
Incremental Line Compaction

Jack E. Bresenham
IBM System Products Division, IBM UK Laboratories Ltd, Mailpoint 183, Hursley House, Hursley Park, Winchester,
Hampshire SO21 2JN, UK

Raster devices, such as digital plotters, CRT or plasma panel displays, and matrix or ink jet printers, represent
'straight' lines in quantized fashion as a sequence of unit axial and unit diagonal steps. Dichotomons run lengths and
periodic repetitive patterns in these incremental or digital lines provide a basis by which the step sequences for
quantized lines can be treated in compressed form for storage or transmission. Earnshaw recently published a paper
describing an investigation of two compaction alternatives encoding either run lengths or repeated patterns. This paper
describes a simple algorithm to incorporate both run length and repeated pattern encoding for step sequence
compaction. Also illustrated is the similarity in form of the repetitive loop used to generate either runs or single steps
and either full lines or periodic patterns; initial parameter values differ, but the subsequent iterative process is
identical.

INTRODUCTION

Raster devices, such as digital plotters, CRT or plasma
panel displays and matrix or ink jet printers, represent
'straight' lines in quantized fashion as a sequence of unit
axial and diagonal steps. Dichotomous run lengths and
periodic repetitive patterns in these incremental or
digital lines provide a basis by which the step sequences
for quantized lines can be treated in compressed form for
storage or transmission.

Earnshaw recently published papers describing an
investigation of two compaction alternatives encoding
either run lengths or repeated patterns.1'2 This note
describes a simple algorithm to incorporate both run
length and repeated pattern encoding for step sequence
compaction without the necessity to calculate separately
the explicit greatest common factor of the delta X and
delta Y displacements of the line from (Xx, Y^to (X2,
Y2l

For full line encoding, a partial first octant modification
(0 < tan# < 0.5) of Bresenham's original algorithm3'4

for single step sequence generation and a comparable
Freeman/Reggiori-like algorithm5'6'7 for run length
generation are used. The termination test in each of the
two full line algorithms is then changed to generate only
the first full period of the step or run sequences.
Substructure within the fundamental period as described
by Cederberg6 and Brons8 is not treated here.

To the best of the author's knowledge, Freeman first
observed that evenly spaced run length slices should be
present in incremental lines.9 Reggiori7, working with
Freeman at NYU, first published a run length algorithm
and described a very good encoded run length compaction
scheme. Alternative derivations of incremental line run
length properties include Refs 1, 6, 8, 10, 11 and 12.

RATIONALE

Incremental line single step or run sequences, in
uncompacted or compacted form, can be generated with
essentially the same short iterative loop which uses only
addition and sign testing. Subsequent expansion and

reconstruction of the encoded line representations can be
done by devices having only counters and equality testing
for arithmetic and logic capability. Enlargement by an
integer scale factor E readily can be incorporated.

To illustrate the methods, consider the incremental
form of the first octant line from S = (0,0) to T = (45, 6).
Let a represent one single step in the axial unit direction,
a = (1,0) in the first octant, and d represent one single
step in the diagonal unit direction, d = (1,1) in the first
octant. The step sequence for the line from S to T is

aaad aaaaaaad aaaaaad aaaaaaad aaaaaad
3 7 6 7 6

aaaaaaad aaa
7 3

and the step sequence for its complementary image from
S' = (0,0)toT' = (45,39)is

ddda ddddddda dddddda ddddddda dddddda
3 7 6 7 6

ddddddda ddd
7 3

This suggests a 'step encoding—full line sequence'
compaction form in which the two unit direction moves
are referenced as s, and s2 with a binary valued step
sequence {H(} of length AA in which 1 represents an s,
move and 0 represents an s2 move. The full line from S
to T can be encoded

11111110 1111110 11111110
1111110 11111110 111

and its complementary image from S' to T' will differ
only in that s, = 1, 1 and s2 = 1, 0.

For a 'run encoding—full line sequence' compaction
form, one again can reference unit direction moves as s,
and s2, but define an encoded run length sequence hs,
{Ht}, h, of length VB + 2 for explicit Sj run length
designation with one single s2 step implied between each
explicit S! run. Sequence interpretation will be as follows.

