithm for
Neural Networks, Symposium on Parallel Optimization 3, Madison, WI, July 7-9, 1993.

[Gri93] L. GRIPPO, A Class of Unconstrained Minimization Methods for Neural Network Train-

inK, Symposium on Parallel Optimization 3, Madison, WI, July 7-9, 1993.

[Jaz70] A.H. JAZWINSkI, Stochastic Processes and Filtering Theory, Academic Press, New York,
1970.

[KuC78] H. J. KUSHNER AND D. S. CLARK, Stochastic Approximation Methods for Constrained
and Unconstrained Systems, Springer-Verlag, New York, 1978.

[Lju77] L. LJUNG, Analysis of recursive stochastic algorithms, IEEE Trans. Automat. Control,
AC-22 (1977), pp. 551-575.

[Lju79] , Asymptotic behavior of the extended Kalman filter as a parameter estimator for
linear systems, IEEE Trans. on Automat. Control, AC-24 (1979), pp. 36-50.

[LuT93] Z.Q. Luo AND P. TSENG, Analysis of an approximate gradient projection method with
applicationi to the backpropagation algorithm, Optim. Meth. Software, 4 (1994), pp. 85-
101.

[Luo91] Z. Q. Luo, On the convergence of the LMS algorithm with adaptive learning rate for
linear feedforward networks, Neural Comput., 3 (1991), pp. 226-245.

[MaS94] O. L. MANGASARIAN AND M. V. SOLODOV, Serial and parallel backpropagation conver-
gence via nonmonotone perturbed minimization, Optim. Methods Software, 4 (1994), pp.
103-116.

[Man93] O.L. MANGASARIAN, Mathematical programming in neural networks, ORSA J. Comput.,
5 (1993), pp. 349-360.

[Meh71] R. K. MEHRA, A comparison of several nonlinear filters for reentry vehicle tracking,
IEEE Trans. Automat. Control, AC-16 (1971), pp. 307-319.

[Pap82] T.N. PAPPAS, Solution of Nonlinear Equations by Davidon’s Least Squares Method, M.S.
thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, 1982.

D
o
w

n
lo

ad
ed

 0
6
/2

6
/1

3
 t

o
 1

8
.7

.2
9
.2

4
0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



822 DIMITRI P. BERTSEKAS

[PoT73] B. T. POLJAK AND Y. Z. TSYPKIN, Pseudogrudient adaptation and training algorithms,
Automation Remote Control, 12 (1973), pp. 45-68.

[Po187] B.T. POLJAK, Introduction to Optimization, Optimization Software Inc., NY, 1987.
[RRK92] D.W. RUCK, S. K. ROGERS, M. KABRISKY, P. S. MAYBECK, AND M. E. OXLEY, Com-

parative analysis of backpropagation and the extended Kalman filter .for training multilayer
perceptrons, IEEE Trans. Pattern Analysis and Machine Intelligence, 14 (1992), pp. 686-
691.

[TBA86] J. N. TSITSIKLIS, D. P. BERTSEKAS, AND M. ATHANS, Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms, IEEE Trans. Automat. Control,
AC-31 (1986), pp. 803-812.

[THS77] R.R. TENNEY, R. S. HEBBERT, AND N. R. SANDELL, JR., Tracking filter for maneuvering
sources, IEEE Trans. Automat. Control, AC-22 (1977), pp. 246-251.

[Tsi84] J. N. TSITSIKLIS, Problems in Decentralized Decision Making and Computation, Ph.D.
dissertation, Dept. of Electrical Enginering and Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, 1984.

[Urs80] B. URSIN, Asymptotic convergence properties of the extended Kalman filter using filtered
state estimates, IEEE Trans. Automat. Control, AC-25 (1980), pp. 1207-1211.

[Whi893] H. WHITE, Some asymptotic results for learning in single hidden-layer feedforward net-
work models, J. Amer. Statist. Assoc., 84 (1989), pp. 1003-1013.

[Whi89b], Learning in artificial neural networks: A statistical perspective, Neural Comput.,
1 (1989), pp. 425-464.

[WaT90] K. WATANABE AND S. ( TZAFESTAS, Learning algorithms for neural networks with the
Kalman filters, J. Intelligent Robotic Systems, 3 (1990), pp. 305-319.

[WeMS0] H. WEISS AND J. n. MOORE, Improved extended Kalman filter design for passive tracking,
IEEE Trans. Automat. Control, AC-25 (1980), pp. 807-811.

[WiH60] B. WIDROW AND M. E. HOFF, Adaptive Switching Circuits, Institute of Radio Engineers,
Western Electronic Show and Convention, Convention Record part 4, 1960, pp. 96-104.

[WiS85] B. WIDROW AND S. D. STEARNS, Adaptive Signal Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1985.

D
o
w

n
lo

ad
ed

 0
6
/2

6
/1

3
 t

o
 1

8
.7

.2
9
.2

4
0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p