CCC-O0KM62O/82/0O25-O116502.50

1 1 6 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/116/527278 by guest on 21 August 2022

INCREMENTAL LINE COMPACTION

If hs or fit = 0 one has an s, run of length
M= L2-2J

= 1 one has an st run of length
A f - 1

If {Ht} = 0 one has an st run of length
Q= 1&A + VB]

= 1 one has an st run of length

where

and
= max[\AX\,\AY\]

VB = min[|AJT|, |A Y\, \(\AX\ - \AY\)\]

The full line from S to T can be encoded

s, = 1,0 s2 = l, 1 Q = 7 Vfl = 6
hs = 0 {Ht} = 010101 h, = 0

and its encoded complementary image from S' to T' will
differ only in that st = 1,1 and s2 = 1,0.

Since delta jf and delta ^displacements in the example
lines have a common factor greater than one, further
compaction can be obtained by encoding only the basic
period of the line [i.e. the line from the origin to either
(45, 6) or (45, 39) amounts to three repetitions of the step
sequence one would use from the origin to (15, 2) or
(15, 13)]. The periodic codings from S to T would be

'step encoding—periodic pattern sequence'
st = 1,0 s2 = 1, 1 AA = 45 7 = Aa=15

=1110 11111110 111

'run encoding—periodic pattern sequence'
Sl = l,0 s2 = l, 1 V5 = 6 I = V6 = 2 Q = l
hs = 0 {//,} = 01 ^ = 0

The encoded complementary image from S' to T again
will differ only in that st = 1, 1 and s2 = 1,0.

Figure 1 outlines the four encoding schemes:

step encoding—full line sequence
step encoding—periodic pattern sequence
run encoding—full line sequence
run encoding—periodic pattern sequence

with reference to appropriate transformation Tables 1-6
and the iterative stepping loop of Figs 2 and 3.
Incremental line step reconstruction from the encoded
forms is shown in Figs 4 and 5, and includes provision to
apply an integer enlargement scaling factor E. Recon-
struction of unidirectional or null lines is obvious and
hence not explicitly flowcharted.

COMMENTS

The iterative stepping loop flowcharts include treatment
of the equal error instance (V = 0 of which there will be
g occurrences when A A = gAa and VB = gVb with Aa
and Vb relatively prime and Aa is even and V7> is odd)
which provides an exactly reversible path.' The method
differs from that of Boothroyd and Hamilton but produces
a comparable effect.'3

As shown in Table 6, the greatest common denominator
(GCD) of delta X and delta Y (or A A and VB) easily can

be obtained as a by-product from the periodic pattern
stepping loop of Fig. 3 by counting the number of times,
I, the loop is traversed. Of course, the GCD could be
employed in lieu of AA or VB in the 'step-periodic' or
'run-periodic' compaction formats. Using either Earn-
shaw's method or the techniques described here, one
must calculate a line's incremental step sequence. The
former approach employs separate calculation of the
GCD, while in the latter the GCD can be obtained from
the incremental step sequence calculations which are
common to either approach.

If g is the greatest common denominator of A A and
VB and either form of run encoding is being used, one
should note that the final element in the sequence {Ht} is
used only through the first (Eg — 1) periodic repetitions
or (E - 1) full line repetitions. The test Vfi = K in the
flowchart in Fig. 5 causes the iteration to exit from
evaluation of {#,} before the last element when the whole
sequence {//J is not to be repeated again, e.g. 0{010101 }0
represents (0, 0) to (21, 15) in a 'run length encoding—
full line sequence'. The final 1 in {01 01 01} is not decoded
in Fig. 5. {One also can note that the {/fj encodings for
the lines from (0, 0) to (45,6) and from (0, 0) to (21, 15)
are identical since their first partial octant loop parame-
ters match even though their run lengths, Q, differ.} The
encoding {//,} takes this form since one can see that the
above can be further compacted to 0{01}0 representing
(0,0) to (21, 15) in the 'run length encoding—periodic
pattern sequence'. The re-construction re-cycles round
the {01} by re-zeroizing J each time. But again, one only
uses {01 01 01} and the final (expanded) 1 once again
remains undecoded. In this way the required number of
reconstructed increments are obtained. The last element

PER TABLE 1
DETERMINE FIRST OCTANT PARAMETERS
AA.AB, M\,M2, LY

(NULL LINE)
YES

PER TABLE 2
DETERMINE PARTIAL OCTANT PARAMETERS
VB, S1.S2

(UNIDIRECTIONAL)
YES

(BIDIRECTIONAL)
PER TABLE 5 OR 3, 4, 5
DETERMINE APPROPRIATE COMPACTION LOOP
PARAMETERS K1. Kl, AT3,VO,7

PER FIGURE 2 OR 3
GENERATE APPROPRIATE ENCODED SEQUENCE

PER TABLE 6
FORMAT APPROPRIATE COMPACTION
PARAMETERS

Figure 1. Incremental line compaction.

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 1 1 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/116/527278 by guest on 21 August 2022

J. E. BRESENHAM

Table 1. First octant normalization

AX m2, AY m72 LY AZ

>0
<0

1
-1

AY

>0
<0

1
- 1

LY

1
0

SO
<0 \AY\

AB mu

\AY\ / 7 ? 2 1

Table 2. Partial first octant normalization

where line is from integer starting coordinate point (X,, Y,)
to integer terminating coordinate point (X2, V2) and
A X = (X 2 - X ,) AY=(Y2-Y,) AZ=(|AX|-|AV|)

Table 3. Ron length parameters

floor of AA -=- VB
quotient of integer divide

AA modulo VB

remainder of integer divide for Q

floor of Q H- 2
truncated, single right shift of Q

AA modulo 2VB
N = R if Q even (no underflow

in right shift for M)
N = R + VB if Qodd (underflow

in right shift for M)

M -HJ
/v=l2Vir

AB
\AZ\ (/w2i-/n22)

;(/7J21,/W22)

Table 4. Initial/final run length encodings

N

¥=0

*o
= 0
= 0

AY

£ 0
< 0
£ 0
< 0

h.

0
0
0
1

At

0
0
1
0

Table 5. Compaction loop initialization

Compaction
form

K1 K2 Vo

K3

Full
line

Periodic
pattern

Single steps
Run lengths

2VB
2R

2(VB - AA) 2VB - AA
N+2{R-VB)

LY
-LY

AA
VB

2VB - AA
N+2(R-VB)

Table 6. Requisite compaction parameters

Unidirectional
Steps—full line
Steps—periodic pattern
Runs—full line
Runs—periodic pattern

AA

X

X

X

VB

X

X

S i

X

X

X

X

X

» 2

X

X

X

X

/

X

X

0

X

X

h,.h,

X

X

{Hi)

X

X

X

X

Number of
elements in {Hi)

AA
/ = Aa
VB
l = Vb

Note: greatest common denominator of AA. AB. VB is available as
steps—periodic pattern gcd = AA -=- / = g
runs—periodic pattern gcd = VB -s-1 = g

in {Hi} is, of course, redundant in that its associated
length could be calculated as the sum of the initial and
terminating lengths coded as hs and V It is convenient to
carry the final element for enlargement or repeated
periodic pattern cycling simplicity.

Table 6 indicates parameters which must be stored in
addition to the line's binary encoding. For very short
lines, these parameters would cause a stored representa-
tion to be longer than simply storing the single steps
directly. For longer lines and for lines in which delta X
and delta Y have a common factor greater than 1, the
stored representation can effect significant savings. In a
specific application, one would want to observe the 'cost'

of executing reconstruction as a distributed module and
to consider such effects as housekeeping for byte or word
boundary breakage in the binary encoding. The trade-
offs of space vs execution time, parametric coding vs
direct step usage, and partitioned or distributed function
execution are not considered here.

Acknowledgments

The contribution of Ms Sharon Hamilton in preparing artwork and Ms
Dorothea Lowendick and Ms Janet Lennard in preparing the
manuscript is gratefully acknowledged. Helpful as well were stimulating
discussions with Ms Nancy Bull and Dr Rae Earnshaw, and comments
on improving clarity from the referees.

118 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/116/527278 by guest on 21 August 2022

INCREMENTAL LINE COMPACTION

Figure 2. Full line sequence.
K1 K2 K3 Vo

For single step
compaction: 2VB K1-2A/1 A/1 K2 + A/I

For run length
compaction: 2R K1-2VS VB K2 + N ~LY

BIDIRECTIONAL - SINGLE STEPS: RECONSTRUCTION

y

LY

Figure 4.
For full line: Set/«-A/1
For full line or periodic pattern: Allow integer enlargement scaling

f

© Heyden & Son Ltd, 1982

Figure 3. Periodic pattern sequence.
K1 K2 K3 Vo y

For single step
compaction: 2Vfl K1-2A/1 K2 + AA K3 LY

For run length
compaction: 2R K1-2Vf l K2 + N K3 ~L

BIDIRECTIONAL - RUN LENGTHS: RECONSTRUCTION

ENTRY

M~- IQ + 2] | j . e . TRUNCATED, RIGHT SHIFT

YES

MOVE M STEPS
DIRECTION SI

Figure 5.
For full line: Set /«-Vfl
For full line or periodic pattern: Allow integer enlargement scaling

£

THE COMPUTER JOURNAL, VOL. 25. NO. 1,1982 119

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/116/527278 by guest on 21 August 2022

J. E. BRESENHAM

REFERENCES

1. R. A. Earnshaw, Line tracking for incremental plotters. The
Computer Journal 23 (No. 1), 46-52 (February 1980).

2. R. A. Earnshaw, Line generation for incremental and raster
devices. Computer Graphics 11 (No. 2), 199-205 (Summer
1977—SIGGRAPH '77 Proceedings).

3. J . E. Bresenham, An incremental algorithm for digital plotting.
ACM National Conference (August 1963).

4. J . E. Bresenham, Algorithm for computer control of a digital
plotter. IBM Systems Journal 4 (No. 1), 25-30 (January
1965).

5. J . E. Bresenham, D. G. Grice and S. C. Pi, Run length slices for
incremental lines. IBM Technical Disclosure Bulletin 22-8B,
3744-3747 (January 1980).

6. Roger L. T. Cederberg, A new method for vector generation:
Computer Graphics and Image Processing 9 (No. 2), 183-195
(February 1979).

7. G. B. Reggiori, Digital computer transformations for irreguar
line drawings, pp. 46 -61 . Technical Report 403-22, New York
University (April 1972). Available from US Department of
Commerce as AD-745-015.

8. R. Brons, Linguistic methods for the description of a straight
line on a grid. Computer Graphics and Image Processing 3 (No.
1), 48-62 (March 1974).

9. H. Freeman, Boundary encoding and processing in Picture
Processing and Psychopictorics, ed. by B. S. Lipkin and A.
Rosenfeld, pp. 241-266. Academic Press, New York (1970).

10. C. Arcelli and A. Massarorti, On the parallel generation of
straight digital lines. Computer Graphics and Image Processing
7 (No. 1), 67-83 (February 1978).

11. J.E. Bresenham, Incremental line compaction. Technical Report
TR29.0243. IBM System Communications Division, Research
Triangle Park, North Carolina (January 1981).

12. A. Rosenfeld, Digital straight line segments. IEEE Transactions
Computers C-23 12, 1264-1269 (December 1974).

13. J. Boothroyd and P. A. Hamilton, Exactly reversible plotter
paths. Australian Computer Journal 2 (No. 1), 20-21 (1970).

Received February 1981

©Heyden& Son Ltd, 1982

BIBLIOGRAPHY

K. Belser, Comment on 'An improved algorithm for the generation
of non-parametric curves'. IEEE Transactions Computers C-25 1,
103 (January 1976).

H. Freeman, On the encoding of arbitrary geometric configurations.
IRE Trans. EC-702, 260-268 (June 1961).

M. D. Gibbs, Angled vector generator program: IBM Technical
Disclosure Bulletin 21 (No. 5), 2041-2044 (October 1978).

L. Gilman and A. J. Rose, APL An Interactive Approach. John Wiley
and Sons, New York (1974).

S. K. Hoo, Accelerated Bresenham algorithm. IBM Technical
Disclosure Bulletin 18 (No. 4), 1075-1077 (September 1975).

K. E. Iverson, A programming language, p. 12. John Wiley & Sons,
Inc., New York (1962).

B. W. Jordan, W. J . Lennon and B. C. Holm, An improved algorithm
for the generation of non-parametric curves: IEEE Trans. Com-
puters C-22 (No. 12), pp. 1052-1060 (December 1973).

M. L. V. Pitteway, Algorithm for drawing elipses or hyperbolae with
a digital plotter. The Computer Journal 10 (No. 3), 282-289
(November 1967).

J. Ramot, Non-parametric curves. IEEE Transactions Computers C-
25 (No. 1), 103-104 (January 1976).

F. Rubin, Generation of non-parametric curves. IEEE Transactions
Computers C -25 ,1 , 103 (January 1976).

P. Coueignoux and R. Guedj, Computer generation of colored planer
patterns on TV-like rasters. Proceedings of the IEEE 68 (No. 7)
909-922 (July 1980).

120 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 ©HeydenA Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/116/527278 by guest on 21 August 2022

